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The development of high-power, stable and portable terahertz (THz) sources that can operate at room tempera-
ture remains one of the biggest challenges in THz and solid-state physics. Despite modern semiconductor devices 
such as resonant tunnelling diodes and quantum cascade lasers demonstrating a significant progress, they still face 
several limitations related to a low power output, temperature sensitivity and the lack of frequency tunability. In this 
respect, semiconductor superlattices operating in the miniband transport regime continue to represent promising 
quantum materials for the realization of the desirable THz gain. In this study, we briefly overview basic semiclassical 
models describing the high-frequency conductivity of superlattices. We cover the popular model of Ktitorov et al. 
and the lesser-known and more advanced model of Ignatov and Shashkin, and also make their comparative analysis 
with reference to the classical quasistatic model of gain in devices with the negative differential conductivity. This 
work aims to offer a simple introduction to these models and their practical relevance to THz device design and 
development.
Keywords: semiconductor superlattices, negative differential conductivity, terahertz gain

1. Introduction

The terahertz (THz) frequency range (1  THz is 
1012  Hz) nestled between the  microwaves and 
infrared ranges in the  electromagnetic spectrum 
displays an exciting ability to propagate with 
minimal losses in numerous dielectric materials 
and compounds. This remarkable feature exhib-
ited THz imaging and spectroscopy as powerful 
instruments in a  contactless inspection of vari-
ous materials, for security checks and industrial 
applications [1]. THz radiation attracts a surging 
interest in THz wireless communications [2], due 
to possibilities in applications of high-definition 
video streaming, virtual reality and augmented re-
ality as well as the ability to transmit data in tera-
bits per second range [3].

However, one of the  biggest challenges in 
the  progress of direct implementation of THz 

frequencies remains the  development of high-
power, stable and portable THz sources operating 
at room temperature. Particular attention is at-
tributed to solid-state and semiconductor-based 
devices as they enable compact dimensions of 
the systems, convenience in use and the effective 
power consumption  [1]. Semiconductor nano-
structure-based devices such as resonant tunnel-
ling diodes  [4] and quantum cascade lasers  [5] 
show a  promising potential; however, they still 
face limitations related to a  relatively low power 
output, temperature-sensitive operational condi-
tions and the lack of frequency tunability.

A rational route to overcome these hurdles 
could be related to the employment of semicon-
ductor superlattices (SSLs) [6, 7]. Superlattices are 
heterostructures made of alternating semiconduc-
tor materials, commonly GaAs/AlxGa1–xAs, to cre-
ate energy minibands via the control of quantum 
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well and barrier thicknesses (see Fig. 2). SSLs are 
typically fabricated either by molecular beam epi-
taxy or by doping a single material to create struc-
tures of alternating n-, i- and p-type regions which 
are commonly known as n-i-p-i type superlattices. 
As in periodic crystal lattices, these alternating 
quantum wells create a periodic profile of the po-
tential energy resulting in the  formation of sev-
eral energy minibands. Variation of the materials 
content and thickness of wells/barriers enables 
tailoring the  widths of minibands and gaps, and 
hence controlling the  carrier transport in a  de-
sirable way. In particular, the  electron transport 
under the action of modest electric fields can be 
limited to a  single miniband  –  this is known as 
the miniband transport regime and it is of the pri-
mary interest in the  present paper. Perhaps, one 
of the most peculiar field-induced effects observ-
able in the  miniband is ultrafast Bloch oscilla-
tions  [8–10]  –  periodic oscillations of optically 
excited electron wave packets both in time and in 
space. The phenomenon occurs at the THz range 
and is coherent, i.e. to make the  observation of 
Bloch oscillations possible, scattering processes 
should be eliminated from the direct influence on 
the coherent wave-packet motion. The frequency 

of Bloch oscillations is tuneable by the  applied 
electric field, thus opening an avenue to design an 
electric field tuneable THz emitter.

Furthermore, in the stationary electron trans-
port, superlattices exhibit remarkable features of 
negative differential conductivity (NDC) as was 
indicated in the  pioneering work by Esaki and 
Tsu [6]. This makes SSL an attractive platform for 
the realization of electrically driven GHz-THz os-
cillators  [11] and amplifiers  [12]. To understand 
the transition from absorption to gain and to es-
timate the  limiting frequencies of the  active de-
vices with NDC, one needs to calculate the high-
frequency conductivity of the  structure, which 
describes its linear response to a  small periodic 
signal. At a  very high frequency of the  signal, 
the  complex conductivity can demonstrate tem-
poral and spatial dispersions. Specifically for SSLs, 
the  effect of high-frequency gain due to NDC is 
often called Bloch gain [13, 14].

The Bloch gain displays dispersive features 
which are in a sharp contrast to those of classical 
oscillators, as illustrated in Fig. 1. For the classi-
cal linear oscillator driven by the electric field of 
high-frequency ω, the real part of complex con-
ductivity is positive exhibiting the  absorption 

Fig. 1. Illustrative comparison of the properties of a semiclassical charged harmonic oscillator 
(panel (a)) and a Bloch oscillator (panel (b)) in a frequency domain. The real parts of con-
ductivity are represented by a solid blue line, while the imaginary parts are shown by dashed 
lines. Note always positive conductivity in the case of harmonic oscillator and the dispersive 
origin of Bloch gain manifesting itself as negative real part of conductivity below the Bloch 
frequency ωB and the absorption above it according to the Ktitorov’s model. Left insets in 
panel (a) and panel (b) represent the harmonic oscillator and the Bloch oscillator in a su-
perlattice with a miniband width ∆, respectively. Right insets show the optical illustration of 
the gain with a population inversion panel (a) and the inversionless Bloch gain in superlat-
tices presented in panel (b) (adapted from [15]). Note a nonuniform occupancy of carrier 
distributions in broadened transition lines.
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line of Lorentzian shape, while its imaginary part 
has a  familiar dispersive shape. The real part of 
conductivity is peaked at the  natural (or eigen) 
frequency ω0 of the oscillator indicating the max-
imum loss, and there is no pronounced gain. In 
the case of Bloch oscillator, the picture is essen-
tially different –  the  real part of conductivity is 
negative below the frequency of Bloch oscillations 
ωB, demonstrating the presence of the broadband 
Bloch gain. When the  incident radiation coin-
cides exactly with the Bloch frequency, the dis-
persion curve changes its sign representing that 
the  system exhibits neither gain nor absorption 
at the Bloch resonance, i.e. the structure is trans-
parent. With further increase of frequency, i.e. 
ω  >  ωB, the  conductivity becomes always posi-
tive manifesting pronounced absorption. It is 
worth noting that the  Bloch gain displays two 
distinctive features in comparison to the  con-
ventional optical gain in laser physics: the Bloch 
gain is inversionless and dispersive because of 
its inhomogeneously broadened linewidth and 
scattering assistant transitions  [15]. One needs 
to recall that the  gain in lasers requires popu-
lation inversion at the  natural frequency of 
transition.

There are two seminal models describing phys-
ics behind the crossover from absorption to gain 
in SSLs. The  first one is the  minimal semiclassi-
cal high-frequency conductivity model of Ktitor-
ov–Simin–Sindalovskii (KSS) [16], and the other 
one is the more specialized Ignatov–Shashkin (IS) 
model which addresses high-frequency properties 
of space-charge waves  [17]. While these models 
are rooted in similar physical principles and are 
based on perturbative solutions of the Boltzmann 
transport equation for a  single miniband, they 
differ in several assumptions and mathematical 
formulations, leading to distinct predictions for 
high-frequency electron transport properties. In 
the present work, we provide a comparative over-
view and side-by-side analysis of the both models, 
underlying the  importance of temporal and spa-
tial dispersion effects caused by Bloch oscillations. 
We also briefly discuss the practical relevance of 
these and other superlattice models to GHz-THz 
device development.

The paper is organized as follows. Section  2 
provides a  theoretical background, including an 
introduction to the  high-frequency conductivity 

and quasistatic model, while Section 3 reviews 
the Ktitorov’s model [16]. Furthermore, Section 4 
presents the  Ignatov–Shashkin model  [17], with 
careful attention to the  underlying assumptions 
and mathematical framework. Section  5 offers 
a comparative analysis of Ignatov’s and Ktitorov’s 
high-frequency conductivity models using nu-
merical calculations. Finally, Section  6 provides 
some extensions of the models, the related experi-
mental insights and outlook.

2. Overview of electron transport in 
semiconductor superlattices

Superlattices exhibit unique optical and electronic 
high-frequency properties compared to tradition-
al bulk semiconductors mainly due to their sig-
nificantly longer lattice constant [18].

In particular, this structural feature of SSLs al-
lows for the observation of such remarkable high-
frequency phenomena as electron Bloch oscilla-
tions under the action of already moderate electric 
field (~10 kV/cm). Indeed, this coherent ultrafast 
effect is characterized by the Bloch frequency

0
B ,eE dω =



 (1)

where E0 is the  strength of the  constant electric 
field, d is the superlattice period, e is the elemen-
tary charge, ℏ is the reduced Planck’s constant, and 
it has been assumed that all oscillating electrons 
belong to the same first miniband. It is easy to see 
from Eq. (1) that for the typical spatial period of 
several nanometres the Bloch frequency ωB/2π be-
longs to the  THz range, and therefore it is quite 
possible to excite one or even many Bloch cycles 
on the  timescale shorter than the  characteristic 
scattering time τ  ~  0.1  ps at room temperature. 
In the energy representation, the Bloch frequency 
corresponds to transitions between equally spaced 
(ℏωB) energy levels, known as Wannier–Stark lad-
der. Therefore, along with ultrafast optical mea-
surements  [8, 9], the  Bloch oscillations are also 
observable in the frequency domain via the mani-
festation of the  Wannier–Stark ladder effects in 
the optical spectra of SSLs [19, 20].

When the  static electric field is applied to an 
SSL structure, electrons traverse the  k space to-
wards the Brillouin zone (BZ) boundary at kʹ = π/d 
(See Fig. 3).
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Within the  tight-binding approximation, the 
electron energy is described as

(1 cos(d )),
2

kε ∆ ′= −  (2)

where ∆ is the  first miniband width, and kʹ is 
the wavenumber of the electron wave packet cor-
responding to the  electron quasi-momentum 
p = ℏkʹ (kʹ should not be confused with the wave-
number of the classical wave, which will be used 
later).

From this, the  group velocity of the  electron 
wave packet can be determined:

1 d( ) sin(d ).
d 2

dv k k
k
ε ∆ ′= =
′

 

 (3)

As the  electron reaches the  BZ boundary, it 
undergoes Bragg reflection (mathematically ex-
pressed as the  sign change of the  sine function), 
reversing its k vector and restarting its trajectory 
from the opposite BZ edge. These oscillations also 
manifest themselves in real space, typically with 

nanometric amplitudes [10], and are fundamental 
to understanding the electron transport properties 
in SSLs as will be discussed further in Section 4. 
The real-space displacement of these oscillations 
can be calculated using the  group velocity (Eq. 
(3)) and the equation of motion for the electron 
quasi-momentum under the influence of the elec-
trical field, 

0

0

0

( ) d ( ( ))

(0) cos ,
2

t
x t t v k t

eE dx t
eE

′ ′ ′= =

∆  = −  
 

∫



 (4)

where x(0) is an initial position of the electron wave 
packet.

The stationary band transport in nanostruc-
tures (t ≫  τ) under the  action of strong electric 
fields is shaped by the scattering of electrons with 
phonons, impurities and by the  interface rough-
ness. A notable phenomenon, arising in the mini-
band transport due to the excitation and further 
decay of the Bloch oscillations, is the negative dif-

Fig. 2. Schematic representation of a  semiconductor superlattice 
(SSL) (top panel) and its potential profile with minibands (bottom 
panel). Differently coloured sections represent separate or differently 
doped materials. dw and db denote the width of the well and the bar-
rier, respectively, the SL period is d = dw + db, and Vb is the potential 
height of the barrier. The x axis depicts the axis of the superlattice. In 
contrast to the current convention, we denoted the SSL axis as the x 
axis for the convenience of readers in comparing the given descrip-
tion with the theoretical works by Ktitorov and Ignatov [16, 17].
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ferential conductivity (NDC). It was first theorized 
by Esaki and Tsu [6], who applied the Boltzmann 
transport equation to describe the  dynamics of 
the  electron ensemble in the  momentum space, 
rather than focusing on individual electron tra-
jectories. Namely, they found the stationary prob-
ability distribution function f(p, t → +∞) different 
from the thermal distribution, and then applied it 
to calculate the drift velocity and current as func-
tions of the  applied bias E0 (see also Ref.  [21]). 
The  resulting nonmonotonic current–field char-
acteristic of the SSL has the form

0 0
2

B

,
1 ( )

Ej σ
ω τ

=
+

 (5)

where σ0  =  n0e
2τ/m* is the  classical Drude’s con-

ductivity with n0, m* being the  electron concen-
tration, the longitudinal (along the axis of the SSL) 
effective mass of the  electron characterized by 
m* = ℏ2(d2ε/dk2)–1 = 2ℏ2/∆d2. The current density 
j is related to the drift velocity of miniband elec-
trons vd(E0) as j = en0vd. This nonlinear Esaki–Tsu 

characteristic, inherent for SSL, is illustrated in 
Fig. 2 (right panel).

At low electric fields (ωBτ ≪  1), the  current 
j is directly proportional to the  applied elec-
tric field E, following the  Ohm’s law. However, 
when the  electric field reaches the  critical value 
(ωBτ = 1), the slope of the curve becomes negative. 
In a strong electric field limit (ωBτ ≫ 1), electrons 
perform Bloch oscillations between the  scatter-
ing events and the  current decreases inversely 
with E, i.e. j ~ 1/E. In this regime, the current flow 
in the structure is suppressed, indicating that an 
electron performs fast oscillations between two 
points in real space. Differentiating Eq. (5) with 
respect to E yields the expression for the differen-
tial conductivity:

0

2
B

2 2
B

1 ( ) .
(1 ( ) )E E

j
E

ω τ
ω τ=

−∂
=

∂ +
 (6)

The static differential conductivity (6) becomes 
negative once the  condition of Bloch oscillations 
excitation (ωBτ) > 1 is satisfied.

Fig. 3. Left panel: the diagram illustrates Bloch oscillations in the k space along the ener-
gy miniband, which is described by the tight-binding approximation in Eq. (2). Initially, 
the electron wave packet is localized at position A; upon the application of static electric 
field, the wave packet accelerates, moving through point B towards the Brillouin zone edge 
at point C. After reaching C, it undergoes Bragg reflection, transitioning to point D (re-
versing the direction of its motion in real space) and traversing point E as it returns to A. 
The process then repeats. Right panel: simplified Esaki–Tsu current–field characteristic 
of a semiconductor superlattice. The blue zone marks the region of Ohmic behaviour 
while the red shows the negative differential conductivity regime. In terms of the electric 
field, a grey dashed line indicates the so-called inflexion point (ωBτ = 1) or the critical 
electric field above which the SSL enters the static negative differential conductivity.
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2.1. High-frequency conductivity and gain

As the next step, we consider a response of electrons 
to the action of the alternating field E1e

–iωt, which is 
characterized by the high-frequency complex con-
ductivity σ(ω) = σR + iσI following the relation

j(t) = Re(σ(ω) E1e
–iωt). (7)

The concept of the high-frequency conductivi-
ty is suitable for oscillations and waves of different 
origin, including electromagnetic, electrostatic, 
and in some cases acoustical waves [22].

To understand the physical meaning of the real 
part of conductivity σR, one can calculate the mean 
power per cycle (T = 2π/ω) dissipated in the con-
ductor:

0

1 R I 10

2
1

R

1 ( ) ( )d

1 [ cos( ) sin( )] cos( )d

.
2

T

T

P j t E t t
T

E t t E t t
T

E

σ ω σ ω ω

σ

′ ′ ′= =

′ ′ ′ ′= + =

=

∫

∫
 (8)

From Eq. (8) it follows that the  power is di-
rectly proportional to the real part of the complex 
conductivity. It is important to emphasize that 
a  positive sign for power indicates absorption, 
while a negative sign indicates gain. It can be also 
shown that σI determines the dispersive properties 
of the involved wave. In particular, for the electro-
magnetic wave (light) the coefficient of absorption 
(or gain) measured in cm–1 is directly proportional 
to σR, and the chromatic dispersion of the refrac-
tive index is controlled by σI. In the next sections, 
we will consider how to calculate σ within several 
models of miniband SSLs.

2.2. Quasistatic conductivity without dispersion

In this simplest model of the  high-frequency 
conductivity, it is assumed that the  current j(t) 
adiabatically follows variations of the  alternat-
ing field, and therefore technically the total field 
E(t) = E0 + E1cos(ωt) can be substituted in the stat-
ic j(E) characteristic instead of the constant field 
E0. Intuitively, it is clear that this approach is valid 
if the period T ~ 1/ω is much larger than the time 
interval  during which the static j(E) characteris-
tic is established due to electron scattering, that 

is the  condition ωτ ≪  1. It is worth noting that 
the quasistatic approach is the standard tool used 
in various models of bulk semi conductors [22].

To calculate the  small-signal conductivity in 
SSL, we additionally suppose that E1 ≪ E0 and get

0

dc 0 1( ) cos( ),
E E

jj j E E t
E

ω
=

∂
≈ + ⋅

∂
 (9)

where jdc(E0) is the static part of the current density 
and the derivative for the Esaki–Tsu characteristic 
is calculated in Eq. (6). Following the definition of 
the average power and using Eq. (7), we have
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 (10)

Comparing this to Eq. (8), we get that the real 
part of the quasistatic conductivity is 

0

quasist

2
B

0 2 2
B

1 ( )
(1 ( ) )

E E

j
E

σ

ω τσ
ω τ

=

∂
= =
∂

−
=

+
 (11)

and its imaginary part is zero. Therefore, there is 
no dispersion in the quasistatic model.

Furthermore, we will show later that the result 
(11) coincides with the  low-frequency limit of 
KSS conductivity (15), and this confirms the  in-
tuitive criterium of the quasistatic model validity 
in the form ωτ ≪ 1.

3. Ktitorov model: conductivity with temporal 
dispersion

In 1971, Ktitorov and co-workers developed 
a minimal model describing SSL linear response 
under the influence of the strong constant electric 
field [16]. This semiclassical model remains valid 
as long as the electric field is large enough to allow 
for Bloch oscillations and the  NDC regime, but 
is small enough to have enough Wannier–Stark 
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levels compared to the  miniband width, that is 
ℏωB/∆ ≪ 1.

By expressing the band in the tight-binding ap-
proximation (Eqs. (2, 3)), Ktitorov and co-workers 
solved the  time-dependent Boltzmann transport 
equation for the distribution function f(p, t) under 
the  assumption of weak perturbation by the  al-
ternating field E1(ω)e–iωt, found the  time-depend-
ent current, and then following Eq. (7) obtained 
the expression for the small-signal, high-frequency 
conductivity

0
2
B

2
B

2 2
B

( )
1

1 i
,

( ) 1 i ( )

p e

p e e

p e p e

σσ ω
ω τ τ

ω τ τ ωτ
ω ω τ τ ω τ τ

= ×
+

− −
×

− + − +
 (12)

where τp and τe are momentum and energy relaxa-
tion times, respectively.

This result revealed several important findings 
regarding high-frequency properties of SSLs. First, 
in the low-frequency limit, σ(ω) reduces to the stat-
ic differential conductivity (cf. Eq. (6)), which be-
comes negative when ωB

2τpτe  >  1. This condition 
marks the onset of NDC and broadband gain for 
low-frequency waves (11), a  key feature in SSL-
based high-frequency applications. Second, par-
ticularly when the τe significantly exceeds τp and 
the Bloch frequency ωB approaches zero, SSL con-

ductivity (12) resembles the  familiar expression 
for free carrier absorption in the Drude model.

Third, the conductivity (Eq. (12)) demonstrates 
a  strong temporal dispersion, which is directly 
controlled by Bloch frequency. In particular, for 
ωB

2τpτe ≫ 1, the real part of σ(ω) not only can turn 
negative for the frequencies ranging from ω = 0 to 
almost ω  =  ωB, but also there exists a  gain reso-
nance – a range of frequencies where gain is en-
hanced (Fig.  4). Position of the  gain resonance 
depends on the ratio of the scattering times τp/τe, 
and in the case when the scattering times are not 
very different from each other, the gain resonance 
is located rather close to Bloch frequency.

Lastly, the  model can potentially describe 
the  amplification of longitudinal electrostatic 
waves, alternatively known as the  space-charge 
waves. In this regard, the KSS model is universal 
as it can be applied to both electromagnetic and 
electrostatic waves. However, effects of the spatial 
dispersion are not included in the KSS model.

4. Ignatov–Shaskin model: conductivity with 
temporal and spatial dispersion

This model focuses on studying the excitation of 
space-charge waves in semiconductor superlat-
tices under the influence of the static and uniform 
electric field E0 that has the strength large enough 
to induce Bloch oscillations. The  authors adopt 

Fig. 4. Comparison of the real part of Ktitorov’s et al. conductivity (Eq. (12)) with dif-
ferent ratios of momentum and energy scattering times τp/τe. The gain resonance can 
be located close to the Bloch frequency. Dash-dotted line shows ωBτe = 10.
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initial assumptions similar to those in the study by 
Ktitorov et al., but here they incorporate spatial dis-
persion in their analysis by considering high-fre-
quency field perturbation in the form of the plane 
wave with the frequency ω and the wavenumber k. 
To describe the response of the electrons to exter-
nal fields, the most full form of Boltzmann trans-
port equation with the  Bhatnagar–Gross–Krook 
(commonly known as BGK) collision integral is 
used [23]. In contrast, Ktitorov’s et al. study utilized 
a simplified kinetic equation without a spatial vari-
able that accounted only for the  main features of 
the  relaxation processes. The  BGK integral is de-
fined as [23]

 (13)0
0

1 ( ) ,n xSt f f
nτ

 
= − − 

 

where f ≡ f(p, x, t) is the distribution function sat-
isfying the Boltzmann transport equation, f0 ≡ f0(p) 
is the  thermal equilibrium distribution function, 
n(x) is the  electron density distribution across 
the superlattice, and n0 is the thermal equilibrium 
electron density. The density of space charge n(x) 
is connected to the  total field acting on electrons 
by Poisson’s equation, specifying the  electrostatic 
nature of the  excited space-charge waves. By lin-
earizing the  Boltzmann transport equation under 
the  assumptions that the  high-frequency electric 
field and perturbations of the distribution function 
are confined within the SSL structure along the axis 
of the superlattice 0 < x < L, one can find the high-
frequency conductivity
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where Js(β) is Bessel’s function, β  =  k∆d/2ℏωB 
is the  normalized wavenumber that is scaled to 
the  amplitude of the  Bloch oscillations in space 
(cf. Eq. (4)), ωp  =  (n0e

2/m*ε0)
1/2 is the  plasma fre-

quency, Im(∆/2T) is the  temperature-dependent 
transport factor defined by modified Bessel’s func-
tion, and α = –(ω + i/τ)/ωB. It has to be noted that 
β is a control parameter which accounts for spatial 
dispersion in high-frequency conductivity (14), 

so that the dispersion becomes strong, i. e. β → 1, 
when the wavelength approaches the amplitude of 
the Bloch oscillations in space.

In a  long wavelength limit, or, in other words 
when β  →  0, the  IS conductivity (14) reduces to 
the KSS conductivity if one considers that τp = τe= τ:
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Note that ωBτ and ωτ are dimensionless vari-
ables. From here, for simplicity reasons, we will 
consider that σ0 = 1.

At ωBτ  →  0, the  high-frequency conductivity 
(Eq. (15)) is reduced to 

2

1 i( , 0) ,
(i )

k ωτσ ω
ωτ

−
→ =

+
 (16)

which is the SL free carrier absorption.
At the limit of low frequencies (ω → 0), Eq. (15) 

becomes

2
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2 2
B
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k ω τσ ω
ω τ

−
→ → =

+
  (17)

Remarkably, this equation is identical to Eq. 11), 
which is the quasistatic conductivity of the Esaki–
Tsu characteristic.

5. Numerical comparison

We compare Ignatov’s Eq. (14) and Ktitorov’s Eq. 
(12) models using numerical calculations imple-
mented in Python. Initially, we demonstrate that 
at a long wavelength limit – where no spatial dis-
persion is present (i.e. we set the numerical value 
of the  normalized wave vector to β  =  0.001)  – 
the models correspond closely to one another. 

Additionally, we neglect the  temperature de-
pendence of the  high-frequency conductivity 
by assuming that the  ratio of the  modified Bes-
sel functions Im(∆/2T)/I0(∆/2T) ≈ 1. Considering 
that the  miniband width ∆ can range from ap-
proximately 4 to 80 meV [24], and that the high-
est working temperature of a  compact quan-
tum cascade laser is around 250  K  [25], this is 



ISSN 1648-8504   eISSN 2424-3647  L. Stakėla et al. / Lith. J. Phys. 65, 57–71 (2025)65

a reasonable approximation, particularly in lower 
temperatures.

Our analysis reveals that the summation indices 
in Eq. (14) m, s are limited to ±1 and 0. As it will 
be shown later, these indices are sufficient to accu-
rately model the  high-frequency (HF) conductiv-
ity. For numerical calculations, we select three val-
ues of ωBτ: 0.25, 1 and 10. The first value illustrates 
the  behaviour of HF conductivity in the  Ohmic 
regime (see Fig.  3), the  second examines the  be-
haviour near the  inflection point, and the third is 
high enough to satisfy the  gain resonance condi-
tion ωB

2τpτe ≫ 1 as introduced by KSS [16].
These values are denoted by grey dashed-dot-

ted lines in Figs. 5–8. For practical purposes, both 
models are analyzed using dimensionless para-
meters. This is achieved primarily by multiplying 
the frequencies by the scattering constant τ. Typical 
values of the scattering constant in semiconductor 
superlattices are of an order of 0.1  ps  [11]. Thus, 
for the choice ωτ = 1 [12], the corresponding fre-
quencies range from 0.1 to 10 THz depending on 
the scattering constant. 

Taking the general form of Ignatov’s conductiv-
ity (Eq. (14)) and examining the terms in brackets,
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+
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we multiply the brackets by τ/τ and use ωp
2τ = σ0/

εʹε0. Redistributing the terms yields,
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from Ref.  [26] we know that the dielectric (Max-
well) relaxation time of the  conductor can be ex-
pressed as

0
c

0

.ε ετ
σ
′

=  (20)

Substituting this into the brackets and redistrib-
uting terms result in the dimensionless form of Ig-
natov’s equation:
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Fig. 5. Comparison of the real parts of Ktitorov’s conductivity σK (blue dotted line: 
ωBτ = 0.25; blue solid line: ωBτ = 1; blue dashed line: ωBτ = 10) with Ignatov’s HF 
conductivity at a long wavelength limit σI(ω, k → 0) (orange dotted line: ωBτ = 0.25; 
orange solid line: ωBτ = 1; orange dashed line: ωBτ = 10). Three grey dash-dotted lines 
depict the values of ωBτ for separate cases. Here β = 0.001, Im(∆/2T)/I0(∆/2T) ≈ 1 and 
τc/τ = 0.1. Note the positive real part conductivity (absence of gain) at low electric 
fields ωBτ = 0.25, and the negative real part conductivity above the critical electric 
field, ωBτ > 1, indicating the presence of gain. 
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Note that τc/τ is one of the control parameters in 
our calculations, and the conductivities σ are now 
scaled to σ0 in both models under consideration.

The calculated real and imaginary parts of 
the conductivity for both models – Ktitorov σK(ω) 
and Ignatov σI (ω, k → 0) – are shown in Figs. 5 and 
6, respectively. First, it can be seen that the  two 
models correspond well on both the real and im-
aginary axes at various values of ωBτ. Additionally, 
the absolute values of conductivity, for both the real 
and imaginary components decrease with increas-
ing electrical field strength.

In Fig. 5, we can discern the resonance predict-
ed by KSS at ω ≈ ωB for the case of large ωBτ = 10. 
At low electric field strengths, the resonance shifts 
to lower frequencies than the  predicted resonant 
frequency because the resonance gain condition is 
not fully satisfied.

At this resonant frequency, the sign of the con-
ductivity transitions to positive, and the  SSL en-
ters the  absorption regime. Furthermore, at high 
electrical fields (ωBτ  >  1) and in the  frequency 
range 0  <  ω  <  ωB, the  real part of conductivity is 
negative, confirming the Bloch oscillator’s oscilla-
tion within this range as described in Ref. [12]. At 
low field values, the conductivity is positive across 
the entire frequency range of the ac field, indicat-

ing absorption within the SSL. In the ohmic regime 
(ωBτ  =  0.25), the  maximum absorption occurs at 
zero frequency with a peak value of 0.85, and this is 
qualitatively consistent with Eq. (17).

At the critical electrical field (ωBτ > 1), the maxi-
mum peaks at 0.25 at ωτ = 1.42. When SSL operates 
in the NDC regime and the gain criterion is satis-
fied (ωBτ > 10), the maximum gain value (See Eq. 
(8)) is Re[σ] = –0.025 at ωτ ≈ 8.89. This confirms 
that amplification occurs in SSLs under the  influ-
ence of large electric fields when ωB

2τ2 ≫ 1.
Figure 6, which depicts the  imaginary part 

of the  conductivity, shows a  peak at the  lowest 
electric field and two distinct dips for the  criti-
cal electrical field and the NDC regime. The peak 
value for the lowest field reaches Im[σ] ≈ –0.42 at 
ωτ ≈ 1. At the critical electric bias, the dip shifts 
to lower than resonant frequencies, with the  ex-
tremum value being Im[σ] ≈ –0.12 at ωτ ≈ 0.74. 
At the highest field, the dip aligns with the reso-
nant Bloch frequency reaching a minimum value 
of Im[σ]  ≈  –0.05 at ωτ  ≈  9.95. Similar to Fig.  5, 
we attribute this shift to the  unfulfilled reso-
nance gain condition. The peak at ωτ = 2.72, with 
a  maximum value of Im[σ]  ≈  0.125, vanishes at 
the highest field, and the line shape begins to fol-
low the Lorentzian profile.

Fig. 6. Comparison of the  imaginary parts of the  Ktitorov’s conductivity σK (blue 
dotted line: ωBτ = 0.25; blue solid line: ωBτ = 1; blue dashed line: ωBτ = 10) with Ig-
natov’s HF conductivity at a long wavelength limit σI(ω, k → 0) (orange dotted line: 
ωBτ  =  0.25; orange solid line: ωBτ  =  1; orange dashed line: ωBτ  =  10). Three grey 
vertical dash-dotted lines depict values of ωBτ for separate cases. Here β  =  0.001, 
Im(∆/2T)/I0(∆/2T) ≈ 1 and τc/τ = 0.1.
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Focusing on the numerical value of the normal-
ized wavenumber β, we estimate that for typical 
SSL parameters the values of β can approach 0.1 
or larger. This range implies that spatial dispersion 
begins to play a  role in the  system’s description, 
making the IS model more accurate than the KSS 
model to describe space-charge waves under these 
conditions.

This difference is evident in Fig.  7 (real part 
of conductivity) and Fig.  8 (imaginary part), 
where the Ktitorov’s model (σK(ω)) is compared to 
the Ignatov’s model (σI(ω, k)) at β = 0.1. The main 
parameters are consistent with the previously ana-
lysed case of β → 0. As shown, the models remain 
similar in the Ohmic regime and near the critical 
electric field (ωBτ = 0.25 and ωBτ = 1) and undergo 
a minimal change. However, significant deviations 
appear at the highest field (ωBτ = 10).

In Fig. 7, examining the real part of the conduc-
tivity, we see that the peak gain for the large field 
case has doubled from Re[σ] ≈ –0.025 to –0.05 and 
shifted to a  higher frequency near the  resonant 
Bloch frequency. Additionally, the introduction of 
spatial dispersion extends the  gain region up to 
ωτ ≈ 11.05, and the absorption peak observed in 
Ktitorov’s results disappears (see Fig. 7). 

Analysing the imaginary part of the conductiv-
ity in Fig. 8, we find that at the large electric field, 
the  line shape deviates from the Lorentzian pro-
file. A  new positive peak emerges, and the  drop 
shifts to higher frequencies. The maximum value 
of the  imaginary part of Ignatov’s conductivity 
reaches 0.008 at ωτ ≈ 12.37, while the minimum 
value remains largely unchanged but shifts to 
a higher frequency at ωτ ≈ 10.41.

To summarize, we briefly overviewed and con-
sidered basic semiclassical models describing 
the  high-frequency conductivity of electrically 
biased semiconductor quantum superlattices. 
The  main attention was attributed to the  well-
known Ktitorov et al. model and the  less admit-
ted, but more advanced model of Ignatov and 
Shashkin that considers effects of spatial disper-
sion at the  long-wavelength limit, and the  mod-
els show good agreement across varying electric 
biases. This agreement persists with the inclusion 
of spatial dispersion at relatively low field values, 
where either the bias is below the critical one re-
quired for the onset of NDC or a strong gain reso-
nance is not yet reached.

However, at high electric fields, the  spatial 
dispersion becomes crucial, significantly altering 

Fig. 7. Comparison of the real parts of Ktitorov’s conductivity σK (blue dotted line: 
ωBτ = 0.25; blue solid line: ωBτ = 1; blue dashed line: ωBτ = 10) with Ignatov’s HF con-
ductivity σI(ω, k) at β = 0.1 (orange dotted line ωBτ = 0.25; orange solid line ωBτ = 1; 
orange dashed line ωBτ = 10). Two grey vertical dash-dotted lines depict values of ωBτ 
for separate cases. Here, Im(∆/2T)/I0(∆/2T) ≈ 1 and τc/τ = 0.1.
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the results. This highlights the need for further re-
search into effects of the spatial dispersion under 
fully met gain criteria. Leveraging the insights and 
comparative analysis acquired from the presented 
models, deliberate strategies for the design of de-
vices dedicated to high-frequency gain relying on 
the  negative differential conductivity can be de-
veloped. 

6. The physics beyond the used approximations

To begin, it is worth mentioning a very interesting 
work by Willenberg et al. dedicated to the gener-
alization of the KKS theory using density matrix 
formalism [27]. The model considered a sequen-
tial tunnelling regime in quantum structures with 
thick barriers and allowed one to unveil a surpris-
ing link between the  Bloch gain mechanism in 
periodic semiconductor superlattices and quan-
tum cascade laser structures. Next, as the  origi-
nal theory was limited to the analysis of the small 
signal case, an important step in its extension 
was the  consideration of a  large signal case  [28, 
29]. It was revealed that for parameters satisfy-
ing the  small-signal gain conditions, the  gain as 
a  rule also exists for quite large amplitudes of 
the amplified field. Moreover, it was exposed that 
in the  large-signal regime, the  dependence of 
the time-averaged current on the applied bias has 

a positive slope, which is a high-frequency coun-
terpart of the limited space-charge accumulation 
effect known in the  bulk semiconductors with 
NDC  [22]. An elegant model based on the  su-
perlattice balance equation requires a special un-
derline: it allows one to establish a profound link 
between the carrier dynamics in superlattice and 
the  dynamics of Josephson junctions  [30], indi-
cating that electromagnetic radiation can occur 
due to multiphoton emission and can reach THz 
frequencies.

6.1. Related experiments and outlook

Currently, there exist only a  few basic experi-
ments devoted to the Bloch gain. Firstly, Savvidis 
and co-workers revealed that the  frequency-
dependent crossover from loss to gain related 
to the  Stark ladder, produced by the  applied 
dc electric field, can be observed in InAs/AlSb 
superlattice structures  [12]. A  combination of 
sub-critical doping and a novel technological ap-
proach relying on the insertion of heavily doped 
InAs regions allowed one to suppress propagat-
ing high-field domains. The employment of free 
electron lasers to deliver the frequency-tuneable 
THz radiation which is coupled to waveguides 
loaded with the  InAs/AlSb superlattice me-
sas allowed the  displaying of clear signatures 

Fig. 8. Comparison of the  imaginary parts of Ktitorov’s conductivity σK(ω) (blue 
dotted line: ωBτ = 0.25; blue solid line: ωBτ = 1; blue dashed line: ωBτ = 10) with 
Ignatov’s HF conductivity σI(ω, k) at β = 0.1 (orange dotted line ωBτ = 0.25; orange 
solid line ωBτ = 1; orange dashed line ωBτ = 10). Two grey vertical dash-dotted lines 
depict values of ωBτ for separate cases.
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of the  Bloch gain at 1.98  THz. Furthermore, in 
the framework of the KSS model, it was demon-
strated that the  crossover from loss to gain de-
pends on the frequency; the higher the frequen-
cy, the  higher the  voltage or the  Stark splitting 
required to sense the suppression of the real dy-
namical conductance are  [12]. Secondly, Sekine 
and Hirakawa observed dispersive peculiarities 
in the spectral shape of the complex conductivity 
of Bloch oscillating electrons in GaAs/AlGaAs 
SSLs by using the time-domain THz electro-optic 
sampling technique [31]. The theoretical justifi-
cation of the experiment was done for simplicity 
by assuming a  small amplitude of the  ac probe 
field corresponding to a linear response, which is 
not always satisfied in conditions of real experi-
ments [31]. Thirdly, the Bloch gain was revealed 
in a  specially designed quantum cascade struc-
ture suitable for lasing in the infrared range [32]. 
Terazzi et al. studied this quantum cascade laser 
operation in the condition of a weak to vanish-
ing population inversion. The  observed effect 
was interpreted in terms of the dispersive shape 
of the gain spectrum, its dependence on the ac-
tive region design, and additionally supported 
by theoretical calculations  [27, 32]. It is worth 
emphasizing that in all the  aforesaid works 
the  amplified wave was assumed to be of elec-
tromagnetic origin, although in both theoreti-
cal contributions [16, 17] it was speculated that 
the  wave can also be treated as an electrostatic 
space charge wave propagating with the drift ve-
locity of miniband electrons.

Recently, our group observed the  dissipative 
parametric high-frequency gain in SSLs at room 
temperature [33] and explained it in the line with 
an extension of the semiclassical model [34]. One 
of the most exciting findings of the work [33] un-
covers the significant role played by the propagat-
ing slow electrostatic waves in the high-frequency 
gain mechanism. Excitation of slow electrostatic 
waves in the  sub-critically doped superlattice 
not only provides a  significant enhancement of 
the  gain coefficient  [33], but also can determine 
the  coexistence of Bloch and parametric mecha-
nisms of high-frequency gain [35, 36]. These ob-
servations open a pathway to systematical investi-
gation of the effects of space charge waves under 
the  Bloch gain conditions in quantum semicon-
ductor superlattices.
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AUKŠTADAŽNIU LAIDUMU PAGRĮSTŲ TERAHERCINIO STIPRINIMO MODELIŲ 
KVANTINĖSE PUSLAIDININKINĖSE SUPERGARDELĖSE PALYGINAMASIS 

TYRIMAS

L. Stakėla, K.N. Alekseev, G. Valušis

Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva

Santrauka
Didelės galios, stabilių ir mažų matmenų terahercų 

(THz) šaltinių, galinčių veikti kambario temperatū-
roje, kūrimas tebėra vienas didžiausių THz ir kietojo 
kūno fizikos iššūkių. Nors šiuolaikinių puslaidinin-
kinių prietaisų, tokių kaip rezonansiniai tuneliniai 
diodai ir kvantiniai kaskadiniai lazeriai, technologi-
ja padarė milžinišką pažangą, vis dar susiduriama su 
tam tikrais iššūkiais, susijusiais su maža spinduliuotės 
galia, jautrumu temperatūrai ir ribotu dažnio derini-
mu. Šiuo požiūriu puslaidininkinės supergardelės yra 
perspektyvios puslaidininkinės kvantinės struktūros 
kompaktiškiems THz osciliatoriams ir stiprintuvams 
kurti. Šiame tyrime trumpai apžvelgiami pagrindiniai 

kvaziklasikiniai modeliai, aprašantys supergardelės 
aukštadažnį laidumą bei jo dispersines savybes.

Pagrindinis dėmesys skirtas populiariam ir plačiai 
naudojamam Ktitorovo ir kt. aukštadažnio laidumo 
dispersiniam modeliui bei mažiau žinomam, bet sudė-
tingesniam Ignatovo ir Šaškino modeliui, kuris papil-
domai įskaito ir erdvinę dispersiją bei plazminių bangų 
susiformavimą. Remdamiesi klasikiniu kvazistatiniu 
stiprinimo modeliu supergardelėse su neigiamu di-
ferencialiniu laidumu, mes atlikome jų lyginamąją 
analizę. Šio darbo tikslas  –  pateikti paprastą įvadą į 
šiuos modelius ir jų praktinę reikšmę THz prietaisų 
kūrimui.
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