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Various types of optical spectra of molecular systems are often analyzed via perturbative series expansion in the 
powers of optical field. The simplest absorption is related to the linear optical response. However, observed spectral 
features can be mislabelled if higher orders are not vanishing. High-intensity excitation field breaks the established 
assumption of quickly converging perturbative regime. Non-perturbative quantum methods can solve these prob-
lems. However, they lead to endless hierarchies of equations that, in general, cannot be solved analytically. Dropping 
terms at a specific order or factorizing (expressing high-order terms as products of several lower-order terms) can 
be used to close the hierarchy. We propagate the nonlinear exciton equations (NEE) with exciton–exciton annihila-
tion (EEA) non-perturbatively in a high-excitation regime and calculate absorption spectra of a molecular aggregate 
using various factorization schemes. The results demonstrate that the solution is weakly sensitive to the factorization 
method when EEA is included.
Keywords: non-perturbative, exciton–exciton annihilation, molecular aggregate, nonlinear exciton equa-
tions, factorization

1. Introduction

Laser excitation intensity in laser spectroscopy is 
often an overlooked parameter, which can be em-
ployed in a measurement primarily for improving 
the signal-to-noise ratio; however, at high intensi-
ties the spectrum may be affected by system non-
linearities. At weak excitation intensities, the signal 
analysis is usually performed in the  perturbative 
regime [1]. In this regime, the number of quanta, 
participating in the specific processes, or the order 
of the processes in relation to the field can be ex-
plicitly counted, simplifying the  overall analysis. 
However, at high orders to the field, various pro-
cesses become indistinguishable, the  perturbative 
series essentially fails to converge, and excitation-
induced effects of different orders appear at various 
types of signals, which are usually associated with 
much lower order measurements (even as low as 
the first-order signals). This can lead to the misin-
terpretation of spectral features and thus requires 
a special non-perturbative treatment.

Non-perturbative methods generate endless hi-
erarchies of equations that, in general, cannot be 
solved analytically [2]. Dropping terms at specific 
order or variable factorization (expressing high-or-
der terms as products of several lower-order terms) 
is required to close the hierarchy. This can lead to 
unexpected results from equations, e.g. diverging 
solutions, giving nonphysical effects, or losing ex-
pected effects. However, as a positive feature, due 
to the  high number of excitations, the  factorized 
equations may lead to correct multi-quanta cumu-
lative average spectral features which cannot be 
easily captured using perturbative regimes.

Exciton–exciton annihilation (EEA)  [3–7] is 
a process that becomes apparent at a high excita-
tion density in various molecular aggregates. This 
process involves at least two separate excitations 
creating a  short-lived molecular double-excited 
state. The  following nonradiative decay leads to 
the decay of one excitation and only one excitation 
remains. Accordingly, we must describe an effective 
nonlinear excitation density decay in the medium. 
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Due to the short lifetime of double excited states, 
the higher – triple or quadruple, etc. – excitations 
become impossible and, as a  result, the  equa-
tions describing such high-order resonances do 
not contribute to the  result. As a  result, the cor-
responding variables in the  equations can be 
dropped or factorized.

We derive equations for non-perturbative cal-
culations of the spectra of a set of coupled oscilla-
tors by using a nonlinear exciton equations (NEE) 
formalism. NEE generate the endless hierarchy of 
coupled equations. For the  practical use, we ap-
ply specific assumptions that give a solid basis to 
ending the  hierarchy at some well-defined level. 
By adding or deleting EEA terms we can reason 
about the number of excitations, which effectively 
can exist in the system. Following that, if we have 
terms that are related to a  very high number of 
excitations, we factorize them and treat them as 
products of lower-order terms. Depending on 
a  specific system of interest and a  specific spec-
troscopic measurement, such factorization is not 
arbitrary, and some properties that are important 
may get lost. Hence, the  systematic analysis of 
various factorization schemes is necessary. In this 
work, we compare several factorization types for 
a linear chromophore aggregate from low to high 
excitation field intensities by calculating the sim-
plest possible absorption spectrum. We demon-
strate that at a high excitation intensity, an addi-
tional induced absorption may be observed, while 
its characteristics are very sensitive to system 
nonlinearities and, hence, the  type of factoriza-
tion. This can be utilized in a specific application 
for a specific molecular system.

2. Theory of non-perturbative optical response 
using nonlinear exciton equations

2.1. Coherent dynamics of generalized quantum 
particles

We have used nonlinear exciton equations (NEE) [8, 
9] to describe the pump-probe and two-dimension-
al electronic spectra of simple chromophore aggre-
gates at various excitation conditions  [5, 10, 11]. 
The NEE treats a chromophoric aggregate as a sys-
tem of coupled nonlinear oscillators. The equations 
are obtained from the Frenkel exciton Hamiltonian 
on a lattice, forming a specific network:

 (1)

Here the  indices m, n label different oscillators 
(chromophores) positioned on different lattice 
sites. b̂†

m (b̂m) is the  excitation creation (annihila-
tion) operator for the oscillator m. The matrix Jmn 
defines the  fundamental properties of the system: 
diagonal (m = n) matrix elements are fundamen-
tal excitation energies, and off-diagonal (m  ≠  n) 
matrix elements are hopping amplitudes (often de-
noted by resonant coupling). Km is the mth oscilla-
tor anharmonicity. μ±

m(t) are optical field-induced 
system–field interaction amplitudes, which are de-
fined later – they are responsible for the excitation 
(and deexcitation) of the system by the external op-
tical field. When the field is off, this Hamiltonian 
conserves the  number of particles. Note that we 
set ħ = 1, so that frequency and energy are inter-
changeable.

The system can be populated by a various num-
ber of excitations: only a  single excitation is in-
volved in a linear optical response, while up to five 
excitations can be created at the fifth order. This is 
traced by the polarization operator defined as

� �P ��� n n n
n

b b† +ˆ ˆ ˆ . (2)

Here μn is the transition dipole moment of nth os-
cillator. Multi particle behaviour is characterized by 
operator commutation relations. For paulions [12, 
13] we would have [b̂n,b̂†

m]P = δmn(1 – 2b̂†
m  

 ̂bn) and 
for bosons we would have  [b̂n,b̂†

m]B  =  δmn (notice 
that the  paulions have the  same commutation 
properties as fermions; however, the  excitons do 
not have a  spin degree of freedom). Both models 
change excitation dynamics. Neither bosonic nor 
paulionic models are correct to properly charac-
terize electronic excitations of molecular chromo-
phores, where a  molecular double excitation is 
usually possible, while its excitation amplitude 
does not follow a harmonic oscillator character as 
is the case for bosons. Hence, the molecules pos-
sess a  highly anharmonic excitation level scheme 
with unique transition dipoles deviating signifi-
cantly from the harmonic model of bosons or from 
the  paulions. One way to take into account these 
properties is to add additional nonlinear terms 
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to the  polarization operator  [14]. Alternatively, 
the generalized commutation relation can be used:

[b̂n,b̂†
m] = δmn(1 – 2ηb̂†

m 
 ̂bn). (3)

Here η can be considered as a  tunable parameter, 
which goes from 0 to 1. The case of η =  0 corre-
sponds to the boson case, while η = 1 to paulions. 
The intermediate case affects the energy anharmo-
nicity and the  double-excitation amplitude com-
pared to the fundamental excitation and could be 
tuned to describe specific molecular electronic ex-
citations.

Interaction of the system with the optical field 
in the dipole approximation is taken into account 
within the  rotating wave approximation (RWA). 
We thus use the  system–field coupling terms in 
the following form:

μ±
m(t) = μm · E(t – t0) exp(±iω0(t – t0)). (4)

Here μm is the  transition dipole of oscillator m, 
E(t – t0) is the optical electric field envelope func-
tion centred at time t0, while the optical carrier fre-
quency is ω0.

Superpositions of excitations, which are eigen-
vectors of the Hamiltonian system within the sin-
gle-excitation manifold, are denoted by excitons. 
Such eigenvalue equation is

, , , ,J E=∑ m n n a m n n a
n

q q . (5)

Here θm,a are eigenvectors forming the eigenvector 
matrix (in columns), Ea is the corresponding eigen-
value, a is the  index of the  exciton, and m labels 
different oscillators.

The NEE is the set of equations that is obtained 
by applying the Heisenberg equation of motion for 
an arbitrary operator  Â,

d
i

d
= A,H
t

� �
� �

� � ˆ , (6)

in the Heisenberg picture starting from the polari-
zation operator (essentially from the  annihilation 
operators, see Eq. (2)). Notice that then all opera-
tors are time dependent, i.e.  ̂bn →  ̂bn(t); however, for 
shortening the notation from this point we imply 
their time dependence; however, we do not label 
that explicitly. Hence, the equation for the opera-
tor  ̂bn involves the products  ̂bm   ̂bn, b̂†

m   ̂bn,  ̂b†
k   ̂bm 

 ̂bn, 

then we write equations for these products, etc., 
and this yields a hierarchy of equations [5], which 
is called NEE. Notice that the polarization opera-
tor involves the single optical transition. Therefore, 
a single optical interaction results in the creation or 
annihilation of an excitation (quanta), so following 
the number of interactions becomes directly relat-
ed to the  number of creation/annihilation opera-
tors in various terms. Additionally, various types 
of exciton–exciton interactions yield higher-order 
contributions to the  lower-order terms. Hence, 
the bn-related variable is at least the first order to 
the  field, b̂nb̂v-related variable is at least the  sec-
ond order to the field, etc. Up to the fifth order to 
the field we find
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where on the  right-hand side, the  indices m and 
n are summed over the  whole lattice. Here we 
also defined the  composite operators σ̂uv  =  b̂†

ub̂v, 
ŷuv = b̂ub̂v, ẑkuv = b̂†

kb̂ub̂v as well as ĝu = (1 – 2ησ̂uu). 
Since the  operator σ̂uu is the  number operator, 
the operator ĝu in NEE implies rescaling of Ham-
iltonian parameters due to pre-excitation. Notice 
that we maintain the properly ordered form for all 
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terms: b̂†
uĝvb̂n = (σ̂un – 2ηb̂†

ub̂†
vb̂vb̂n) and b̂†

kĝv ŷun = 
(ẑkun – 2ηb̂†

kb̂†
vb̂vb̂ub̂n).

The hierarchy of equations is endless [5]. How-
ever, truncating the hierarchy at a specific number 
of excitations becomes possible when the  experi-
ment under consideration is designed to detect 
a specific optical process.

The equations for operators can be implement-
ed for numerical calculations by formally switch-
ing to operator expectation values. Taking an 
arbitrary system state |ψ⟩, the expectation values 
of all operator combinations in NEE can be for-
mally calculated and the  operator products turn 
into numbers (and the hats are being dropped to 
denote the  expectation values): bu(t)  ≡  ⟨ψ|b̂u|ψ⟩, 
yuv(t)  ≡  ⟨ψ|b̂ub̂v|ψ⟩, σuv(t)  ≡  ⟨ψ|b̂†

ub̂v|ψ⟩, zkuv(t)  ≡ 
⟨ψ|b̂†

kb̂ub̂v|ψ⟩ etc. Notice that the state |ψ⟩ does not 
need to be specified explicitly, except for the vac-
uum state, where all variables vanish. The system 
is in the vacuum state before turning the optical 
field on, i.e. before the  excitation and detection 
process. Starting from this state, equations can 
be propagated numerically or solved analytically. 
From practical considerations, in the  following 
sections, we will drop from equations the terms 
that are higher than the  fifth order in the  op-
tical field and include only up to two-quanta 
resonances.

2.2. Dephasing and relaxation

NEE for operators in Eqs. (7–10) do not include 
dephasing or relaxation. To properly describe 
these processes, it is required to take into account 
the  surrounding phonon environment. Such are 
intramolecular vibrational degrees of freedom 
(local phonons), being inseparable companions 
of the chromophores. The phonons are harmonic 
oscillators linearly coupled to the sites. We assume 
that they induce only uncorrelated transition en-
ergy fluctuations, so the  system–environment 
Hamiltonian is

†

SB

1
,

2
h.c.H = L b b Q +�� ma m m a

m a

ˆ ˆˆ ˆ  (11)

where Q̂a is the coordinate of αth phonon, and Lma 
is the  interaction strength for the  energy fluctua-
tions. Accordingly, the  only nonzero correlation 
functions (in the interaction picture) are
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ˆ ˆ

 (12)

We further accept that statistical properties of 
all sites are the same, then there is a single function 
Ck(t) → C(t), which is the most important quantity.

We apply Markovian secular Redfield relaxation 
theory (MSRT)  [15, 16] at the  second order with 
respect to the system–phonon coupling. This cou-
pling leads to the relaxation of excitons. It becomes 
convenient to denote the  Fourier–Laplace trans-
form

� � � � � �
0

exp i dM ω = ωt C t t
�

� . (13)

The real part of this function is responsible for 
energy relaxation, while the  imaginary part is re-
sponsible for the bath-induced spectral line shift. It 
can be also given in terms of the so-called spectral 
density

� � � �� � � �1
1 coth /2

2
M ω + βω C ω���

d 1 coth( /2)
i ( ),

2 –
C� �� �

� � �
� �� �� �

��–  (14)

where C''(ω) is the temperature independent ener-
gy fluctuation spectral density and β = 1/kBT, where 
kB is the Boltzmann constant and T is the tempera-
ture. The MSRT approach yields relaxation tensors 
for all NEE equations.

Exciton–exciton annihilation is yet another re-
laxation channel. It becomes important at the fifth 
or higher orders to the  optical field. This prop-
erty has been phenomenologically generalized in 
Ref. [5] to all NEE variables:

� �0

EEA

d

d 2

...
...

A κ= σ G +G +... A .
t

� � ���� �
nk

mm mn mk nk

 
(15)

Here Ank... is an arbitrary NEE variable, and κ0 is 
the  annihilation parameter. We make a  choice of 
Gmn = (δ(n 

mn
–n)  + δmn). Here δ(n 

mn
–n)   is the nearest neigh-

bours operator, which is 0 for all terms, except 
when m and n are the nearest neighbours, and δmn 
is the regular Kronecker delta function.

The equations are then updated accordingly:

� � 0d
i i – i ,

d 2

b κb ...+ R b σ G b
t
�u

un n nn nu u  (16)



ISSN 1648-8504   eISSN 2424-3647  V. Bubilaitis and D. Abramavičius / Lith. J. Phys. 65, 1–18 (2025)5

� � � �0d
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y
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d

z
,

z = ...+ R z
t � �
kuv

kuv kmn kmn
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2
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Here dots ‘. . .’ denote the  remaining terms from 
Eqs. (7–10) (while in the form of expectation val-
ues). For the  relaxation tensor expressions, we use 
the  tensors from Ref.  [5], except for an additional 
simplification of the triple quantum coherence relax-
ation tensor (z variable) to R(z)

abca' b'c' = δbb'δcc' Ra
(b)∗ + 

 δaa'δcc' Rb
(b) + δbb' δaa' Rc

(b), while R(y)
aba'b' = δbb' Ra

(b) + 
δaa' Rb

(b) (both in the exciton eigenstate basis) [10]. 
In the final form, only two tensors, R(b)

a,b and R(σ)
ab,cd' 

are independent.

2.3. Spectroscopic observables of NEE

Spectroscopic observables are obtained from in-
duced polarization in the material. Taking the ex-
pectation value, P = ⟨ ̂P⟩, the induced polarization 
dynamics in the dipole approximation is given by 
variable b:

P(t) = μmbm(t) + c.c. (20)

Pump probe spectra are obtained by a  two-
pulse design, calculated by subtracting the  linear 
first-order components  [5]. A  more complicated 
three-pulse design together with phase cycling is 
used for two-dimensional coherent spectra  [11]. 
Intensity-dependent absorption spectra are sup-
posedly the simplest possible experiment; however, 
it is usually overlooked. It is the focus of the present 
study. It can be modelled by simulating the free in-
duction decay process [17]. In this case, the absorp-
tion spectra are given by the Fourier transform of 
the induced polarization after action by the ultra-
short optical pulse E(t) = o exp(–(Δt)2/2), centred at 
zero time with the Gaussian envelope [1]:

( ) d exp(i ) ( ).AS m t t P tω ω
+∞

−∞

= ℑ ∫  (21)

Vectorial properties of the  field in the  present 
study are further dropped by taking all oscillators 

aligned in one dimension as a linear chain with ad-
ditional cyclic boundary conditions.

Such calculated absorption spectrum does have 
excitation intensity dependence since the equations 
are essentially nonlinear. They will be used to study 
the variation of the absorption spectrum lineshape 
as a function of excitation intensity.

3. Closing NEE for numerical calculations

NEE equation factorization is employed to reduce 
computational costs and to close the  hierarchy at 
a  specific selected level. This reduces complexity of 
calculations but may remove or add new behaviour 
to spectroscopic results; thus the  NEE factorization 
requires a systematic study, and this is the purpose of 
the present paper. For example, a simple factorization

⟨b̂†
kb̂†

nb̂kb̂nb̂n⟩ = σkkznnn (22)

neglects the  operator order, and that becomes 
significant when k  =  n. However, when k  ≠  n, 
we indeed have an isolated population of the  kth 
chromophore, and the rest are the characteristics of 
the nth chromophore. In contrast, for other indi-
ces, different factorization seems more appropriate:

⟨b̂†
nb̂†

nb̂mb̂mb̂l⟩ = y*
nn ymm bl. (23)

Here the operator order is preserved, but another 
important difference is that the latter description 
considers all variables as optical coherence terms. 
It can be expected that the terms related to popula-
tions (factorized in the former way) would persist 
longer compared to the  latter factorization into 
coherences. In these both cases, another effect is 
neglected when k = n = m = l, where the variable 
⟨b̂†

nb̂†
nb̂nb̂nb̂n⟩ is essentially the  optical coherence 

between the  2nd and 3rd molecular excitations. 
Notice that the variable b̂nb̂nb̂n is the triple excita-
tion coherence and by factorizing the variable we 
lose associated resonances that could be controlled 
by paulionicity or bosonicity.

Factorization of high-order variables addition-
ally allows one to avoid deriving relaxation rates 
for higher-order terms. For the lower-order terms, 
Redfield relaxation rates are easily expressed in 
the  exciton basis. In the  site basis, the  terms are 
cumbersome and quickly become computationally 
excessive when calculating the higher-order terms.
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Below, we present several possible schemes for 
closing NEE at various levels of complexity.

3.1. Complete factorization

The complete factorization of all variables into 
the  smallest possible b(t) variables allow one to 
have a very compact form of the equations,

� � � � � �� �* * 2d
i 1 2 1

d
n

b ηb b J b + η K b b + μ t
t

�� � �u
u u u n u u u u

*0i i .
2

bR b b b G b�
un n m m mu u+ –

 
(24)

This equation describes coupled nonlinear oscilla-
tors. It is remarkable that the chromophoric anhar-
monicities are still included as well as the excitation 
amplitude nonlinearity via the (1 – 2ηb∗ubu) term. 
However, the  double-excitation energy of oscilla-
tors is included approximately. Notice that a similar 
approach has been used to describe highly nonlin-
ear excitations of carbon nanotubes [18].

3.2. Restricted coherent state factorization

If the  system remains coherent, the wavefunction 
description is completely valid, and daggered and 
non-daggered operators evolve independently. This 
can be utilized up to double excitations by using 
only the two equations [5]:
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d
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t
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b
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+
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Here we have additionally factorized ⟨b̂vb̂ub̂n⟩ = bvyun 

by breaking triple coherences; the  annihilation 

terms were replaced by changing σnm = b∗nbm. No-
tice that the factorization of daggered and undag-
gered operators holds in the pure state limit when 
the system is described by a wavefunction; the bra 
and ket wavefunctions then propagate indepen-
dently, so daggered and undaggered variables be-
come independent. We call this limit completely 
coherent. It can be considered only at low tem-
peratures or at short times when the system is in 
the completely coherent state.

In molecular systems, usually exciton deco-
herence plays an important role, the system turns 
into the  mixed state, and the  coherent model 
becomes insufficient. σ and z variables include 
the exciton population variables when bra and ket 
states become correlated, and thus including these 
variables in the  models is highly desirable when 
applying the  equations to the  realistic molecular 
systems. Therefore, below we study more com-
plex, while more correct approaches.

3.3. Direct factorization

Another alternative is retaining σ and y, using 
 ̂gv  =  (1  –  2η ̂σvv) as a  hint for factorization. Ac-
cordingly, first we identify all populations and 
isolate them. Retaining σ means that we retain 
population-induced effects that last longer than 
coherences. This type of factorization should be 
more suitable for experiments that deal with delay 
times longer than coherence times. We then ob-
tain the following set of three equations:

� � � �
*

( ) 0
,

d
i 1 2 1

d

2 (1 ) ( )(1 2 )

i i
2

b

b J η b + η K b
t
η K b y t

R b G b

� �

� � � ��
� �

�

� � �

� � � �

� �

u
un un n u uu u

u u uu uu u uu

un n nn nu u

 
(27)

� �
� �

*

*

( ) 0
,

* *

**

*

d
i 2

d

2

i i ( )
2

(1 ) (1 )

( ) (1 2 )( ) (1 2 )

( )(1 2 ) ,

J ηb b
t
J ηb b

R G G

K b b K b b

t bt b

t b

�

� � �

� �

�� � �

� � � �

� ��� ��

� ��

��

� �uv
vn un u vv n

mu mv m uu v

uv mn mn nn un vn uv

v u vv v u u u v

v u vvv u vv

u uu v–

– –

–+

+ – –– ––

–+

–

+

 (28)



ISSN 1648-8504   eISSN 2424-3647  V. Bubilaitis and D. Abramavičius / Lith. J. Phys. 65, 1–18 (2025)7

� �

( ) 0
,

d
i 1 2 (1 2 )

d

i i ( )
2

2 (1 2 )

( )(1 2 ) ( )(1 2 )

2 ( )(1 2 )

(1 )( )

(1 ) (1 (3 2 ) )

y

y J y J y
t

R y G G y

J y
t b t b

t b
K K y
K y

�� ��

� �

�� ��

� �� � ��

� �� ��
� � �
� � � � �

� �

�

� � � �

� � �

� �

� � � �

� �
� � �
� � � �

uv
vn vv uv uv uu vn

uv mn mn nn un vn uv

uv vn vv vn

v vv u u uu v

uv v vv v

v vv u uu uv

uv v vv v .v

 
(29)

3.4. Third-order models

The following factorization model keeps at least 
third-order terms unfactorized and factorizes all 
higher-order terms in specific schemes. The  third 
order is the  lowest nonlinear order process in 
isotropic samples. Therefore, by keeping at least 
third-order variables the ‘whole’ previously known 
features, we expect, should exist, and then factori-
zation affects only higher-order terms.

All following models rely on the following form 
of the NEE:
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Here b(5) and z(5) are the  fifth-order corrections, 
while y(4) and σ(4) are the fourth-order corrections.

In the present case, the main downside compared 
to simpler models is that we keep Rz

kmn,luv terms, 
which come from the  Redfield relaxation theory. 
Annihilation terms are kept the same for all models.

3.4.1. zσ factorization model

In the next factorization model, which we denote 
by the zσ-based factorization, we factorize all terms 
higher than the third order in terms of σ and lower-
order variables. From the set of above-given NEE 
we end up with high-order corrections

b(5)
u = –2η(1 – η)Kuσuuzuuu, (34)

σ(4)
uv = –2ηJvnσvvσun – 2ηJnuσuuσnv

+ (1 – η) (Kvσvv – Kuσuu) σuv

– 2ημ–
v (t)z∗

uvv + 2ημ+
u (t)z

uuv, (35)

y(4)
uv = –2ηJunσuuyvn – 2ηJvnσvvyun

+ (1 – η) (Kvσvv + Kuσuu) yuv

– η(2η – 3)(η – 1)δuvKvσvvyvv

– 2ημ–
u (t)zuuv – 2ημ–

v (t)zvvu

+ 4η2δuvJvnσvvyvn + 4η2δuvμ–
v (t)zvvv, (36)

z(5)
kuv = 2ηJmkσkkzmuv – 2ηJunσuuzkvn

– 2ηJvnσvvzkun + 2ημ+
k (t)σkkyuv

+ (1 – η) (Kvσvv + Kuσuu – Kkσkk) zkuv

– η(2η – 3)(η – 1)δuvKvσvvzkvv

– 2ημ–
u (t)σuuσkv – 2ημ–

v (t)σvvσku

+ 4η2δuvJvnσvvzkvn + 4η2δuvμ–
v (t)σvvσkv.         (37)

The terms like ⟨b̂†
ub̂†

vb̂vb̂n⟩ are factorized like 
σvvσun, and we take the  assumption that ⟨b̂†

vb̂v⟩ is 
population and it quickly loses coherence with oth-
er terms.
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3.4.2. zz factorization model

Alternatively, we factorize all terms higher than 
the third order in terms of z and lower-order terms. 
Compared to the zσ factorization scheme, the op-
erator order in zz factorization is preserved. We ex-
pect to see a difference from zσ as we preserve more 
double coherence terms, as these all are split apart:

b(5)
u = –2η(1 – η)Kuz∗uuuyuu, (38)

σ(4)
uv = –2ηJvnz∗uvvbn + 2ηJmub∗mzuuv

+ (1 – η)Kvb∗uzvvv – (1 – η)Kuz∗uuubv

– 2ημ–
v (t)z∗uvv + 2ημ+

u (t)zuuv, (39)

y(4)
uv = –2ηJunzuuvbn – 2ηJvnzvuvbn

– η(2η – 3)(η – 1)δuvKvzvvvbv

(1 – η)Kvzvvvbu + (1 – η)Kuzuuubv

– 2ημ–
u (t)zuuv – 2ημ–

v (t)zvvu

+ 4η2δuvJvnzvvvbn + 4η2δuvμ–
v (t)zvvv, (40)

z(5)
kuv = 2ηJmkz∗mkkyuv – 2ηJunz∗kuuyvn

– 2ηJvnz∗kvvyun – (1 – η)Kkz∗kkkyuv

– 2ημ–
u (t)b∗kzuuv – 2ημ–

v (t)b∗kzvuv

+ (1 – η) (Kvz∗kuu + Kuz∗kuu) yuv

+ 4η2δuvJvnz∗kvvyvn + 4η2δuvμ–
v (t)b∗kzvvv

– η(2η – 3)(η – 1)δuvKvz∗kvvyvv. (41)

3.4.3. zn factorization

Noting the  ‘natural’ structure that comes from 
the commutation relation ĝu = (1 – 2η ̂σuu), we can 
attempt to keep the σuu and preserve the order of 
operators, for example: ⟨b̂ub†

ub̂ub̂†
ub̂†

u⟩  →  b∗uσuu yuu. 
This factorization scheme should give similar re-
sults to the zz scheme; however, its credibility can 
be inspected separately:

b(5)
u = –2η(1 – η)Kub∗uσuuyuu, (42)

σ(4)
uv = –2ηJvnb∗uσvvbn – 2ηJnub∗nσuubv

+ (1 – η)Kvb∗u – 2ημ–
v (t)z∗vvu + 2ημ+

u (t)zuuv,    (43)

y(4)
uv = –2ηJvnσvvyun – 2ηJunσuuyvn

– (1 – η)η(3 – 2η)δuvKvσvvyvv

+ (1 – η) (Kvσvv + Kuσuu) yuv

– 2ημ–
v (t)zvvu – 2ημ–

u (t)zuuv

+ 4η2δuvJvnσvvyvn + 4η2δuvμ–
v (t)zvvv, (44)

z(5)
kuv = –2ηJvnb∗kσvvyun – 2ηJunb∗kσuuyvn

+ 2ηJmkb∗mσkkyuv + 2ημ+
k (t)σkkyuv

– 2ημ–
v (t)b∗kσvvbu – 2ημ–

u (t)b∗kσuubv

+ 4η2δuvJvnb∗kσvvyvn + 4η2δuvμ–
v (t)b∗kσvvbv

+ (1 – η)b∗k (Kvσvv + Kuσuu – Kkσkk) yuv

– (1 – η)η(3 – 2η)δuvKvb∗kσvvyvv. (45)

4. Model system

Different levels of theory will be tested on 
the  model system, which is a  linear J aggregate 
of seven chromophores. This is a  simple linear 
chain of chromophores, which shows superradi-
ant absorption, red-shifted from the  independ-
ent chromophore  [19]. Parameters of the  model 
are taken from typical tubular J aggregates  [20, 
21]. The  nearest-neighbour resonant coupling 
Jnn+1  =  Jn+1n  =  –800  cm–1 and ends are connected 
with periodic boundary conditions. Periodic 
conditions represent an infinitely long linear ag-
gregate. Additionally, we include the  diagonal 
Gaussian energy disorder of σ = 100 cm–1 to per-
turb the ideal symmetry of the aggregate. The ex-
citation energy Jnn of all sites is set at 18000 cm–1. 
On-site energy anharmonicity (only needed when 
η ≠ 1) is taken as Knn = +1000 cm–1. For the quan-
tum particle statistics, we include 3 different cases: 
bosons η = 0, paulions η = 1 and the intermediate 
regime, η = 0.5.

For system–phonon interaction we use 
the Drude spectral density
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� � 2 2
Λ2 ,
Λ

ωC ω = λ
ω +

��  (46)

with λ = 20 cm–1 and Λ = 50 cm–1. The system tem-
perature T = 300 K. For the annihilation parameter 
we set κ0 = 1000 cm–1.

As we include EEA terms, the optical excitation 
field intensity becomes an important parameter. 
The optical field envelope is defined as E(t) = AE0(t), 
A7is the amplitude, and E0(t) is the normalized en-
velope function

� �
2

0 2

1
exp ,

22

tE t =
ss π

� �
�� �
� �

 (47)

FWHM

2 2
Δ ln2

s= .
ω

 (48)

The molecule transition dipole moments are 
taken such that

FWHM

2 2
Δ ln2

s= .
ω

, (49)

where A0 is the excitation with the external optical 
field scaling constant. The factor of √

-
7  is included 

by keeping in mind that when transforming such 
a  system into the  exciton basis, the  lowest exci-
ton has a transition dipole moment scaled as √

–-
N, 

where N is the number of molecules in such a sys-
tem. This way allows one to relate A0 to popula-
tion in the lowest energy exciton approximately as 
σ ~ A2

0 ignoring any saturation effects, delocaliza-
tion, etc.

5. Results

First, we present the  results without EEA. Start-
ing with the 3 simplest models – a coherent model 
(Eqs. (25, 26)) marked as coh, a direct factoriza-
tion (Eqs. (27–29)) marked as s, and a third-order 
pure unfactorized model (Eqs. (30–33)) marked 
as z3 – we present the comparison of these mod-
els with no EEA in Fig. 1. Here, we show the in-
tensity-dependent absorption spectra. We see 
a wildly different behaviour between these models 
when the field intensity is increased. For a coher-
ent model, a second peak appears and grows with 
the  field intensity. This additional peak can be 
associated with induced excited state absorption 
(ESA) appearing from the  already excited main 
exciton band into the higher levels. This ESA peak 

grows weakly compared to other models, as co-
herences are short lived so higher-order terms are 
more suppressed with this factorization. In con-
trast, the  s model, which preserves populations, 
shows no extra peak, only the whole main absorp-
tion line shifts to higher energy. In addition, we 
observe a  change in the  lineshape, the  peak ap-
pears to be ‘tilted’ to the blue, the blue side gets 
steeper with intensity, while the red side gets shal-
lower. The third-order model z3 has a similar be-
haviour as the coh model, except the side peak is 
much narrower, consequently, has a much larger 
amplitude. Notably, the excitation intensity effects 
are much more pronounced for paulions, which is 
a much more complicated nonlinear system.

Next, we compare models, where factoriza-
tion is performed at fourth-order terms (the 
terms higher than the third order are factorized); 
the models are labelled as zσ4, which corresponds 
to Eqs. (35, 36), zz4 corresponds to Eqs. (39, 40), 
and zn4 corresponds to Eqs. (43, 44), where these 
terms are added to z3 terms. We present the  in-
tensity dependent spectra of these models in 
Fig. 2. What we find is that all three models show 
a similar behaviour as the z3 model, consequent-
ly, the contribution from factorization at fourth-
order terms is small. The main reason for this is 
likely because the fourth order does not ‘directly’ 
contribute to polarization, where the  third order 
is dominating, i.e. z in b and the fifth order inside 
z. Even order terms appear mostly responsible for 
scaling of the transition dipole moment, which is 
again a small contribution.

The factorization can be performed at fifth-
order contributions. Then, we label models as 
the  zσ5 model (Eqs. (34, 37)), zz5 model (Eqs. 
(38, 41)) and zn5 model (Eqs. (42, 45)). We see 
a  wildly differing behaviour between factoriza-
tion schemes (Fig. 3); however, the common fea-
ture is again related to the appearance of a sepa-
rate ESA peak, which grows with increasing field 
intensity. In the present case, the ESA amplitude 
is again much weaker than in Fig.  2. It can be 
observed that some features of low-order fac-
torization models reappear in these models: for 
the zz5 model, which is the population favouring 
model, we see that the ESA peak shifts to higher 
energy when field intensity increases, partially 
mirroring the s model, where the whole absorp-
tion was shifted. The zz5 model shows a stranger 
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behaviour. It is the only case where we see nega-
tive regions in spectra. These features should be 
interpreted as the induced emission contribution. 
The zn5 model appears most consistent as it shows 
a similar behaviour to zσ4, zn4 and z3 models.

Next, we look at the same models with the EEA 
process included. Looking at the simpler models 
first (Fig. 4), we see that EEA leads to an excessive 
broadening of ESA features. Still, the  s model is 

the only model demonstrating a shift of the whole 
absorption band with field intensity. An addi-
tional small dip for high-excitation intensities on 
the red side for the paulion case implies the pres-
ence of induced emission as in the zz5 model in 
Fig.  3. ESA in the  coherent model has a  signifi-
cantly lower ESA intensity. The absorption spectra 
for the model z3 with EEA terms are broadened, 
with a significant shoulder reflecting ESA.

Fig. 1. Absorption of J aggregate for different factorization models (coh, s and z3) at different excitation optical 
field intensity values, without EEA.
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Fourth-order factorized models (Fig.  5) are 
similarly affected by EEA, mimicking the z3 model. 
Surprisingly, the differences between different fac-
torizations become very small.

With EEA, the fifth-order models (Fig. 6) again 
differ much less between themselves and from 
the fourth-order models. Apparently, the large broad-
ening induced by EEA hides differences between 
the fourth- and fifth-order factorization models.

6. Discussion

Various factorizations of NEE equations are asso-
ciated with different models of optical response, 
enhancing specific phenomena. High-order 
terms (which were factorized) come from specif-
ic types of nonlinearities in the  system. The  tar-
get of the  research is to identify specific impor-
tant phenomena and then to associate them with 

Fig. 2. Absorption of J aggregate for different factorization models (z with fourth-order factorized terms mod-
els) at different excitation optical field intensity values, without EEA.
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specific variables, so that specific processes can 
be pointed out when analyzing corresponding 
experiments.

First of all, it should be noted that at low inten-
sities all models yield the same absorption spectra 
(even independent of η value). We show this in 
Fig. 7, where all the absorptions overlap, with neg-
ligible differences that come from the finite static 
disorder averaging.

This can also be observed from the  equations, 
where in all models dropping out nonlinear terms 
(vanishing at low intensity) we find the simple lin-
ear model defined by a single equation

� � � �–d
i i

d

bb = J b + μ t + R b .
t
u

un n u un n
 (50)

This equation is equivalent to the  linear response 
theory. Polarization becomes directly related to 

Fig. 3. Absorption of J aggregate for different factorization models (z with fifth-order factorized terms models) 
at different excitation optical field intensity values, without EEA.
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the b̂(t) time dependence, which can be solved ana-
lytically in the  exciton eigenstate representation. 
The  solution then yields the  single excitonic Lor-
entzian peak observed in Fig. 7.

At higher field intensity, nonlinear terms be-
come contributing ones and can be employed in 
efficient analysis [22]. We observe that most non-
linear nontrivial contributions come from odd-
order terms. Polarization is directly related to b̂(t), 

which relates to b̂†b̂b̂, related to b̂†b̂†b̂b̂b̂, which re-
lates to seventh-order similar terms, and this con-
tinues ad infinitum. In our case, we limit ourselves 
to third- and fifth-order operator configurations 
as the EEA does not allow for the creation of very 
high excitation levels. We find that going from 
the third to the fourth order the change is minimal 
(only intensity is affected). But going to the fifth 
order, additional changes become significant: 

Fig. 4. Absorption of J aggregate for different factorization models (coh, s and z3) at different excitation optical 
field intensity values, with EEA.
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ESA intensity drops to 1/3 of its intensity in third- 
and fourth-order cases.

Small but significant differences between dif-
ferent types of factorizations can be observed. In 
cases which favour populations in factorization 
and disregard the  operator order, the  ESA peak 
position becomes dependent on excitation inten-
sity, while when applying more rigid factorization 

with preserving the operator order, the ESA peak 
position is stable over excitation intensities.

Curiously, when factorizing in bigger blocks (fac-
torizing with third-order terms instead of second-or-
der ones), we see some instability and even negative 
amplitudes in ‘absorption’ spectra. These negative 
features are related to the type of the 'measurement' 
that we consider. Note that, in general, we analyze 

Fig. 5. Absorption of J aggregate for different factorization models (z with fourth-order factorized terms mod-
els) at different excitation optical field intensity values, with EEA.
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the Fourier transformation of polarization decay af-
ter a short excitation. As a result, both the induced 
absorption and stimulated emission have to be con-
sidered. The  emission leads to negative features. 
Different spectra should be obtained by simulating 
a high-intensity CW measurement. In that case, at 
strong excitation intensities, we should observe ad-
ditional peak shifts coming from polaritonic effects.

As already noted, the main reason why the fac-
torization is included is to close the hierarchy of 
equations due to limited computational resources. 
The  mathematically exact approach is given by 
the  infinite hierarchy of equations, which can-
not be implemented in calculations. However, 
the  ‘best’ factorization method does not ex-
ist  –  different factorization approaches enhance 

Fig. 6. Absorption of J aggregate for different factorization models (z with fifth-order factorized terms models) 
at different excitation optical field intensity values, with EEA.
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different phenomena and should be chosen when 
considering specific experiments. For example, if 
only the  shift of absorption line with excitation 
intensity is observed, the s model, one of the sim-
plest models, can be used. If the separate excited 
state absorption is observed, including z variable 
may be important.

Different types of factorization lead to a distinct 
simplification of equations which lead to efficient 
and fast computations. The simplest set of equa-
tions certainly lead to very fast calculations. Alter-
natively, some other types lead to instabilities: note 
that the zz5 model even fails to converge for high-
intensity cases. The reason why we see instability 
could be related to the fact that with lower-order 
terms the commutation-induced symmetry is pre-
served, while factorizations may break this sym-
metry, for example, if we have ⟨b̂†b̂†b̂b̂⟩ → ⟨b̂†b̂⟩⟨b̂†b̂⟩, 
both b̂b̂ and b̂†b̂† get broken and double-excitation 
characteristics implied by commutation relations 
are disregarded; but if we have ⟨b̂†b̂†b̂b̂⟩  →  ⟨b̂†b̂†b̂⟩
⟨b̂⟩, the  breaking is introduced only partially and 
the imbalance between various terms could be in-
troduced, which may lead to diverging solutions.

Differences between different equation models 
become smoothed out by including EEA. Coher-
ent and direct factorization schemes stand out 
and show more significant differences from oth-
ers. While the spectra become much more similar 
with EEA, instability from the  zn model at high 

intensity remains. But the instability becomes ap-
parent for larger intensities compared to the case 
with no annihilation.

Concluding, we show that absorption spectra of 
molecular systems can be enhanced by additional 
features at high-excitation intensities. This can be 
addressed using the  non-perturbative propaga-
tion of NEE. The equations have to be closed for 
numerical implementation and there are numer-
ous ways to close the equations. The most interest-
ing approach relies on the factorization of various 
highly nonlinear terms in NEE. Different types 
of factorizations may enhance various processes, 
and this can be utilized in specific applications of 
NEE. The whole analysis becomes even less com-
plicated when including EEA, because EEA does 
not allow for the creation of highly excited states. 
Therefore, EEA diminishes differences between 
different schemes of factorization. As a  result, 
the  NEE application to the  systems with EEA is 
efficient and the  calculations can rely on simple 
equations.
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Fig. 7. The absorption of all models presented for both no and with annihilation at low intensity.
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NETIESINIŲ EKSITONŲ LYGČIŲ FAKTORIZAVIMAS: NEARTUTINIS SUGERTIES 
SPEKTRŲ MODELIAVIMAS

V. Bubilaitis, D. Abramavičius

Vilniaus universiteto Fizikos fakulteto Cheminės fizikos institutas, Vilnius, Lietuva

Santrauka
Įprasta molekulines sistemas tirti artutiniame reži-

me, naudojant trikdymų teoriją, kuri leidžia apibrėžti 
ir pasitelkti atsako funkcijas. Tačiau jei trikdymų eilutė 
lėtai konverguoja (arba diverguoja), spektrinių savybių 
prigimtis gali būti klaidingai interpretuojama. Artuti-
nis trikdymų teorijos režimas gali netikti esant dideliam 
žadinančio lauko intensyvumui. Vienas iš reiškinių, pa-
sireiškiančių su dideliu žadinimo intensyvumu yra eksi-
tono–eksitono anihiliacija (EEA). Tokio tipo uždavinius 
galima spręsti naudojant netiesines eksitonų lygtis (NEL). 
Kadangi tai yra begalinės lygčių hierarchijos, lygčių hie-
rarchijos „uždarymui“ būtina arba atmesti tam tikros 
eilės lygčių narius, arba juos faktorizuoti, t.  y. išreikšti 
mažesnės eilės narių sandauga. Tai gali lemti netikėtus 
rezultatus: lygčių sprendiniai gali diverguoti, atsirasti 

nefizikiniai efektai. Šiame darbe aprašomos netiesinės 
eksitonų lygtys su EEA nariais, naudojant skirtingas fak-
torizavimo schemas didelio žadinimo režime, ir kaip tai 
atsispindi sugerties spektre. Suskaičiuoti nuo žadinimo 
intensyvumo priklausantys sugerties spektrai rodo, kad 
dėl didelio žadinimo intensyvumo atsiranda papildomos 
sugerties juostos, kurių padėtis stipriai priklauso nuo ža-
dinimo intensyvumo. Išsiaiškinta, kad spektrų elgsena 
labai jautri nelyginės eilės narių faktorizavimui, bet lyg-
tyse įmanoma parinkti tokį faktorizavimo metodą, kuris 
atitiktų konkretų eksperimentą. EEA labai pasitarnauja 
stabilizuojant sprendinius, skirtumai tarp įvairių faktori-
zavimo schemų susilpnėja. Tokiu būdu, naudojant NEL, 
galima sukurti labai efektyvias modeliavimo metodikas, 
kurios tiktų įvairiems matavimams.
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