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The General Relativistic Atomic Structure package [GRASP2018, C. Froese Fischer, G. Gaigalas, P. Jénsson, and
J. Bieron, Comput. Phys. Commun. (2019), DOI: 10.1016/j.cpc.2018.10.032] is based on multiconfiguration Dirac-
Hartree-Fock and relativistic configuration interaction (RCI) methods for energy structure calculations. The atomic
state function used in the program is built from the set of configuration state functions (CSFs). The valence-valence,
core-valence and core—core correlations are explicitly included through expansions over CSFs in RCI. We present
a combination of RCI and the stationary second-order Rayleigh-Schrédinger many-body perturbation theory in an
irreducible tensorial form to account for electron core-valence correlations when an atom or ion has any number
of valence electrons. This newly developed method, which offers two ways of use, allows a significant reduction of
the CSF space for complex atoms and ions. We also demonstrate how the method and program works for the energy

structure calculation of Cl III ion.
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1. Introduction

There are many powerful theoretical methods for
taking into account both relativistic and correlation
effects in the calculation of atomic properties of any-
electron atoms and ions in our days. This can be done,
for example, by using various versions of the many-
body perturbation theory (MBPT), the configura-
tion interaction method (CI), the relativistic con-
figuration interaction (RCI), the random phase
approximation with exchange (RPAE), the multi-
configuration Hartree-Fock method (MCHF) [EI] or
the multiconfiguration Dirac-Hartree-Fock (MCD-
HF) method [E]. But each of them has its own dis-
advantages for getting atomic data in an extremely
good accuracy. For example, converging to accurate
results is very slow for MCHE, MCDHF and CI. This
leads to a very large expansion of the atomic state

* Dedicated to the memory of professor Adolfas Jucys (1904-1974),
pioneer of contemporary theoretical physics in Lithuania, initiator of the
‘Lithuanian Physics Collection’, on the occasion of his birth and death

anniversaries.

function (ASF) for complex atoms. There are practi-
cal and theoretical difficulties with the perturbation
theory for degenerate states, especially in the choice
of model space [E]. The structure of terms of the per-
turbation theory (PT) series often leads to one- and
two-particle operators which almost in all versions
of many-body perturbation theory are not in an irre-
ducible tensorial form and which cannot use the ad-
vantage of Racah algebra [E, E].

The combination of CI and MBPT methods [E,
ﬁ] is probably the most efficient and consistent way
to take into account simultaneously the correla-
tion and relativistic effects in such complex many-
electron atoms with open f-shells as lanthanides
and actinides for calculations of energy spectra and
other properties.

Here we present such an implementation of
MBPT to the Grasp code [E] in which core-valence
correlations can be taken into account with the help
of MBPT and the rest of correlations are included
in the ordinary way (RCI) by Grasp package. We
use the most suitable for these systems irreducible
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tensorial form of Rayleigh-Schrodinger stationary
many-body perturbation theory [E, ]. This allows
us to divide the calculation of terms of the perturba-
tion series into the calculation of spin-angular terms
by using Racah algebra [H, E, ] and into the accom-
panying radial integrals. The latter are more straight-
forward and can be handled by methods such as
those of the Grasp code [E, @]. Such packages have
a modular structure, and modules for generating
the contribution of diagrams representing terms of
the MBPT series in an irreducible tensorial form can
easily be added to the system. The newly developed
method, which combines the RCI and the station-
ary second-order Rayleigh-Schrodinger many-body
perturbation theory in an irreducible tensorial form
(RCI+RSMBPT), and its implementation in the Grasp
package is described in detail in the sections below.

2. General theory
2.1. Main theories in the Grasp package

The MCDHF method is based on the Dirac-Cou-
lomb (DC) Hamiltonian [E, ]

N N
HDC ZZ(C‘xi "P; +(ﬁi - l)cz + ViN)+z l’l’ (1)

i=1 i by
where V¥ is the monopole part of the electron-nu-
cleus Coulomb interaction, « and f are the 4 x 4
Dirac matrices, and c is the speed of light in atomic
units. The atomic state functions (ASFs) were ob-
tained as linear combinations of symmetry adapted
configuration state functions (CSFs) []

NCSsFs

Y(yPIM) = ¢, - ®(y,PIM). 2)

Here ] and M are the angular quantum numbers,
and P is parity. y, denotes other appropriate label-
ling of the configuration state function j, for exam-
ple, the orbital occupancy and coupling scheme.
Normally, the label y of the atomic state function
is the same as the label of the dominating CSF. For
these calculations the spin-angular approach [H,
E], which is based on the second quantization in
a coupled tensorial form, on the angular momen-
tum theory in three spaces (orbital, spin and qua-
sispin) and on the reduced coefficients of fractional
parentage, was used. It allows us to study configu-
rations with open f-shells without any restrictions.

CSFs are built from products of one-electron
Dirac orbitals. Based on a weighted energy aver-
age of several states, the so-called extended optimal
level (EOL) scheme [@], both the radial parts of
the Dirac orbitals and the expansion coefficients
were optimized to self-consistency in the relativis-
tic self-consistent field procedure [].

In RCI computations, the atomic state function
is expanded in CSFs, and only the expansion coef-
ficients are determined by diagonalizing the Ham-
iltonian matrix [@]. The RCI method is also used
to include the transverse-photon (Breit) interaction
and QED corrections: vacuum polarization and
self-energy []. More details about MCHDF and
RCI methods can be found in Refs. [, ].

2.2. Zero-first-order method

One of Brillouin-Wigner perturbation theory ver-
sions is widely used by the Grasp community. In
this version, according to the Brillouin-Wigner
perturbation theory [E, ], the CSF space can be
divided into two parts:
(i) a principal part (P), which contains CSFs
that account for the major parts of the wave
functions and is referred to as zero-order par-
titioning;
(ii) an orthogonal complementary part (Q),
which contains CSFs that represent minor correc-
tions and is referred to as first-order partitioning.
The interaction between P and Q is assumed to
be the lowest-order perturbation. The total energy
functional is partitioned into the zero-order part
(H®) and the residual part (V). The Dirac-Fock
energy functional is chosen as the zero-order part;
the residual part then represents a correlation ener-
gy functional. The second-order Brillouin-Wigner
perturbation theory then leads to

— HO )- -
(E-HO)'V,¥,=Y¥,,
[HO + V,, + V,o(E~ HO) 'V, 1 ¥,= EY,. (3)

The above equations define the first-order correla-
tion operator and the second-order effective Ham-
iltonian operator for the P-space, respectively. In
the brackets of the second equation, the first and the
second terms compose the total energy functional
in the P-space, and the third term represents
the second-order correction to the correlation
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energy functional in the P-space. The nonlinear
effective Hamiltonian equation is written in a lin-
earized form:

HY T ),
= . 4
V Hg)Q) Y, ¥y

oP

The requirement that the total energy functional
E is stationary with respect to variations in spin-
orbitals ({¢}) under the normalization and the or-
thogonality conditions leads to a set of the Euler-
Lagrange equations

BB 11, + 3 1 ©)
5¢a b#a

where {u} are the Lagrange multipliers. The above
equations are nothing but reduced MCDHF equa-
tions. That is to say, an apparent connection be-
tween the second-order Brillouin-Wigner per-
turbation energy functional and a set of reduced
MCDHEF equations is provided.

The block HY), is diagonal in the Hamiltonian
matrix (see Eq. (4)). As a result, the computa-
tion time and size required for the construction
of the Hamiltonian matrix are reduced. This
method, named as zero-first-order method (ZF),
has the potential for taking a very large configura-
tion space into account, which is almost unachiev-
able by full MCDHF and RCI methods [], and
for allowing accurate calculation to be performed
with relatively small computational resources,
provided the Q-space contributes perturbatively
to the P-space. However, all abovementioned me-
thods (see Subsections 2.1 and 2.2) still lead to
avery large space of ASF and need a big amount of
computational resources in the case of very accu-
rate calculations of complex atoms. So, the further
improvements are welcome. One of the solutions
to this problem is the implementation of the com-
bination of RCI method with the Rayleigh-

Schrodinger perturbation theory in an irreducible
tensorial form in the Grasp using the usual PT
formalism. This is discussed in the sections below.

2.3. Rayleigh-Schrodinger perturbation theory in
irreducible tensorial form

The Brillouin-Wigner form of perturbation theo-
ry is formally very simple. However, the effective
operator of second order depends on the exact
energy of considered state. This requires a self-
consistency procedure and limits the application
to one energy level at a time. There are other is-
sues with implementation of this theory [E] in
the Grasp. The Rayleigh-Schrédinger perturba-
tion theory, another version of PT, does not have
these shortcomings, and therefore is more suitable
for many-electron calculations than the Brillouin-
Wigner PT.

There are several variations of the second-order
Rayleigh-Schrodinger perturbation theory. Most
of them deal with determinants instead of ASF in
the form of Eq. (2). Only one of them [E, @] is
formulated in an irreducible tensorial form which
gives the opportunity to include core-valence cor-
relations with any number of valence electrons. This
allows us to apply it to various applications using
the combination [H] of the angular momentum
theory [], as described in Ref. [], the concept
of irreducible tensorial sets [[19-21]], a generalized
graphical approach [@], the second quantization
in a coupled tensorial form [@], the quasi-spin
approach [@] and the use of reduced coefficients
of fractional parentage [@], the same as used by
the Grasp for calculation of one- and two-particle
operators []. Given that the spin-angular struc-
ture of terms of the PT series of this version leads to
one-, two- and three-particle operators in a tenso-
rial form, this version [E, ] of PT theory is ideal
for the Grasp package.

Fig. 1. Two-electron scalar operator when the second quantization operators are coupled by

pairs [a® x a?]®.
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The technique proposed in Ref. [E] leads to an
effective Hamiltonian #  [25] in the second order
PT, which can be expressed as the sum of terms cor-
responding to four classes of Feynman diagrams:
vacuum, one-electron, two- electron and three-elec-
tron. We illustrate the construction by considering
two Feynman diagrams: A, (Fig. EI) corresponds to
a first-order two-electron diagram and A, (Fig. @)
corresponds to a second-order two-electron dia-
gram. The following notation is used in these figures:
m=ndt j,m=ndtj,n=nlijn=nt;,
r=ntj,s=nf janda=n2 j.Theamplitude @
ntij.ntijmnt.j,ntij,E)isproportional
to the two-electron one or two submatrix elements
(the effective interaction strength) of a two-particle
physical operator [H, E, ]

eVnt j.ntjnt j,ntj,B)~
(2,05, (1,8,)7, 118,11 (1, 2,01, £,),) (6)
and
0mntj.ntjntj,.ntij,ntijndj,E)~
~((n,2,) ], (nL) ], 18,1l (n€)j (nL)j) x
x((nt)j,(nf)jlg,ll (n,2,)], (L)) 7)

where E is an array of intermediate coupling.

With the first Feynman diagram A , the Grasp
package deals with the methods described in
Sections 2.1 and 2.2. In Fig. , the left-hand side
shows the interaction diagram and the dotted line
corresponds to a two-electron interaction. This is

decomposed into the product of reduced matrix
elements composed of radial integrals and other al-
gebraic expressions with a coupled tensor operator

(©)
. PR 03] ; ~(i) &)
4, = [[a(m %0 %[ w0 ] } ®)

defined by the diagram A, in the right-hand side of
Fig. EI In Eq. (8), a¥ is an electron creation opera-
tor. Tensor % is defined [@, @] as

al’ =(n""a", 9)
where a' is an electron annihilation operator.

The second Feynman diagram A, is coming
from the second order of perturbation theory and
such type of diagrams (the second order of effective
Hamiltonian) must be implemented in the Grasp.
Similarly, the Feynman diagram A, is expressed as
the product of a more complicated second-order
perturbation expression with a recoupling coefficient
A,, and a coupled tensor operator A, with the same
structure as A, (see Fig. E]). So, the diagrams are dif-
ferent, but the spin-angular part is the same: A, = A..
Therefore this formulation of perturbation theory al-
lows us to significantly simplify the calculation of an
effective operator with any number of open subshells
for complex atoms and ions by using the standard li-
brary of Grasp for spin-angular integration [].

2.4. Relativistic second-order effective Hamiltonian
of an atom or an ion in irreducible tensorial form

Originally, the irreducible tensorial form of Rayleigh-
Schrodinger perturbation theory was formulated

Fig. 2. One of the diagrams of the second-order effective Hamiltonian.
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in nonrelativistic atomic theory that uses the LS-
coupling [E, E]. Here we derive from scratch such
part of a second-order effective operator, which
corresponds to core-valence (CV) correlations in
relativistic atomic theory that uses the jj-coupling.
For this we use the same technique as in Refs. [,
@], that is, a generalized graphical approach [R2]
and the second quantization in a coupled tensorial
form [@]. For this type of correlations we got two
one-particle Feynman diagrams and four two-par-
ticle Feynman diagrams whose contribution to CV
correlations is significant. These diagrams are ex-
pressed via scalar, multielectron operators which op-
erate only in the space of the wave functions of open
subshells and are not explicitly the functions of mag-
netic quantum numbers. Such form of an effective
operator is very convenient in practical calculation
of the energy spectra of atoms and ions with open
electron subshells, because we can use all the advan-
tages of methods described in Ref. [E]. For deriving
the expression of an effective operator and apply-
ing it to calculation, the definition of module spaces
must be determined. We use the same definitions in
Refs. [E, E ]. The effective operator itself is acting
upon the P-space, similar as in the (i) paragraph of
Subsection 2.2. The complementary part of the func-
tional space is the orthogonal space or the Q-space,
similar as in the (ii) paragraph of Subsection 2.2.
The module P-space, in addition to the Q-space,
is normally broken down into three sets: -F, F" and
G. The F set includes the orbitals, which describe
the filled (core) subshells encountered in all CSFs.
Meanwhile the F’ set includes the orbitals, which
correspond to the unfilled (valence) subshells
in some of these CSFs or at least in one of them.
The G set is built of the orbitals belonging to virtual

subshells, which do not belong to F or F" and are
used for generating the CSF for counting correla-
tion effects. To distinguish between these spaces in
the Feynman diagrams and the algebraic notations,
we use the following notations:

indexes a and b for the F set,

indexes n, n’, m and m’ for the F’ set,

indexes r and s for the G set.

In the following subsubsections, we will discuss
in more detail each contribution of the Feynman
diagram to core-valence correlations.

2.4.1. The first type of core-valence correlations

Here we will discuss the first type of core-valence
correlations which are presented by one-particle
Feynman diagrams in Figs. H and @:

(nt)jt(n £ )jm —

> nt)ja(n £ )it (nf)j(nt)j.  (10)

Each second-order Feynman diagram expres-
sion of perturbation theory has the energy denomi-
nator D=3(g, - eup), wheree, (eup) is the single-
particle eigenvalue associated with the down-(up-)
going orbital lines to (from) the lowest interaction
line of diagram. For example, the denominator for
CV, diagram in Fig. H is

(11)

The following notations are also used in the expres-
sions of these diagrams (see Figs. H and @):

D=(e +e ¢ —¢).

X, 1) = (LFICPI8,0) (2 IC¥]1,1,) ¢

X Rk(nijil’ljjj, niji’njjj')' ( 12)

Fig. 3. The CV Feynman diagram of the second-order effective Hamiltonian
for the direct part of excitation (n £ ) j%*' (n € ) j*» - (n€) j¥ (n 2, )

j‘:;l'y/n-l (nsfs) js (nr#r) jr'



25 ISSN 1648-8504 eISSN 2424-3647

G. Gaigalas et al. / Lith. J. Phys. 64, 20-39 (2024)

Fig. 4. The CV Feynman diagram of the second-order effective Hamilto-
nian for the exchange part of excitation (n ¢ ) j%' (n £ )j*n — (n £ ) jH

(nm"gm’) j::"nil (ns‘gs) js (nr‘gi’) jr-

Here R* (n, jnj, njmnj,) is the radial integral of
the electrostatic interaction between electrons
([], (89) and (90)), and (£,j||C®||£ j.) is the re-
duced matrix element of the irreducible tensor op-
erator C% in the jj-coupling.

The spin-angular part of the diagrams CV, and
CV, is the same, it has the normal order of creation
and annihilation operators, it is in an irreducible
tensorial form, and itself is a scalar operator

[alm x Gim)]©), (13)
which acts only upon the F’ set of P-space.
The spin-angular part of these Feynman diagrams
is the same as for the Dirac operator H [é, ],
with a reduced matrix element expressed through
the spin-angular coefficient £ and radial integrals
I(a, b) []. But the interaction strength is more
complicated, having an additional coefficient such
as 6j-symbol and an additional summation over
the G set of orbitals. For example, the CV, dia-
gram has

1 (_1)/}+j< Tm Ja
\/[]m’] r,s,a (8m' + ga _Sr _gs)

X

k . .
x Z{ . J,'" ].'}Xk (ma, rs)X, (sr,m' a).
kK k ]a ]s

The same Feynman diagrams from Figs. H and H
describe the core-valence correlations in the case
r=sas well:

(n,£) 7 (n,£,) j%r

> (nf) i (n £ )i (nd) ]2 (14)

2.4.2. The second type of core-valence correlations

The second type of core-valence correlations
(nt) it (n £ )jvm(nt)jn—

> () (n £ )i (n £ ) (ne)j (15)

Fig. 5. The CV Feynman diagram of the second-order effective Hamiltonian for the di-
rect part of the second type of core-valence correlations (n ¢ ) %' (n £ ) j*n(n £ )
-]1:/1;’[ - (na‘ga) jfzja (nm"gm’) jur:t;’WI (nn’fn’) jv;é+l(nr€r) jr'
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can be expressed via one-particle (Figs. H and @)
and two-particle (Figs. E, E, ﬁ, and §) Feynman
diagrams.

It is necessary to emphasize that the Feynman
diagrams CV,, CV, CV, and CV_are not in a nor-
mal order of creation and annihilation operators.
The order of these operators in the tensorial pro-
duct is the same as in Eq. (8) for CV,, CV, and
CV,, while CV is expressed via

Un) o 200 192 [ 5 o G0 02 Y
[a m) gt ] x[a ") xa } . (16)

All these operators in Egs. (8) and (16) act only
upon the F’ set of P-space.

The spin-angular part of these Feynman dia-
grams is very similar as for the Coulomb opera-
tor [, ], which has been expressed in the nor-
mal order of second quantization operators as (see
Eq. (20) in Ref. [}f})

Fig. 6. The CV Feynman diagram of the second-order effective Hamiltonian for the ex-
change part of the second type of core-valence correlations (n £ ) j%*' (n £ ) j'n(n £ )

-]v:t;’l - (na‘ga) jczlja (nm/gm’) j;‘:’lrln‘l (nn"pn’) j‘:’l;/ﬁl(nr.fr) jr'

Fig. 7. The CV Feynman diagram of the second-order effective Hamiltonian for the ex-
change part of the second type of core-valence correlations (n £ ) j¥*' (n £ ) j*n(n £ )

-]M:t;2 > (nuga) jija (nm’fm’) j‘;t;’n_l (nn’gn’) jv:t;jﬂ (nrer) jr'

Fig. 8. The CV Feynman diagram of the second-order effective Hamiltonian for the ex-
change part of the second type of core-valence correlations (n £ ) %' (n £ ) j*n(n £ )

> nl)je(n £ )t (nt )it (nd)].
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©
. T Tt~y ®
[[aomxam)] <[ @ x @] } (1)

or in the combination of two parts in which the sec-
ond quantization operators are ordered as pairs of
creation-annihilation operators, like in Egs. (8) and
(13) (see Eq. (21) [H]).

Therefore, the program library [] from Grasp
supports the calculation of the spin-angular part of
CV,, CV, and CV, Feynman diagrams. In addition,
it is very easy to redefine the expression (Eq. (16)
to Egs. (17) and (13)) of CV, diagram for the cal-
culation of its spin-angular part with the program

library [].

2.4.3. The contribution of core-valence correlations
to off-diagonal matrix elements

The main contribution of core—valence correlations
to off-diagonal matrix elements is in the matrix
element %(”mf i (1, )70 | e 1(2,0,) 70
(n,t,) jn‘””*2>. The above contribution is derived
from the excitation

(1,0 ) Ja " il ) i () o =
= (1,0 ) J2" () ot () (1,0, o (18)

and can be described by the same two-particle
Feynman diagrams (Figs. H, E, E] and E) as before.

3. Implementation of Rayleigh-Schrodinger
perturbation theory in irreducible tensorial
form in the Grasr2018 [g]

The expressions of CV correlations in the second or-
der of perturbation theory presented in Section 2.4
are exact and come directly from the theory. For
the implementation of this theory in the RCI ap-
proach, we make the following assumptions:
1. Infinite summations over the G space are
replaced by limited summations if our ASF in
the zero order of perturbation theory is already
sufficiently accurate. This is usually true after
the RMCDHEF calculation with the inclusion
of valence-valence correlations or sometimes
additionally CV excitation from one extreme
trunk orbit. The correctness of this assump-
tion is also confirmed by the accurate results
obtained using the zero-first-order method in
the Grasp package [@, @], since this method

is based on the Brillouin-Wigner perturbation
theory, which is also subject to infinite summa-
tion, as is the case for the Rayleigh-Schrodinger
perturbation theory.

2. In reality, the denominator of energy D (see
Eq. (11)) in CV,, CV,, CV,, CV,, CV, and CV,
contains only one-electron energies. But if in
the combination of RCI and perturbation the-
ory the one-electron orbitals are not spectro-
scopic (e.g. correlation orbitals [, @]), then
the one-electron energies do not correspond to
the values of the real one-electron energies and
cannot be used in Eq. (11). Therefore in this
case, we consider that the one-electron energies
in the denominator D in CV,, CV,, CV,, CV,,
CV, and CV, are changed to the averaged en-
ergies D = E(K’) — E(K). E(K) is the averaged
energy of a state for which calculations are per-
formed. E(K’) is the average energy for the ad-
mixed configuration K. This allows us to move
the energy denominator in front of summations
over the orbitals belonging to the F and G set in
the expressions of the second order of effective
Hamiltonian [E, @] and to simplify the imple-
mentation theory in the Grasp program pack-
age. It should be pointed out that D and D are
defined differently in papers [E, ] and [,E,
@], respectively. In the first case, the energy of
admixed configuration K is with a minus sign in
the energy difference D, while in the second case
D, on the contrary, it has the energy of the state
under consideration K. We will also abide in
the paper by these notations. Therefore, D and
D will be defined with opposite signs.

For the calculation of average energies E(K) and
E(K’) we can use the analytical expression [@, (42)]

Esz,](a,a)+

" zWa<W2«-D x (19)

2741 Jkg Y
x Fo(a,a)—g’TZ(Ea/éak) ! F*a,a) | +
a k>0 - -
22

ik Y

D wws| Fl(a,b) =D (0,00 1 1 | Gab)|,

o D -=0=
2 2

where symbol (£ £ k) means that quantities

¢, £, and k obey the triangular condition with
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the even perimeter, which usually is included in

the definition of radial integral [R3, , @].

A discussion on the correctness of these two as-
sumptions is described in Subsection 4.1.

Brillouin-Wigner perturbation theory (with
these assumptions) was already implemented
in the Grasp package [E, ] years ago. Accurate
atomic data (with spectroscopic accuracy) [R7, @,
@] were obtained by using this method. Since such
combination of the Brillouin-Wigner perturbation
theory with the RCI method allows one to include
correlation effects with a high accuracy, therefore
the Rayleigh-Schrodinger perturbation theory
(also other analogous perturbation theory option)
combined with RCI and with the same assumption
should also give accurate results. This can be con-
firmed by the investigation of energy spectra and
transition data for a different ionization degree of
a tungsten atom [] or various other ions [
@], including investigation of some metastable lev-
el along several isoelectronic sequences for the ions
from Z=50to Z=92 [@], and additionally calcu-
lating radiative lifetimes [] by using a simi-
lar approach [H, @] in the nonrelativistic atomic
theory. Therefore, these two assumptions should
not affect negatively the accuracy of CV correla-
tions in the calculation of atomic properties with
the combination of the CI approach with PT. But it
is important that in the zero-order space the most
important correlations would be included in this
Rayleigh-Schrodinger perturbation theory [E, @]
and RCI combination, as it is done using RCI com-
bined with Brillouin-Wigner perturbation theory.

It is more convenient to reformulate the formal-
ism of perturbation theory presented in Subsection
2.3 in such a way that this would allow us to use
the spin-angular library [] without any modifi-
cation and to make the easiest implementation of
this theory in the Grasp2018 package [E] in general.
This reformulation is presented here below.

According to Ref. [H], the contribution of
the admixed configurations from CV correlations
can be added to the usual energy of the term yJ of
the configuration K (the set of KyJ and/or K'y/ is
the CSFs in the relativistic approach) and can be
expressed as the energy E, (KJ), which does not de-
pend on the term and the sum of the product of
Slater integrals and spin-angular coefficients, de-
scribing the interaction within an open subshell
and between them:

E(KyJ)=
= E,(KJ)+ A&, (KJ)+

+ 3 [ G K g DIF @l nlf) + AF (nj, ntj)]+

nlj k>0
DIDY {Zik WG 05" K ) %
ntj n'tj'>nlj (k>0
<[F nlj, n'0") + AF* (ntj, n''j")] +
+ g (G K g DIGE (nlf, ')+ AGH(ntf, n' )]+
k

+z ﬁk ([ng/jvw’,éjwfzzljrw’ﬂ’ KXJKI%IJ) x
-
x[RAne jntj, n't'j'n'tj") + AR (nljntj, n'é'j'n%'j')]}, (20)

where ]?k, g, and v,_are spin-angular coefficients
from which submatrix elements (£j||C?||£’/") have
been extracted. Therefore the summation over k
runs over all possible values, instead of the values
which satisfy the triangular condition (£€’k), as in
the ordinary case of Eq. (19). The FX(nfj, n€’’),
G*(ntj, n€’j’) and R¥(nljntj, n"€’j’ n€’j’) are gener-
alized integrals of the electrostatic interaction be-
tween electrons. The definition of R*(n€jntj, n€’j’
n'?’j’) is the following:

RNij, i) =
= {[1+8G, )] [1+ 8GR jim j m jn )

< (LH1ICH] XTI ). @1
Here R¥(n, Jjnj, n.jmn.j,) is the same radial integral
as in Eq. (12). Definitions F*(ntj, n't’j’), Gx(ntj,
n'?’j’) follow straightforwardly from Eq. (21).

The contribution coming from the CV correla-
tions of the configurations K’ to E(KyJ) in the sec-
ond order of perturbation theory can be written
from Eq. (20) as

AEPT =
=AE (KJ)+
+ 33 L K g D) AF ), ntj)+

ntlj k>0

+Z Z {Z F (07 Ky DAF (ntj, n'0'') +

nlj n'ly'>nlj (k>0

+ g (" K ) AGH(ntj, n'0")+
k

+Z ﬁk (ijzfjlw' , (jvt'-Zﬂjlvt*'+2 , K%J K/%/J) x
k

x AR (nljntj n'(’j'n'é'j')}. (22)
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Table 1. Expressions for core-valence corrections to the energy in Eq. (20), not depending on the term.

A&, corrections

core subshells  valence subshells core subshells  valence subshells

(n,0,)j""" (n,t

(/]

virtual subshells

W, 2(= 1)/ st ZC’ (k,ma,rs)+[J,] [\/mc/l(o, ma,sr)+ \/ﬁﬂ(o, ma, rs)]

m - m )jl::m % (naga )jjja (nmgm )jl"}/'lv”17l (nSKS )j\‘ (nrér )jl’

from CV, Feynman diagram

from CV, Feynman diagram

core subshells  valence subshells core subshells

valence subshells  virtual subshells

(nafa)jjjﬁ—l (nmgm)jr‘n%ﬂ 9(’/lllgll)‘jjj“ (nn1£m)j::mil (nSKS)jSz

2w,

(/]

(_1)jm +Ja z C(k,ma,ss)— mc/l(o, ma, ss)

from CV, Feynman diagram

from CV, Feynman diagram

core subshells valence subshells core subshells

valence subshells virtual subshells

(L) J " 1,0, o (m,0) o = (L) 7 () o™ (m,0,)

(71)]}" tint)rtia w

W, (L, 1-w,) '
(/]

_ —CH(O’ , )_
T

from CV; Feynman diagram

from CV3 and CV; Feynman diagrams

r—J\.ﬁ.
(nt.)J,

2> € (k,ma,nr) +Z%?(kk,ma,nr)

from CV;’ Feynman diagram

The first type contribution of CV correlations
in the second order of perturbation-theory is ex-
pressed only over A€ (KJ) (see Table [1). The contri-
butions AF*(ntj, ntj), AF(ntj, n’€’j’) and AGX(ntj,
n'?’j’) are equal to zero in this case. The contribu-
tions A€ (KJ) can be expressed through A and C
coeflicients (see Table ) which have the following
expressions:

A(x,ij,i]") =

kk'x)|k k' x
= oy, e (PEKLILTT,
k&' JiJi Ji ]j’ .]j’]j

(23)
o k Ji Ji L
Clhij i) =1, " QKK i, i),  (24)
LI
where
P(kk', ij, ) = R(ij, i) R, ij) O(K, K),  (25)
QUK ij, i) = RNij, i) R¥ (i7", ji) O (K, K).  (26)

We would like to emphasize once more that the
energy denominator is defined differently/opposite
in the expressions of Feynman diagrams (see, for
example, Fig. H, Egs. (25) and (26)):

OKK'",K)= %
E(K")- E(K)

The second type contribution of CV correla-
tions in the second order of perturbation theory
is expressed over AE (KJ), AF (ntj, ntj), AF<(ntj,
n'?’j’) and AGK(nfj, n'f’j’) (see Tables [l and ).

The Feynman diagram with the notation CV in
Table 2 means the same Feynman diagram CV, (see
Fig. H), but instead of the index s belonging to the G
type of orbitals the index n which belongs to the F’
type of orbitals is used. Similarly, in the Feynman
diagrams with the notations CV] and CV; (Table
), the index r (index s) is changed to the index n
(index n). These types of the Feynman diagrams
come from the reordering the operators of second
quantization from the coupled by pairs [a® x g¥]®

(27)
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Table 2. Expressions for the Slater integrals AF*(m, n) and AG*(m, n) (see Eq. (20)) corresponding to the second
type of core-valence (n,£,) /%' (n,£,) j"» (n,£,) js = (n.,) j% (n,£,.) j*r" (n,£,) j*** (nL,) j, correlations.

Corrections Slater integral k values
(k1YQ, k,ma,rn,mn) AFHom. n) £ 0
from CV; Feynman diagram
- (- 1)/’,-+jn+k
2 () Z (1, k, ma, nr, mn) + ~————P (kk, ma, nr)
[] AG (m, n) k>0

from CV, and CVy5 Feynman diagrams

from CV; Feynman diagram

order to the normal order of operators of second
quantization. The diagram CV;comes after the re-
order of the diagram CV, the diagram CV] comes
after the reorder of the diagram CV , and the CV;
comes after the reorder of the diagram CV.. This
reordering allows us to have the same spin-angular
part of the diagrams CV, CV, and CV as any two-
particle operator in the Grasp:

I,x’l”,l'!-l,l'ﬂ-" —
YU, x,i,i5,1") (28)

k+k'+x k k"x k k, X [AETRETRTART 27/
ZZ(_I) L. P T(I’kkayalf ) ):
kK JrJide) Uy Ty T

T(]>kk,7yaiy’>i'y”): (29)
{R" G, i7)RE (i'f",i")O(K',K)  forI =1,

R, 1R (", i) O(K', K K,) for I =2,

where
OK',KK,)=
:l(_ L ] (30)
2\ E(K) ~E(K)  E(K')- E(K,)
Z(Lk,ij, i, i"") =
kjoja
=9 T UL R i, (31)
vk iJy

UL KK ij, i, i"") =

RYG7, iR, jiOK',K) for I =1,

R DR, JTVOKK) - for =2, (353
RYGj,IVREG, jiNO(K', K K,)  for I =3,
R iHRE ", jiNOK', K, K,) for I =4.

There are the following symmetries for Z coef-
ficients:

Z (1, k, ij, i ii") = Z(2, k, ij, i ii’), (33)

Z (3, k, ij, i’ i')) = Z(4, k, ij, i’ i'7). (34)
The contribution of CV correlation in the sec-
ond order of perturbation theory com-
ing from the off-diagonal matrix element
()3 1, )30 | i |1 01,0, = () 120
is described by the diagrams CV,, CV,, CV, and
CV,. The reformulation expressions of these dia-
grams to the form suitable to the GRASP gave these
corrections only to the radial integral AR¥(mm,
nn) (see Table B). All these formulas are expressed
via the quantities introduced earlier in the paper,
except

S(kK' ij, i1, i"") =

= R (if, i) R¥ (j", jj") O(K’, K,K). (35)

This theory in an irreducible tensorial form is
more suitable to be included in such a version of
the Grasp that is based on the configuration of state
function generators (CSFGs) []. This is related to
the fact that this version of the package allows us
to distinguish the F, F" and G sets of orbitals very
easily in the process of computing atomic data. In
the following section, we will present a test case of
this implementation.

4. Calculation of core-valence correlations with
new implementation

This section is intended to present the results
using here the newly developed and presented
method, based on the Rayleigh-Schrédinger per-
turbation theory in an irreducible tensorial form,
which is implemented in the Grasp2018 package.
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Table 3. Expressions for the Slater integral AR¥(mm, nn) (see Eq. (20)) corresponding to the core-valence
(nt) it (n £ )jm(n £ )i = (nt)j(n £ )jn'(n £ )i (nf)j correlations coming from the off-

W, 2 W, +2

Corrections

| Slater integral | k values

24[k1Y(2,k,ma,rn,nm) N

from CV; Feynman diagram

AR (mm, nn) k=0

+ ) Z 3, k,ma, ne,nm) + (K1) Z (4, k, na, mr, mn) .

from CV, Feynman diagram

_1 .tk
)

[£]

from CV,; Feynman diagram

S(kk,ma,nr,mn)

from CV5 Feynman diagram

This new developed method allows us to include
the CV correlations in the computations choosing
the preferred core and virtual orbitals. Using this
method we can open the core fully and estimate
the impact of CV correlations in the second order
of perturbation theory for the computed levels.
To calculate the contributions of such CV corre-
lations the average energies of the configurations
are needed. There are three options to calculate
the average energy of configuration in the pro-
gram implemented in the Grasp2018 package:

« The average energy is calculated using an ana-

lytical expression (Eq. (19)) (option 0);

« The average energy is calculated according to

the diagonal matrix element (option 1);

o The average energy is calculated by discard-

ing those energies for which the non-diagonal

matrix elements with the multi-reference set are

zero (option 2).

Theresults from the computations using the new
method will be marked as CV RCI+RSMBPT (ac-
cording to Eq. (20)). To evaluate the accuracy and
the reliability of the results, these are compared
with the results from the rearranged RCI method,
based on CSFGs [@], which compute only the CV
correlations (results marked as CV RCI).

4.1. The first test case

In the first test, 3 energy levels of the ground
(1s*2s*2p®3s?3p’) configuration with J = 3/2 of
the CI III ion are computed. The multi-reference
(MR) set consists of 3 CSFs (3s?3p?, 3s*3p 3p* and
3s?3p? 3p in jj-coupling) belonging to the 3s*3p°

configuration from which substitutions are al-
lowed to include CV correlations. The 1s, 2s, 2p_
and 2p subshells are defined as opened core sub-
shells (F set), 3s, 3p and 3p as valence subshells
(F’set), and 4s, 4p , 4p, 3d_and 3d as virtual ones
(G set). Such set of virtual orbitals will be marked
as L1. So the CSFs list consists of 3 CSFs belong-
ing to the MR set, and the rest CSFs are the CV
correlations of the MR set. Radial wave functions
are taken from the earlier computations [@].

Firstly, we will check the expressions derived
in Subsections 2.4 and 3. As described in Sec-
tion 3, several types of CV correlations are im-
plemented. Here below, the contributions for
each type of the CV correlations will be com-
pared with the results from CV RCI computa-
tions. To calculate the contribution of a par-
ticular K’ configuration of the CV correlations
from the RCI, based on the CSFGs, for the first
and second type (see Tables || and 2) we will use
the equation

CZ KE DIV I K I F

AE,, = = = (36)
E(K'")-E(K)
and
AEPT:
ZAK DNV K g I DNV K %' )) N
2
1 1
X[_ L I j (37)
E(K)-E(K) EK')-E(K,)

to compute the effect from oft-diagonal matrix ele-
ments (see Table 3).
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The results of these examples for the first and
second types of CV correlations are presented in
Table 4. Matrix elements and average energies (with
option 0) are given there. The CV contribution from
CV RCI+RSMBPT computations is compared with
the contribution calculated by Eq. (36). As seen
from Table 4, there is an excellent agreement be-
tween two computations. For the first type the effect
of CV correlations is -2.48300702640003E-04 a.u.
by Eq. (36) and -2.48300702643986E-04 a.u. by
Eq. (22); for the second type of CV correlations
it is —5.30286558582154E-05 a.u. by Eq. (36) and
-5.30286558628605E-05 a.u. by Eq. (22). The ex-
ample for the contribution of CV correlations to
off-diagonal matrix elements is presented in Table 5.
It is seen that there is an excellent agreement be-
tween both calculations (7.74908996437684E-06 a.u.
by Eq. (37) and 7.74908996512910E-06 a.u. by
Eq. (22)). By using the Rayleigh-Schrodinger per-
turbation theory in an irreducible tensorial form

to calculate the contribution of CV correlations 14
numbers after comma are reproduced.

The energy structure results from both (CV RCI
and CV RCI +RSMBPT) computations are given in
Table 6. For the CV RCI case in the RCI computa-
tions the ZF method is also applied. The MR space is
used as the principal part P. In the CV RCI+RSMBPT
case, the results from three computations (different
options of averaging energies) are presented. As seen
from Table 6, the differences between the CV RCI
and CV RCI+RSMBPT (option 0) calculations are
0.0000489 a.u., 0.0000519 a.u. and 0.0000568 a.u.,
whereas the contributions of CV correlations are
-0.0022369 a.u.,—0.0022419 a.u. and -0.0022510 a.u.,
respectively, for the S, ,?D, and’P,  levels. The dis-
agreement between the results in this case is only
2.2-2.5%. This disagreement decreases when in
the CV RCI+RSMBPT computations the energy of
configuration is averaged according to the diago-
nal matrix element (option 1), to 1.4-2.0%. There is

Table 4. Comparison of the contribution of the first and second type of CV correlations from the CV RCI
and CV RCI+RSMBPT computations. The contribution of K’ CV correlations is given for the computed level

1s%2s%2p*2p*3s?3p°.

K] = 3/2

(KxJ = 3/2)||VII(K'XT = 3/2))

Energy, a.u.

1s?2s?2p 2p*3s?3p?3d_3d (the first type of CV, see Subsection 2.4.1)

1s*2s%2p_2p*3s23p*(0)3d_< 1 > 3d
1s?2s%2p 2p*3s?3p?(0)3d_ < 2 > 3d
1s?2s%2p 2p*3s?3p*(2) < 3/2>3d_< 1> 3d
1s22s2p 2p*3s?3p*(2) < 3/2 > 3d_<2>3d
1s?2s%2p 2p*3s?3p*(2) < 3/2>3d_<3 > 3d
1s22s%2p 2p*3s23p*(2) < 5/2 > 3d_< 1> 3d
1s?2s%2p 2p*3s?3p*(2) < 5/2>3d_<2>3d
1s?2s%2p_2p*3s*3p*(2) < 5/2>3d_<3 > 3d
1s?2s%2p 2p*3s?3p*(2) < 5/2>3d_<4 > 3d
AEy; = —2.48300702640003E-04 a.u. (by Eq. (36))
AE, = -2.48300702643986E-04 a.u. (by Eq. (22))

PT —

1.9323531771818409E-02
1.1447066004165937E-03
-1.0237704805308916E-03
1.0152134678921704E-02
-2.8273270317335265E-02
-6.0999204304291775E-03
1.8300440014309707E-02
-2.4406821873536943E-02
-1.4987727556927458E-03

E (K) = -459.55556158934053
E (K’) = -450.50099438062546

1s?2s%2p_2p*3s3p_3p’4s (the second type of CV, see Subsection 2.4.2)

1s2s22p 2p*3s < 0> 3p_< 1/2>3p’ < 1 > 4s
1s22s22p 2p*3s < 0> 3p_< 1/2>3p* <2 > 4s
1s2s2p_2p*3s <1 >3p_< 1/2>3p’ < 1 > 4s
1s22s22p 2p*3s < 1> 3p_< 1/2>3p* <2 > 4s
1s2s22p_2p*3s <1 > 3p_<3/2>3p’ < 1> 4s
1s2s22p 2p*3s < 1> 3p_<3/2>3p’ <2 > 4s
AEp; = -5.30286558582154E-05 a.u. (by Eq. (36))
AEpr = -5.30286558628605E-05 a.u. (by Eq. (22))

E (K) = -459.55556158934053
E (K’) = -450.58662000712661

7.9640894479663035E-03
1.0281595266559909E-02
1.0720418507720091E-02
1.3840000781591226E-02
0.0
0.0
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Table 5. Comparison of the contribution of CV correlations to the off-diagonal matrix elements from the CV
RCI and CV RCI+RSMBPT computations. The contribution of K’CV correlations is given to the off-diagonal
matrix elements between the computed levels 1s*2s*2p?2p*3s°3p® (K| ) and 1s°2s2p?2p*3s?3p?3p (K.).

Ky =3/2

| (KT = 3|V T = 312)) | (K] = 312)|| VII(KT = 3/2))

1s?2s2p*2p*3s?3p_3p*3d (off-diagonal, see Subsection 2.4.3)

1s*2s2p?2p*3s?3p_ < 1 > 3p*(0)3d
1s?252p*2p*3s?3p_ < 0> 3p*(2) <2 > 3d
1s?2s2p?2p*3s?3p_ < 1> 3p*(2) < 1> 3d
1s22s2p?2p*3s23p_< 1> 3p*(2) <2 >3d
1s?2s2p*2p*3s?3p_ < 1 > 3p*(2) < 3> 3d
E (K,) = -459.55556158934053 a.u.
E (K,) = -459.56656073844789 a.u.
E (K') = -448.76686304559024 a.u.
AEpr =7.74908996437684E-06 a.u. (by Eq. (37))
AEpy =7.74908996512910E-06 a.u. (by Eq. (22))

2.5856710447641450E-03

-8.1766097814018907E-04
-2.7928439287496273E-03
-4.9959911001853999E-03

8.0873774303662094E-03
0.0 0.0

2.5574532977397013E-03
8.7353660093932462E-03
1.5626297764275494E-02

a little decrease when average energy is calculated by
discarding those energies for which the non-diago-
nal matrix elements with the multi-reference set are
zero (option 2). Comparing the CV RCI+RSMBPT
with the results from CV RCI ZF, this disagreement
decreases to 0.1-0.7% in option 2. We want to note
that the difference between the CV RCI and CV
RCI+RSMBPT computations for 3 computed levels
is similar and stable (about 0.00005 a.u with option
(0)). Meanwhile comparing the CV RCI+RSMBPT
results with the results from CV RCI ZF these dif-
ferences differ for each computed level and are
0.0000343 a.u., 0.0000144 a.u. and 0.0000007 a.u.,
respectively, for the first, the second and the third
level. Comparing the splitting of the computed le-
vels from CV RCI and CV RCI +RSMBPT computa-

tions, we see that splitting from CV RCI+RSMBPT
is closer to the CV RCI results than CV RCI ZE.

The obtained results and comparisons made
lead us to the following that the expressions of Ray-
leigh—-Schrodinger perturbation theory in an irre-
ducible tensorial form derived in Subsections 2.4
and 3 are correct, the assumptions made in Sec-
tion 3 are not materially wrong, and the program
based on this methodology is free from bugs. Thus it
means that the direct inclusion of correlations with
the Brillouin-Wigner perturbation theory from
Subsection 2.2 can be substituted for by the ver-
sion of the Rayleigh-Schréodinger perturbation
theory presented in Subsection 2.4. It is appropriate
because by using the combination of the RCI and
the Rayleigh—Schrodinger perturbation theory in an

Table 6. The energy levels (in cm™) and total energies (in a.u.) for 3 energy levels of the 3s?3p* configuration
with J = 3/2 are given from both computations when CV correlations are included. 0, 1 and 2 columns mark

the options of averaging the energy of the configuration.

CVRCI CV RCI+RSMBPT
No. State MR
ZF 0 1 2
Energy levels (cm™)
1 3s?3p* S5, 0.00 0.00 0.00 0.00 0.00 0.00
2 3s*3p® D5, 23142.25 23141.15 23136.12 23140.51 23140.23 23140.32
3 3s%3p® 2Py, 38735.68 38732.59 38723.48 38730.87 38729.48 38729.83
Total energy (a.u.)
1 3s%3p* 1S, -459.6785245 -459.6807614 -459.6807760 -459.6808103 -459.6807921 -459.6807918
2 3s’3p’ Dy, -459.5730806 -459.5753225 -459.5753600 -459.5753744 -459.5753574 -459.5753568
3s’3p’ *Py), -459.5020317 -459.5042827 -459.5043388 -459.5043395 -459.5043276 -459.5043257
Ness 3 1941 1941 3 3 3
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irreducible tensorial form, the CSFs space consists
only of 3 CSFs in the CV RCI+RSMBPT computa-
tions compared to 1,941 CSFs that are in the ordi-
nary RCI calculations (CV RCI) and in the CV RCI
ZF. Such significant CSFs reductions also reduce
the matrix and CPU computing time.

4.2. The second test case

In this case, the same test as described above is
chosen. We use the program which is designed to
determine the contribution of each K’ configura-
tion of CV correlations for CSF for which energy
needs to be calculated according to the Rayleigh-
Schrodinger perturbation theory in an irreduc-
ible tensorial form by Eq. (22). The program gives
the total contribution of CV correlations with
the selected core and virtual orbitals, and calcu-
lates the contribution of each K’ configuration
of the CV correlations for the computed levels.
K’ configurations are sorted in a descending order
according to the effect of CV correlations upon
each level. Further, we select K’ configurations by
the CV correlations effect with the specified frac-
tion of the total CV contribution, and perform
RCI computations including them. These fractions

are presented in the percentage. The results from
the computations when the CV correlations are
included using the method described above are
marked as CV RCI (RSMBPT), and usual RCI cal-
culations (when all CV correlations are included)
are marked as CV RCI and are given in Table H
There are also energies without CV correlations
(marked as MR). In both (CV RCI and CV RCI
(RSMBPT)) computations the ZF method is also
applied (the MR space is used as the principal
part P).

As seen from the results, by including step-by-
step the most important K’ configurations of CV cor-
relations, the results smoothly converge to the CV
RCI computations. In the case when 99.995% of CV
correlations are included in the computations, we
reproduce the results of usual RCI computations.
The convergence by including the most important
K’ configurations of CV correlations for computed
3 energy levels is displayed in Fig. E The trend of
inclusion of the most important CV correlations in
the ZF case is very similar. From Table ﬂ it is seen
that in the case when 99.995% of CV correlations
are included, the CSFs space decreases about 27%
compared to the space in CV RCI computations. By
using the Rayleigh-Schrodinger perturbation theory

Table 7. The energy levels (in cm™) and total energies (in a.u.) for 3 energy levels of the 3s?3p* configuration
with ] = 3/2 are given from both computations when CV correlations are included (L1).

s CV RCI (RSMBPT)
Z State MR CV RCI
95% | 9% | 995% | 99.95% | 99.995% | 99.999999%
Energy levels (cm™)
1 3s3p° 453/2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3¢%3p° ZDS/2 23142.25 23141.15 23141.71 23141.27 23141.18 23141.15 23141.15 23141.15
3 3s%3p° ZPM2 38735.68 38732.59 38734.73 38733.04 38732.78 38732.62 38732.61 38732.61
Total energy (a.u.)
1 3s3p 483/2 -459.6785245 -459.6807614 -459.6806652 -459.6807441 -459.6807518 —-459.6807602 -459.6807612 -459.6807613
2 3s%3p° 2D3/Z -459.5730806 -459.5753225 -459.5752238 -459.5753047 -459.5753129 -459.5753214 -459.5753223 -459.5753224
3 3s%3p’7P,, -459.5020317 -459.5042827 -459.5041768 -459.5042634 -459.5042723 -459.5042814 -459.5042824 -459.5042825
Energy levels (cm™)
1 3s%3p*'S, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3¢%3p° 2D3/2 23142.25 23136.12 23136.75 23136.28 23136.18 23136.13 23136.12 23136.12
3 3s%3p’ 2P3/2 38735.68 38723.48 38725.86 38723.97 38723.69 38723.47 38723.48 38723.48
Total energy (a.u.)
1 3s3p° 453/2 -459.6785245 -459.6807760 -459.6806803 -459.6807590 -459.6807667 -459.6807749 -459.6807758 -459.6807760
2 3¢%3p° 2D3/2 —-459.5730806 -459.5753600 -459.5752615 -459.5753423 -459.5753505 -459.5753590 -459.5753599 -459.5753600
3 3s%3p° 2P3/2 -459.5020317 -459.5043388 -459.5042323 -459.5043196 -459.5043286 -459.5043378 -459.5043387 -459.5043388
N, 3 1941 678 977 1088 1263 1400 1609

CSFEs
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Fig. 9. The convergence by including the most important K’ configurations of CV
correlations for the computed 3 energy levels of the 3s?3p? configuration with J = 3/2.

in an irreducible tensorial form in such a way, we
can collect the most important CV correlations,
thus the CSFs space is decreased (the matrix and
the computing CPU time are reduced).

We will take one more example to present
the results of the CV correlations from CV RCI
and CV RCI (RSMBPT). We will change the vir-
tual orbitals to the highest ones (9s, 9p , 9p, 9d ,

Table 8. The energy levels (in cm™) and total energies (in a.u.) for 3 energy levels of the 3s?3p* configuration
with ] = 3/2 are given from both computations when CV correlations are included (L5).

S| State MR CV RCI CV RCI (RSMBPT)
95% | 9% | 995w | 9995% | 99.995% | 99.999999%
Energy levels (cm™)
1 3s%3p? 483/2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3s%3p? 2D3/2 23142.25 23141.47 23141.84 23141.61 23141.55 23141.48 23141.48 23141.47
3 3¢%3p’ 21-73/2 38735.68 38710.07 38710.92 38710.05 38710.18 38710.10 38710.07 38710.07
Total energy (a.u.)
1 3s%3p° ‘S,, —459.6785245 -459.6797756 -459.6797214 -459.6797669 -459.6797713 -459.6797752  -459.6797755 -459.6797756
2 3s3p° sz -459.5730806 -459.5743353 -459.5742794 -459.5743259 -459.5743306 -459.5743348  -459.5743352 -459.5743353
3 3s%3p’ 21)3/2 -459.5020317 -459.5033995 -459.5033415 -459.5033909 -459.5033947 -459.5033989  -459.5033995 -459.5033995
ZF
Energy levels (cm™)
1 3s3p*S, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3$%3p*°D,, 23142.25 23140.70 23141.08 23140.82 23140.76 23140.71 23140.70 23140.70
3 3s%3p’°P,, 38735.68 38708.85 38709.76 38708.84 38708.96 38708.89 38708.86 38708.85
Total energy (a.u.)

1 3s%3p? “83/2 -459.6785245 -459.6797795 -459.6797259 -459.6797709 -459.6797753 -459.6797791  -459.6797795 -459.6797795
2 3s%3p° 2D3/2 -459.5730806 -459.5743428 -459.5742873 -459.5743336 -459.5743382 -459.5743423  -459.5743427  459.5743428
3 3¢%3p° 2P3/2 —-459.5020317 -459.5034090 -459.5033512 -459.5034005 -459.5034043 -459.5034084 -459.5034090 -459.5034090

N 3 10396 2897 4317 4648 5136 5509 6182

CSFs
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9d, 8f, 8f, 8g, 8g, 8h, 8h, 8i, 8i, set of these vir-
tual orbitals will be marked as L5) in the test case
described above. The results are presented in Table 8.
It is seen that the results from CV RCI (RSMBPT)
smoothly converge to the CV RCI computations.
In the case when 99.95% of CV correlations are
included in the computations, the results are very
close to the CV RCI computations, and in the case of
99.995% the results of usual RCI computations are
reproduced. When 99.995% of CV correlations are
included, the CSFs space decreases about 47% com-
pared to the space in CV RCI computations. Com-
paring the results from this test with those of the pre-
vious test (with smaller virtual orbitals) it is seen that
the contribution of CV correlations decreases (as it is
known). However, using the Rayleigh-Schrédinger
perturbation theory in an irreducible tensorial form
in such a way, we can calculate and estimate the con-
tribution of each K’ of the CV correlations with
the preferred core and virtual orbitals. That allows
us to select the most important CV correlations and
perform the RCI computations in the space of CSFs
that is significantly reduced.

5. Summary and conclusions

The Rayleigh-Schrédinger perturbation theory in
a nonrelativistic approach [, ] was extended to
a relativistic approach in such a way that the Fey-
nman diagrams corresponding to the core-va-
lence correlation are presented in an irreducible
tensorial form in the jj-coupling. This allows us
to use the spin-angular library [f, @] without any
modifications and to make the easiest implemen-
tation of this theory in the Grasp2018 package [E]
in general. Two proposed computational methods
(CV RCI+RSMBPT and CV RCI (RSMBPT)),
which combine the RCI method and the station-
ary second-order Rayleigh-Schrédinger many-
body perturbation theory in an irreducible tenso-
rial form, allows us to include the core-valence
correlations for atoms or ions with any number
of valence electrons in a simplified way instead of
the large RCI computations. Rayleigh-Schréding-
er perturbation theory in an irreducible tensorial
form has several advantages over the Brillouin-
Wigner perturbation theory implemented in
the Grasp code [, E]: firstly, the space of CSFs is
significantly reduced, which leads to a smaller ma-

trix and its simpler diagonalization. So the com-
putational resources needed for computations
and the computing CPU time are also reduced. In
addition, this computational method allows us to
include the CV correlations from the deeper core.
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ANTROSIOS EILES RELEJAUS IR SREDINGERIO TRIKDYMU TEORIJA GRASP2018
PROGRAMINIAM PAKETUI: KAMIENO IR VALENTINES KORELIACIJOS*

G. Gaigalas, P. Rynkun, L. Kitoviené

Vilniaus universiteto Teorinés fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

GRASP programinis paketas [GRASP2018, C. Froese
Fischer, G. Gaigalas, P. Jonsson, J. Bierori, Comput. Phys.
Commun. (2019), DOI: 10.1016/j.cpc.2018.10.032] grin-
dziamas daugiakonfigtiraciniu Dirako, Hartrio ir Foko
bei reliatyvistiniu konfigracijy superpozicijos (RCI)
metodais, skirtais atomy ir jony energijos struktiros
skai¢iavimams. Programoje naudojama atominé bise-
nos funkcija sudaryta i§ konfigiiraciniy buseny funkcijy
rinkinio. RCI metode valentinés-valentinés, kamieno-
valentinés ir kamieno-kamieno koreliacijos yra tiesiogiai
jtrauktos j atomo busenos funkcija per konfigiraciniy
biseny funkcijas. Siame darbe pateiktas naujas efekty-

* Skiriama Siuolaikinés teorinés fizikos Lietuvoje pradininko, ,Lietuvos
fizikos rinkinio“ iniciatoriaus akad. Adolfo Jucio (1904-1974) gimimo ir

mirties sukaktims paminéti.

vesnis kamieno-valentiniy koreliacijy jskaitymo budas.
Jis sukurtas remiantis RCI ir stacionarios daugiadalelés
trikdZiy teorijos neredukuotinéje tenzorinéje formo-
je kombinacija. Tai leidZia jskaityti kamieno-valentines
koreliacijas, naudojant trikdziy teorija bet kokiam ato-
mui ir jonui su bet kokiu valentiniy elektrony skaic¢iumi.
Sis naujai sukurtas metodas, kurj galima naudoti dviem
budais, leidzia gerokai sumazinti konfigtiraciniy bise-
ny funkcijy erdve sudétingiems atomams ir jonams, kas
daug lengviau leidzia i§plésti GRASP programinio paketo
galimybes. Darbe pademonstruota, kaip $is metodas vei-
kia apskai¢iuojant Cl III jono energijos struktiirg.
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