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The paper discusses issues of digital processing of terahertz images. It is shown that despite the improvement of 
the hardware part of imaging setups, the acquired images still often have a low resolution and suffer from noise and 
blurring effects. Thus, to improve their visual quality, it is advisable to use special digital processing methods. While 
some progress has already been made in terms of denoising of terahertz images, the research of their deblurring is 
only at the very early stage. Therefore, this paper attempts to analyze the properties of blur functions for real terahertz 
images to further use them while designing a corresponding deblurring technique. For this purpose, the phase-only 
image method has been used. A study of blur properties for the three most common blur types (defocus, motion and 
Gaussian blur) has shown that for test images they can be distinguished and their main parameters can be assessed. 
However, the application of this method to real terahertz images has shown that the blur characteristics in them are 
very different from the ones obtained for modelled examples. The real blur demonstrates a quite complex behaviour 
and estimating its kernel requires additional research.
Keywords: terahertz imaging, image deblurring, blur kernel estimation

1. Introduction

Recent developments in terahertz (THz) imag-
ing aim towards applications in a wide variety of 
fields extending from security and medicine to 
ancient art inspection  [1–11]. However, one has 
to deal with the trade-off between the ease of use, 
cost and compactness of THz imaging setups, and 
the  quality of the  obtained images. On the  one 
hand, operation at higher frequencies allows 
one to obtain images with higher detail, yet on 
the other hand, the equipment for the upper THz 
frequency range is complex and not cost-efficient. 
At the same time, low frequency commercial THz 
sources are more compact, user-friendly and have 
a  higher optical output power while suffering 
from a low spatial resolution, which results in de-
terioration in the quality and information value of 
the obtained images. 

It should be noted that image quality greatly 
depends on the imaging method used. In the sim-

plest case – direct THz imaging – only the power 
of terahertz radiation transmitting through or re-
flecting from the object under study is recorded, 
leading to the  loss of information on small de-
tails, which is especially true if the object is low-
absorbing. More advanced and promising are ho-
modyne  [2] and heterodyne  [3] techniques that 
allow one to also record phase information. Yet, 
they require a more elaborate equipment and are 
more sensitive to optical alignment, so their use 
outside scientific laboratories is still challenging.

One more limiting factor of THz imaging is 
the  low speed of image acquisition in the  com-
monly used raster scan technique. Since in this 
method the image is acquired pixel-by-pixel, ob-
taining images with a high resolution turns out to 
be a very time-consuming task. Thus, the resolu-
tion of THz images is often quite low [5, 16]. 

Finally, the  quality of terahertz images sig-
nificantly depends on the  shooting conditions, 
the  material of the  object under study, and 
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equipment parameters [1], which due to long ac-
quisition time are not easy to stabilize. Because of 
this, the resulting images are often highly blurred 
and noisy, making it very difficult to extract useful 
information even if the spatial resolution is accept-
able.

Most of the mentioned problems are difficult to 
solve at a technical level, so the use of digital pro-
cessing methods seems promising. Despite the ob-
vious potential, digital processing of THz images 
is only at the very beginning of its development, 
limited mainly to object and edge detection [4]. As 
for operations aimed at improving quality, there 
are only a few attempts to increase the resolution 
of THz images using neural networks  [5, 16], as 
well as the  use of neural networks for detection 
of highly blurred images that are supposed to be 
excluded from further consideration [7]. 

However, taking into account the  complexity 
of the THz image acquisition process, leaving out 
poor quality images is not always a  good option 
and trying to enhance them can be a  reasonable 
choice. In one of our recent papers [8], it has been 
shown that, with some adjustments, the methods 
initially designed for optical and radar images [9–
22] can be successfully applied to THz images as 
well. The  denoising method proposed in  [8] al-
lowed one to remove most of the visible noise from 
the  considered THz images thus making them 
more convenient for further visual inspection, yet 
the problem of their blurring was not solved and 
even became more acute. This article aims to con-
tinue the  research in this area and to investigate 
the characteristics of blur in THz images acquired 
at a frequency of 0.1 THz by means of a relatively 
compact imaging setup. The obtained information 
is supposed to be further used while designing 
a corresponding deblurring method. 

2. Challenges of image deblurring

Generally, a  blurred image Ib can be presented as 
follows: 

Ib = Φ(Is, θb). (1)

Here Is is the  latent sharp version of the  blurred 
image Ib, Φ is the  image blur function, and θb is 
the  parameter vector [23]. Here, both Is and Ib 
are matrices, where distances from the  origin in 

the horizontal and vertical directions are described 
by coordinates x and y, respectively, yet they are 
omitted for the convenience of perception.

Commonly, blurred images are modelled as 
a  convolution of the  latent sharp image with 
the blur kernel 

Ib = Is ⊗ k, (2)

where k is the blur kernel that differs depending 
on the blur type and its parameters and ⊗ denotes 
the  convolution operation. The  most common 
types are defocus (out-of-focus) blur, motion blur 
and Gaussian blur [23–25]. 

The defocus blur appears if the captured scene 
is not in the focus plane of the sensor but at some 
distance from it. This kind of blur may affect 
the whole image or just some parts of it if those 
appear to be outside the focus plane while the rest 
of the  scene is close to it. The  kernel of defocus 
blur is usually modelled as follows: 
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Here (x0, y0) is the  centre of blur kernel and r is 
the radius of blur [25].

The motion blur appears if there is the relative 
motion of the sensor or the object in the scene that 
is faster than the  sensor exposure time. Visually 
the motion blur pronounces as streaking or smear-
ing of image pixels in a  certain direction. Apart 
from moving objects, camera shake or too long ex-
posure time may become the reasons for the mo-
tion blur [23, 26, 27]. In simple cases, the motion 
blur can be modelled using shift-invariant kernels; 
for instance, it can be characterized by blur length 
and shifting angle [26]. However, more complicat-
ed cases of the motion blur require complex models 
that are often difficult to formalize [27–30]. 

Gaussian blur is the result of convolving an im-
age with the 2D Gaussian kernel
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where σ is the standard deviation of the Gaussian 
distribution. In Eq. (4), the function peak is located 
at (0, 0). Alternatively, the 2D Gaussian surface can 
be given in a general form as
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where A is the centre peak height, x0, y0 are its co-
ordinates, and a, b, c are the shape and angle regu-
lating coefficients [25]. Unlike the  other types of 
blur, the  Gaussian blur usually appears in an im-
age not at the stage of image capturing, but as a re-
sult of its further processing. It is widely used in 
graphics software to reduce image noise or detail, 
for example, as pre-processing before image down-
scaling. The  Gaussian blur is a  low-pass filter, at-
tenuating high-frequency components of the  im-
age [31]. Therefore, if an image has been subjected 
to processing that affects high spatial frequencies, 
this may result in its blurring, which, under certain 
conditions, may resemble the Gaussian blur in ap-
pearance and behaviour. 

In real-world situations, multiple factors can 
contribute to blur simultaneously, which creates 
the  so-called mixed blur. The  typical example of 
the mixed blur is a combination of motion and de-
focus blurs that appears if a  fast-moving object is 
captured at an out-of-focus distance [23]. 

The goal of image deblurring is to recover 
a sharp latent image, which is usually achieved by 
finding the inverse of the blur function as

Idb = Φ–1(Ib, θb), (6)

where Idb is the  deblurred image (an estimate of 
the sharp image) and Ф–1 is the deblurring model. If 
the blur kernel is given, the problem is also known 
as non-blind deblurring. To reconstruct sharp im-
ages, non-blind deblurring methods use natural im-
age priors [32, 33] to provide image deconvolution 
either in the  spatial [34] or in the  frequency [35, 
36] domain. However, even if the true blur kernel is 
available, the task is still challenging because, apart 
from a significant loss of high frequency informa-
tion, images also contain sensor noise that becomes 
visible after restoration. Moreover, there are often 
defects like ringing edges, artifacts and oversatu-
rated regions in the deblurred images [37, 38]. 

In blind deblurring, both the  latent image and 
the blur kernel are unknown, so they should be es-
timated from a given blurry image. The problem, 
however, is highly ambiguous, since multiple pairs 
of Is and k can produce the  same blurry image Ib 
[39]. Therefore, it is common to formulate the task 

of blind deblurring within a MAP framework [40] 
with priors on blur kernels or latent images, which 
means that specific methods are designed for cer-
tain types of blur and images with lots of additional 
restrictions [23, 41]. Advances in deep learning 
have brought image deblurring to a new level, in-
troducing blind methods able to provide reason-
able performance for various scenarios [23, 42, 43]. 
Yet, the problem of generalization was not solved 
and even became more acute, since the success of 
these methods greatly depends on the consistency 
between the training and testing datasets. 

Thus, in order to select the  approach that has 
the  highest adaptation potential for deblurring of 
terahertz images, we need to obtain some prior 
information. This can be done by studying the im-
age acquisition process in order to identify possi-
ble sources of blur, as well as by examining the ob-
tained images using special image processing tools 
[26, 39, 41].

3. Experiment setup and the obtained dataset of 
terahertz images

The research object of our experiment was a sam-
ple cut out of a car tire with a thread mimicking 
a dielectric material with a rich surface topology. 
The  average depth of the  thread reached about 
6 mm. The  sample was mounted on a  metallic 
frame with a  50  ×  50  mm opening as demon-
strated in Fig. 1. Also, a metal bushing serving as 
a reference was added on the holder at the plane 
of the  top tire surface. The  imaging experiment 
was performed in the reflection mode in the free 
space, according to the scheme depicted in Fig. 1. 
Here, the Gunn diode equipped with a horn an-
tenna and emitting ~30  mW power at 100  GHz 
with electric field orientation along the y axis was 
used as a  radiation source. It was electronically 
modulated at a  frequency of 1  kHz. The  output 
radiation was collimated using a  high numeri-
cal aperture off-axis parabolic mirror (OAP2) 
and divided by a 50:50 silicon beamsplitter (BS). 
One of the  collimated beams was focused onto 
the  sample at the  right angle by another off-axis 
parabolic mirror (OAP1). The reflected beam was 
collimated by the same OAP1 mirror and reached 
BS which split it once again, directing its part to 
a plasmonic field-effect transistor (FET) THz sen-
sor through an OAP3 mirror. The scanning along 
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along the y axis and another scanning along the x 
axis was done again. In such a manner, the whole 
sample was raster scanned. The  signal from 
the detector was read out using the conventional 
lock-in technique.

THz images of the  sample were taken at dis-
tances from the OAP1 mirror (z) varying from 42 
to 58 mm, whereas the focus distance of the OAP1 
mirror employed in the experiment was 50 mm. 
The obtained image dataset contained 16 images 
of size 135 × 185 pixels that were transformed into 
an 8-bit format. Some of these images are shown 
in Fig. 2.

As it is seen, all of these images are quite blurry 
and contain visible noise which becomes more 
prominent as the distance from OAP1 increases. 
To suppress this noise, we have applied a modified 
discrete cosine transform filter with a hard spatial 
spectrum adapted threshold (also known as SSA 
DCT filter). The  filtering procedure is described 

Fig. 1. The photo of the car tire and metal bush-
ing sample placed on a  metallic holder frame 
used for the  THz imaging experiment and 
the chart of the experimental setup.

Fig. 2. Images of the sample obtained at different distances from the THz 
source along the z axis: 42 (a), 43 (b), 50 (c), 51 (d), 54 (e), 56 (f) mm.

(a) (b)

(c) (d)

(e) (f)

the x axis was performed while the sample moved 
continuously at a velocity of 25 mm/s and the sig-
nal was read every 20  ms. After x axis scanning 
was finished, the  sample was moved by 500  µm 

OAP3

OAP1 OAP2

Sample BS

FET
detector

100 GHz, 30 mW
Gunn diode

xy

z
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in Ref. [8] and some of the images processed with 
the SSA DCT filter are shown in Fig. 3. Although 
the  denoised images are visually more pleasant 
than the  original ones, they are still very blurry, 
which complicates detection of some informa-
tional details. Thus, the  purpose of our current 
research is to analyze the nature and behaviour of 
the  blur mechanism in these images in order to 
select the best approach for  its elimination.

Based on the  imaging process, one can expect 
the presence of the defocus blur, which is supposed 
to be different for the  images obtained at different 
distances from the  OAP1 focus plane. Moreover, 
the sample moves while being scanned and, although 
the speed of its movement is low, due to the specif-
ics of the recording equipment, it can become a rea-
son for the motion blur. Finally, these images were 
subjected to SSA DCT filtering, which, along with 
noise removal, also affects the high-frequency image 

components. This is equivalent to some kind of low-
pass filtering, and, therefore, can result in blur with 
the  Gaussian-like behaviour. Thus, we expect that 
the THz images from our dataset will contain some 
combinations of the three types of blur described in 
Section 2. However, to determine the presence and 
contribution of each of the blur types, we need to 
examine these images using special methods.

4. Blur kernel investigation method and its 
performance for test data

To get more information on blur behaviour in 
the given THz images, we have chosen the kernel es-
timation method described in Ref. [41]. The method 
is based on the usage of phase-only image obtained 
in the  Fourier domain and initially was designed 
for the detection of motion blur and estimating its 
length and angle. Indeed, the phase-only image has 

Fig. 3. Images of the sample obtained at different distances from the THz 
source along the z axis processed with the method given in Ref. [8]: 42 (a), 
43 (b), 50 (c), 51 (d),  54 (e), 56 (f) mm.

(a) (b)

(c) (d)

(e) (f)
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a  good potential in investigating the  features of 
other types of blur as well. 

In brief, the idea of using the phase-only image 
can be given as follows. In the Fourier domain, Eq. 
(2) corresponds to

F(Ib) = F(Is) ⊙ F(k), (7)

where ⊙ represents the component-wise multipli-
cation. The result of Fourier transform is a complex 
signal, for which phase and amplitude components 
can be calculated. If taking the phase of a complex 
signal is denoted by P(·), then

 
P(Is) = F–1(P(F(Is))), (8)

where F–1 is the  inverse Fourier transform. Since 
Fourier components of an edge tend to be in phase 
with each other, the phase-only image works as some 
kind of an edge-extractor. The phase-only image of 
the convolution P(Is ⊗ k) is equal to the convolution 
of the phase-only image and phase-only kernel,

P(Is ⊗ k) = F–1(P(F(Is ⊗ k))) = P(Is) ⊗ P(k). (9)

From Eq. (9) it follows that P(Ib) is obtained by 
convolving P(Is) in the orientation of the linear kernel 
with the phase-only kernel. This results in the crea-
tion of multiple copies (‘ghosts’) of the  phase-only 
image, P(Is), separated by the  width of the  kernel 
length, while the copies corresponding to the prin-
cipal peaks will be the most noticeable.

The key advantage of the  phase-only image is 
that it allows to simplify the effect of blurring by re-
placing the continuous smear in a blurred image by 
a simple sum of two (principal) copies in the phase-
only blurred image. The existence of these multiple 
copies suggests using the  autocorrelation of P(Ib); 
however, since the  phase-only image is completely 
self-uncorrelated, one should use the absolute value 
of phase-only image instead (A(|P(Ib)|))). Such au-
tocorrelation function (ACF) is supposed to show 
the desired behaviour.

Now let us check how the phase-only image and 
the autocorrelation of its absolute value look for dif-
ferent types of blur and what information can be ex-
tracted from them. 

Figure 4(a) shows the  test image Peppers and 
Fig. 4(b–d) show its versions blurred with the mo-
tion blur using the kernels depicted in Figs. 4(e) 

(‘horizontal motion’), 4(f) (‘vertical motion’) and 
4(g) (‘horizontal and vertical motion’), respec-
tively. The size of the matrix representing the blur 
kernel is 11 × 11 pixels. As seen in the  ‘horizon-
tal motion’ case, the  image pixels are smeared in 
the  horizontal direction, while for the  ‘vertical 
motion’ the  smearing is observed in the  vertical 
direction. For the case of multidirectional motion, 
the picture is hazer, yet, if examined closely, one 

Fig. 4. Test image Peppers (a) and its versions blurred 
with the  motion blur (b–d) with different blur 
kernels (e–g).

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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Fig. 5. Phase-only images of image Peppers (a–c), autocorre-
lations of phase-only images’ absolute values (d–f) and their 
horizontal (g), vertical (h) and 45-degree central sections 
(i) for ‘horizontal motion’ (a, d), ‘vertical motion’ (b, e) and 
‘horizontal and vertical motion’ (c, f), respectively.
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can still notice the traces of pixels being smeared 
in the  directions determined by the  blur kernel, 
although this smearing is pronounced much less 
compared to the cases of unidirectional motion. 

If motion is unidirectional, in phase-only Pep-
pers images (Fig. 5(a, b)), one can clearly see the two 
copies of an image shifted in the  direction deter-
mined by the blur kernel. In the graphs representing 
autocorrelation functions (Fig. 5(d, e)), this behav-
iour is reflected as bright points, repeating them-
selves in the blur direction with a certain period. To 
evaluate the shift distance, let us study the sections 
of autocorrelation functions given in Fig.  5(g,  h), 
where the blue curve corresponds to the ‘horizontal 
motion’, the  red curve to the  ‘vertical motion’, and 
the green one to the ‘horizontal and vertical motion’.

As can be seen, in the horizontal section, the blue 
curve contains clear maxima on both sides of 
the main lobe, while there are no extrema in the ver-
tical section. The  distance between the  main peak 
and the first side peaks in the horizontal section is 
11 pixels, which is equal to the true blur length. For 
the  ‘vertical motion’, the situation is the same with 
the only difference that the needed features can be 
extracted from the vertical section. For both cases, 
no extrema can be found in the 45-degree section.

Considering the more complicated case of bidi-
rectional motion it can be observed that the phase-
only image (Fig.  5(c)) does not contain as clear 
shifted copies as in the cases of the horizontal only 
or vertical only motion. Nevertheless, the required 
information on the blur length still can be derived 
from the  autocorrelation function (Fig.  5(f)) and 
its sections. As seen from Fig.  5(f), the  repeating 
patterns spread in both directions from the centre, 
which may be considered as a pointer to the blur 
angle. In the sections, the side lobes are found in all 
the three views, although their amplitude is much 
lower than in unidirectional cases and the first side 
maxima appear at the  distance that is twice less 
than the actual size of the blur kernel matrix. Yet, 
the second side lobe is shifted from the main peak 
by 11 pixels, which means that in the case of more 
complicated motion patterns the  blur angle and 
length can be estimated from A(|P(Ib)|).

Figure 6 shows the test image Peppers distorted 
with the defocus blur with different radiuses (11, 24 
and 48 pixels) and the corresponding blur kernels 
(3). In this experiment, the  size of the  test image 
was 256 × 256 pixels. 

Fig. 6. Test image Peppers distorted with the  defo-
cus blur with different radiuses (a, c, e) and the cor-
responding blur kernels (b, d, f): 11 (a, b), 24 (c, d), 
48 (e, f) pixels.

(a)

(c)

(e)

(b)

(d)

(f)

The first observation that can be made is that, un-
like the motion blur, the defocus blur has no blurring 
direction but affects pixels in all directions equally. 
The larger the blur radius is, the less details can be 
seen in the blurred image. 

Although the  images containing the  defocus 
blur look very different from the  images affected 
by the  motion blur, their phase-only images have 
a  lot of similarities. Comparing the  images from 
Fig. 5(a–c) and Fig. 7(a–c), it can be noticed that in 
both cases the shifted copies of an image are clearly 
seen, although the  phase-only images for the  de-
focus blur look noisier. The  ACF for the  defocus 
blur (Fig.  7(d–f)) looks quite specific. Its bright 
part forms a  circle, while the  larger defocus blur 
radius corresponds to the larger circle in the graph 
of ACF. However, as one can see from the sections 
(Fig. 7(g–i)), although there is a connection between 
the radius of circle in the graph of autocorrelation 
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Fig. 7. Phase-only images (a–c), autocorrelations of phase-only 
images’ absolute values (d–f) and their horizontal (g), vertical (h) 
and 45-degree central sections (i) for the defocus blur with differ-
ent radiuses: 11 (a, d), 24 (b, e), 48 (c, f).
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function and the defocus blur radius, the distance 
between the main peak and the side lobes does not 
seem to be proportional to the true radius of the de-
focus blur kernel. So, in general, it is possible to 
distinguish the  defocus blur from the  motion blur 
by the phase-only image and autocorrelation of its 
absolute value, yet in order to obtain numerical pa-
rameters describing this type of blur, one should ad-
ditionally apply different tools for kernel estimation.

Figure 8(a,  c,  e) shows the  test image Pep-
pers distorted with the  Gaussian blur with kernel 
11 × 11 pixels modelled according to Eq. (5). Three 
cases have been considered: ‘Case 1’: A = 1, a = 1.5, 
b = 0, c = –1.5 (Fig. 8(b)); ‘Case 2’: A = 1, a = 0.5, 

b = 0, c = –0.5 (Fig. 8(d)); ‘Case 3’: A = 1, a = 0.1, 
b = 0, c = –0. 1 (Fig. 8(f)). As seen, for the consid-
ered shapes of the blur kernel, under some condi-
tions images with the Gaussian blur may appear very 
similar to the ones with the defocus blur, as there is 
no smearing in a  particular direction but the  pix-
els are smoothed evenly. As for the phase-only im-
ages (Fig. 9(a–c)), depending on the parameters of 
the Gaussian function, they may look a bit similar to 
the phase-only images for the defocus blur as well, 
although the noise level can strongly vary. The auto-
correlation functions (Fig. 9(d–f)), though, look very 
different from those for the defocus blur and look 
closer to the case of bidirectional motion. However, 

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 8. Test image Peppers blurred with the Gaussian blur (a, c, e) with different 
blur kernels: ‘Case 1’ (a, b), ‘Case 2’ (c, d), ‘Case 3’ (e, f).
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Fig. 9. Phase-only images (a–c), autocorrelations of phase-only im-
ages’ absolute values (d–f) and their horizontal (g), vertical (h) and 
45-degree central sections (i) for different cases of the  Gaussian 
blur: ‘Case 1’ (a, d), ‘Case 2’ (b, e), ‘Case 3’ (c, f).
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Case 2
Case 3
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the  exact features of autocorrelation functions de-
pend on the parameters of the blur kernel strongly. 

In ‘Case 1’, for example, the actual size of the blur 
kernel turns out to be much less than the true ma-
trix size, so the  image gets blurred only slightly. 
In the phase-only image, only one bold contour is 
present instead of the  shifted copies of the  image. 
The sections of autocorrelation function for this case 
contain no extrema and do not give any information 
on the blur length. The autocorrelation function for 
‘Case 2’ shows much similarity to the case of bidirec-
tional motion and contains a wide main lobe with 
weakly pronounced side lobes, which, neverthe-
less, are shifted from the  main peak by a  distance 
close to the  true size of the blur kernel matrix. Fi-
nally, the autocorrelation function for ‘Case 3’ con-
tains clearly expressed ‘ghosts’ spread in a grid from 
the main lobe where the shift determined as distance 
from the main peak to side lobes is equal to the true 
blur kernel.

Based on the  results obtained for the  test data, 
it can be concluded that, in general, by analyzing 
the phase-only image and the autocorrelation func-
tion of its absolute value one can detect features 
of different types of blur, although in some situa-
tions distinguishing between the Gaussian blur and 
the  multidirectional motion blur can be problem-
atic. For relatively simple cases of the motion blur, 
the use of the phase-only image allows one to deter-
mine the blur length and its angle, which can be used 
as an initial input for the iterative procedure of fur-
ther kernel refinement. The same is valid for some 
cases of the Gaussian blur. Meanwhile, the defocus 
blur can be detected with the help of the phase-only 
image, but in order to obtain its radius one should 
apply additional tools. 

Now, since the features of each type of blur are 
known, the phase-only images and autocorrelation 
functions of their absolute values for the THz imag-
es from the experimental dataset could be analyzed 

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Phase-only images calculated for the THz images obtained at 
different distances from the THz source along the z axis, processed 
with the method given in Ref. [8]: 42 (a), 43 (b), 50 (c), 51 (d), 54 (e), 
56 (f) mm.
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and conclusions on the  nature and compound of 
blur there could be drawn.

5. Analysis of blur kernels of real THz images

Figure 10 shows the  phase-only images obtained 
for the  THz images presented in Fig.  3. The  first 
observation that can be made from Fig. 10 is that 
none of the  images contain clearly pronounced 
edges as it was for the test data. On the one hand, 
this may be because of the specific nature of blur in 
these images and, on the other hand, this may arise 
because of their low resolution. Another observa-
tion is that some images look noisier than the oth-
ers and these are mostly the  images taken at big-
ger distances from OAP1. The noisy appearance of 
the phase-only image supposedly indicates the in-
creased level of the defocus and/or Gaussian blur.

In Fig.  11, one can find the  autocorrelations 
calculated for the  absolute values of phase-only 
images. Despite the expectations, these ACFs con-
tain no clear signs of the  defocus blur, but look 
more like the  Gaussian blur (cases  1 and 2) or 
the bidirectional motion. There are two interest-
ing features, though. Firstly, there are two clear 
bright stripes in horizontal and vertical directions, 
which did not manifest for the test data. This may 
be because of the difference in resolution, which 
is much lower for the  THz images compared to 
the test image used. Secondly, the central parts of 
autocorrelation graphs become brighter and wid-
er the further from the focus plane the object is. 
What is more, no regularly repeated extrema can 
be detected in autocorrelation plots.

To study the behaviour of ACFs, the horizon-
tal and vertical sections presented in Fig.  12(a, 
c) and Fig. 12(b, d), respectively, are considered. 
For convenience, the  plots for six images are 
given in the  groups of three (42, 43, 50  mm for 
images 1–3 and 51, 54, 56  mm for images 4–6). 
As seen, the curves for images 1–3 have a peaky 
structure and a quite wide main lobe both in hori-
zontal and vertical directions. This behaviour in-
dicates the presence of some Gaussian-like com-
ponent, while the peaky structure may be a sign 
of the motion blur. However, unlike the peaks for 
the motion blur in the test image, the local maxi-
ma in real images are located more densely than it 
would be expected to consider them as ‘ghosts’, so 
some of them obviously indicate the features that 

have not been studied on the  test examples. At 
the same time, for images 2 and 3, there are clearly 
pronounced peaks similar to the  ones that were 
observed for the motion blur patterns in the test 
image. Moreover, there are peaks that appear al-
most simultaneously for different images, which, 
possibly, could be used in determining the  blur 
length. 

For images 4–6, the side lobes are generally low-
er than for images 1–3, while the main lobe is wid-
er. The peaky structure is less pronounced, which 
may indicate the prevailing of a Gaussian-like com-
ponent over the motion-caused blur. Again, there 
are intervals where some kinds of local peaks can 
be observed for all the  images and such points 
seem to be most promising in terms of determin-
ing the blur length. 

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Autocorrelation functions for the absolute val-
ues of the phase-only images calculated for the THz 
images obtained at different distances from the THz 
source along the  z axis, processed with the  method 
given in Ref. [8]: 42 (a), 43 (b), 50 (c), 51 (d), 54 (e), 
56 (f) mm.
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Fig. 12. Horizontal (a, c) and vertical (b, d) sections of the autocor-
relation functions for the absolute values of the phase-only images 
calculated for the THz images obtained at different distances from 
the THz source: 42 mm (image 1), 43 mm (image 2), 50 mm (im-
age 3), 51 mm (image 4), 54 mm (image 5), 56 mm (image 6).

(a)

(b)

(c)

(d)
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In general, the behaviour of the phase-only im-
age and the  autocorrelation of its absolute value 
is quite complicated and indicates the presence of 
several components of blur. The  contribution of 
these components differs depending on the  dis-
tance from OAP1 the images were taken at. 

6. Conclusions

Despite the significant advances in the field of ter-
ahertz imaging over the last decades, there are still 
a number of problems that lead to the poor quality 
of the resulting images, in particular, their essen-
tial blurring accompanied with noise. Since most 
of these problems are difficult to solve at a hard-
ware level, attempts to overcome them through 
the use of digital image processing methods have 
been made. 

The paper addresses the  problem of THz im-
ages deblurring, namely, the  stage of evaluating 
the  blur kernel in order to use the  obtained in-
formation while designing a corresponding image 
enhancement method. To investigate the  para-
meters of blur kernels the phase-only image meth-
od has been used. 

The phase-only images and ACFs of their ab-
solute values have been calculated for the  most 
widespread types of blur. As a result of the analy-
sis on the test data, the characteristic features al-
lowing one to distinguish between different types 
of blur have been formulated. 

Aiming to investigate the nature and behaviour 
of blur in real-life THz images, the  phase-only 
image approach has been applied to a  set of im-
ages obtained using a basic imaging setup operat-
ing at a frequency of 0.1 THz. It has been shown 
that the blur in these images is of mixed nature, 
containing Gaussian-like and motion blur com-
ponents, while the  contribution of each of them 
differs depending on the  distance from a  para-
bolic mirror the  images were taken at. Although 
the phase-only image approach gives some valua-
ble information on the nature of blur mechanisms 
in the images under study, to obtain a blur kernel 
model suitable for further usage within a deblur-
ring pipeline, it is needed to study the parameters 
of blur in more detail using additional tools. This 
will be the task for further research on this topic. 
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Santrauka
Šiame darbe aptariamos skaitmeninio terahercinių 

vaizdų apdorojimo problemos. Nepaisant vis tobulina-
mos aparatūrinės terahercinių vaizdų užrašymo dalies, 
jų kokybė vis tiek nukenčia dėl žemos skyros ar vaiz-
do suliejimo. Norint padidinti vaizdų kokybę galima 
naudoti tam tikrus skaitmeninius duomenų apdoroji-
mo metodus. Didelis dėmesys skiriamas triukšmo fil-
travimo metodų vystymui, tačiau norint apčiuopiamai 
pagerinti vaizdų kokybę nemažiau svarbūs yra gerokai 
mažiau tyrinėti suliejimo mažinimo metodai. Todėl 
šiame darbe tiriamos ir analizuojamos suliejimo funk-

cijų savybės bei konstruojamas suliejimo pašalinimo 
iš terahercinių vaizdų mechanizmas. Tam šiuo atveju 
yra naudojami faziniai vaizdai. Trijų dažniausiai pasi-
taikančių (išfokusavimo, judėjimo, Gauso) suliejimo 
mechanizmų tyrimai su testinėmis matomos šviesos 
nuotraukomis atskleidė galimybę nustatyti suliejimo 
mechanizmų prigimtį bei jų parametrus. Tačiau eks-
perimente užrašytų terahercinių vaizdų atveju paste-
bėta, kad suliejimo mechanizmai yra visiškai kiti nei 
testiniuose vaizduose, o norint pagrįsti sudėtingą jų 
prigimtį reikalingi papildomi tyrimai.


