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High numerical apertures lead to an appearance of distortions in a single-shot image, which make obtaining im-
ages troublesome if not impossible. These obstacles can be overcome in single-pixel imaging, where different strate-
gies lead to inspection of objects with a good resolution, contrast and brightness. Recent advances in flat photonic 
elements have enabled the  creation of compact nonparaxial imaging systems, which are especially promising in 
the THz range of wavelengths, bringing advances to such fields as communication, material inspection and spec-
troscopy. In this work, we dive into the problematics of single-pixel imaging: we introduce an object sample, which 
we use to investigate the  resolution, contrast and brightness of the classical two-lens imaging setup. We evaluate 
the nonparaxial imaging of the sample and report that the conditions for the best contrast and the best brightness 
are decoupled in nonparaxial single pixel imaging. To overcome this hurdle, we use two integral image quality assess-
ment techniques from computational imaging theory and estimate the quality of the image in a virtual numerical 
THz imaging scenario. The localized mean square error metric did not cause additional constraints to the quality of 
the image, whereas the global mean square error has restricted the range of possible imaging setups. Thus, the com-
putational integral image quality assessment techniques back up the main claim of this study that in the single-pixel 
imaging the resolution is decoupled from the image brightness.
Keywords: nonparaxial imaging, single-pixel imaging, contrast, resolution, image quality assessment

1. Introduction

Image retrieval is a long-standing research area that 
began with the invention of cameras. Today, images 
are usually retrieved by using a camera lens to form 
an image and a detector array to record it. Due to 
the fast progress of CMOS and CCD technologies 
driven by global market needs, digital cameras and 
cellphones can capture images with millions of pix-
els using a very small chip. The number of pixels in 
a camera sensor has already exceeded 20 million, 
which seems unnecessary and wasteful for data 
storage in normal applications. Instead, an image 
can be reconstructed with a single-pixel detector by 
measuring how much a scene overlaps with differ-
ent masks using a single element detector [1] and 
then combining the measurements with the mask 
information [2]. This technique is validated theo-
retically  [3], experimentally  [4] and has been ex-

tended even to the 3D reconstruction of objects [5, 
6]. This imaging technique goes back more than 
100 years, when scientists and inventors tried to 
retrieve images using a single-pixel detector, such 
as an ‘electric telescope’ with a  spiral perforated 
disk by Nipkow in 1884  [7] and the  ‘televisor’ by 
Baird in 1929 [8]. This was called a raster scan and 
its mathematical theory was developed in 1934 [9]. 
Raster scan systems are still used for nonvisible 
spectra, where detector arrays of some wavelengths 
are too costly or unavailable.

In recent years, ghost imaging has revived re-
search interest in single-pixel imaging architec-
tures after its first experimental demonstration [1, 
2]. However, ghost imaging is sometimes called 
a  computational imaging technique, where ‘com-
putational’ means that the imaging data measured 
by a  ghost imaging system need to be processed 
by computational algorithms to look like a normal 
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image [3, 4, 6]. Using a single-pixel detector in imag-
ing hardware may have advantages over a pixelated 
detector array in terms of detection efficiency, noise 
reduction and time resolution, but computational al-
gorithms also bring benefits from the software per-
spective, due to increased processing power [3]. Both 
the single-pixel imaging community and the ghost 
imaging community soon realized that the two im-
aging architectures are essentially the same optically. 
Single-pixel imaging uses a spatial light modulator 
(SLM) on the focal plane of the camera lens to mod-
ulate the  image of the  scene with different masks 
before measuring the light intensities with a single-
pixel detector, while ghost imaging uses different 
structured light distributions created by the SLM to 
illuminate the  scene and measure the  reflected or 
transmitted light intensities [4–6].

Structured electromagnetic fields have many 
applications in areas such as communication, me-
trology and light–matter interactions [10]. Most of 
the progress is due to the fast development of non-
diffracting electromagnetic beams that can be used 
for a wide range of wavelengths, from the visible to 
the  THz range  [11]. These beams have interesting 
properties, such as resistance to diffraction and dis-
persion, self-healing, self-acceleration, etc. The use-
fulness of nondiffracting beams can be greatly 
enhanced when their vortical and polarization prop-
erties are added  [12]. These unconventional light 
states can also be used to improve imaging  [13], 
where high resolution is very important, and is usu-
ally achieved with Gaussian illumination in high nu-
merical aperture systems. However, the  structured 
illumination has recently been used successfully 
for these imaging improvements in the THz region 
using laser-fabricated flat optics [14].

This work was motivated by recent develop-
ments in single-pixel raster scan imaging  [14], 
where different imaging setups with structured il-
lumination were extensively benchmarked using 
a non-transparent sample with 12 groups of lines 
of different widths. The main drawback of this ap-
proach is that the number of groups is small, which 
makes it difficult, if not impossible, to observe any 
fine differences between setups involving differ-
ent schemes. Here, we describe a method that uses 
a sample with fine-tuned line widths, enabling one 
to determine the resolution with a high accuracy. 
We test the sample by performing a numerical ex-
perimentation of nonparaxial imaging involving 

a classical setup using only two lenses and discuss 
such physical values like contrast and resolution. 
While doing so, we encounter a new finding –  in 
the  nonparaxial single-pixel imaging, unlike in 
the single-shot imaging, the best resolution is inde-
pendent of the best image brightness. These find-
ings raise the question of whether physical metrics 
give valid results. Further in the work, we use im-
age quality assessment metrics which are used in 
computational imaging to determine the  actual 
performance of the imaging system. We reveal that 
the image quality assessment is also not as straight-
forward as expected in the nonparaxial single-pixel 
imaging. High resolution can still be achieved in 
regions where the  brightness of the  image is low. 
These tests of the imaging sample raise important 
questions and require further investigation, both 
numerically and experimentally.

2. Theoretical background

The typical THz wavelengths λ are rather long (in 
our simulations λ  =  0.5  mm, or the  frequency of 
0.6 THz); thus, photonic elements with typical sizes 
of a  few centimetres are nonparaxial objects. Our 
main aim is to test a new toy sample to determine 
the resolution with a high fidelity. As we are not in-
terested here in the performance of the nonconven-
tional imaging systems, previously reported else-
where  [13, 14], we provide focusing and imaging 
abilities using a conventional lense with the phase 
Φ(r) of the transmission function T(r) = exp (iΦ(r)) 
being a quadratic function

2 2( ) ( ),
2
k x y
f

Φ = +r  (1)

where f = 1 cm is the expected paraxial focus length.
We start the  discussion by recalling the  non-

paraxial Rayleigh–Sommerfeld diffraction inte-
gral [15]
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where U1(r1) is the  field in the  observation plane, 
Uinc(r0) is the incident field in the diffraction plane, 
and T (r0) is the transmittance of the object. The co-
ordinates of the  observation plane are r0  =  (x0, y0, 
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z = 0) and the coordinates of the observation plane 
are r1 = (x1, y1, z = z1), the vector r01 is the distance be-
tween two points in these planes, and n is normal to 
the surface of the object. Integration is performed on 
the surface of element SA. On the basis of this consid-
eration, we have employed a propagator using spher-
ical point sources to numerically model the propaga-
tion of the electromagnetic field within the system.

The numerical experiment is performed as fol-
lows. First, Eq. (2) is applied to propagate the elec-
tromagnetic field of the  incident radiation from 
the  first lense to the  sample (see Fig.  1). Next, 
the resulting field U1(r1) is multiplied with the ob-
ject transmission function Tobj(r1) and the  field is 
propagated to the second lense (see Fig. 1),
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where the  coordinates r2  =  (x2, y2, z  =  z2) are of 
the  plane of the  second lense. The  vector r12 is 
the  distance between two points in these planes, 
and n is normal to the surface of the sample.

Lastly, the  electromagnetic field U2(r2) multi-
plies with the transmission function of the second 

lense and propagates to the  single-pixel detector, 
located at r3 = (x3 = 0, y3 = 0, z = z3):
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This operation is consecutively performed for 
different positions of the sample, which is raster-
scanned in the x2 and y2 directions. This is the the-
oretical basis for our further numerical experi-
mentation.

3. Dissection of numerical experiments using 
a selection of metrics

The selection of the imaging sample was motivated 
by our recent research (see Ref. [14]). In that work, 
the resolution was determined using a sample con-
taining 12 groups of four lines with different line 
widths. Due to the limited number of such groups, 
the resolution could not be determined very finely – 
the sample could provide only 12 different linewidths 
per  mm. In order to solve this, we have prepared 
a  similar sample, containing groups of four lines 
with varying line widths (see Fig. 2). As the number 

Fig. 1. A schematic representation of the setup for numerical experimentation. The spherical wave propagator 
is successively applied three times: (i) to calculate the propagation from the plane (x0, y0) to the plane of the ob-
ject (x1, y1), (ii) to calculate the propagation from the plane (x1, y1) to the plane of the object (x2, y2), and (iii) 
to calculate the propagation from the plane (x2, y2) to the single-pixel detector (x1, y1) = (0, 0). The Detector is 
a single-pixel camera. The sample is scanned by raster in the x1 and y1 directions (orange arrows).
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of groups with different lines is significantly larger 
than twelve, the resolution can be determined with 
a higher accuracy than in the previous work.

Although resolution is commonly believed to be 
a space dimension, this description does not provide 
a  complete understanding  [16]. In reality, resolu-
tion can be more accurately defined as a spatial fre-
quency measured in line pairs per millimetre (lin/
mm). A line pair comprises a duo of adjacent black 
and white stripes in the object space, and whether 
the stripes can be seen as separate entities at a given 
resolution is contingent on a grayscale level. The con-
trast, or grayscale difference, between the squares and 
the space between them is crucial to determine how 
easily a system can resolve a line pair. Consequently, 
the resolution is defined as a spatial frequency, given 
in lin/mm, at which a  specific contrast is attained 
(see more in Ref. [16]). Although contrast is gener-
ally established by convention by different lens and 
camera manufacturers, lenses are generally specified 
to have a  contrast of 20%. Therefore, determining 
the resolution in terms of lin/mm is highly advan-
tageous for comparing lenses and selecting the best 
one for a given application and sensor [16, 17].

Contrast plays a  critical role in defining reso-
lution, as it determines how well black and white 
details can be distinguished at a  given frequency. 
An image appears well-defined when black details 
appear black and white details appear white, and as 
black and white information trends into intermedi-
ate grays, the contrast at that spatial frequency de-
creases. A greater intensity difference between light 
and dark line results in a better contrast, which is 
essential for producing high-quality images.

To calculate the contrast at a  spatial given fre-
quency, the maximum intensity Imax is introduced, 
and Imin represents the minimum intensity:

max min

max min

–Contrast 100%.I I
I I

 
= × + 

 (5)

Here, it is important to stress that the  concept of 
contrast can be applied to both the object and its 
image. The resulting contrast is defined as the per-
centage of contrast of the  object reproduced in 
the image space, assuming no loss of contrast from 
illumination (plane wave illumination). The illumi-
nation, in general, might have its own non-homo-
geneous pattern which through the illumination of 
the object might affect the contrast of the image in 
a negative way. However, the perfect reproduction 
of object contrast and resolution is not possible due 
to the diffraction and further physical limitations 
of optical systems. Even a  perfectly designed and 
manufactured lens system cannot fully reproduce 
the  resolution and contrast of an object due to 
the nature of light [16, 17].

With this in mind, we proceed now to numerical 
simulations in the following setup (see Fig. 1). This 
is a  general setup, largely mimicking the  experi-
mental setup from Ref. [14]. The sample is placed at 
the distance z1 from element 1, which is a lens with 
the  square-phase transmission function (see Eq. 
(1)). Due to nonparaxiality, the brightest illuminat-
ing spot is not formed at 1 cm, but at the distance 
z1 = 8.5 mm. We use this distance in more detail 
throughout the manuscript. In the single-shot im-
aging, the fixed distance between the detector and 
the  collecting lense results in the  single best dis-
tance between the object and the collecting lense. 
Our aim here is to prove this by varying the second 
distance z2 –  the distance between the object and 
the collecting lense.

We did a raster scan of the sample in the x direc-
tion for various constant y positions and did not find 
significant differences unless the value y is chosen so 
that we are at the corner of the visually loaded area. 
For this reason, we fix now our efforts on the raster 
scanning of the  central part of the  object. A  com-
parison of the image obtained using single-pixel im-
aging for one particular distance is given in Fig. 3. 

Fig. 2. A sample of the object used to determine the parameters of the image. The sample contains equidistant 
groups of four lines. The width of the lines decreases from left to right. The scale bar is only for size estimates. 
The number of pixels in the sample in the x direction is 14,710, the size of a single pixel is 29.297 µm.
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This is a basic example of the images that we obtain 
for the fixed distance z2. We note the homogeneity 
of the  picture in the  y direction as a  further indi-
cation of the right choice that we made for further 
consideration. As we see from Fig. 3, the contrast of 
the object is high and not affected by the illumina-
tion. The resulting contrast of the image is affected 
by the propagation through the collecting lense and 
by the single-pixel detector.

The resolution is specified at a  particular con-
trast level (see Fig. 4(a)). In the paraxial imaging, 
the  perfect reproduction of the  object, including 
sharp transitions at the edge of the pixel, is assumed, 
but this is never fully achieved in practice (see 
Fig.  4(b–d)). Even a  well-designed and manufac-
tured lens cannot completely reproduce an object 

Fig. 3. A comparison of the  particular part of 
the single-pixel image (top) and the object (bottom). 
The sample was scanned as a raster in the x and y di-
rections.

Fig. 4. An example of determining the  resolution of the  imaging system using the  definition of contrast. 
(a) Dependence of the numerically estimated contrast on the number of lines per millimetre. The red line rep-
resents the level of 20%. Three points are present in the curve, and a comparison of the sample and the signal is 
given in (b–d). The green lines are averages of the maximal value of the signal, and the pink lines are averages 
of the minimal value of the signal in the corresponding regions of the sample.
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resolution and contrast due to the  nature of light 
(see Fig. 4(a)). The resolving power of the system 
depends on its ability to detect the space between 
objects. As the lines approach each other, the blurs 
overlap and the system resolving power is reduced 
(see Fig.  4(c)) and becomes below the  acceptable 
level (see Fig. 4(d)). The laboratory achievable res-
olution is additionally influenced by other various 
factors, including the blur caused by alignment and 
optical errors, nonideal object detail spacing and 
the sensor ability to detect the contrast at the rel-
evant detail size.

The contrast function, which we show in 
Fig.  4(a), is also called within computational im-
aging the  modulation transfer function  [16]. 
The point where the modulation function line and 
the line representing the system sensor’s minimum 
detectable modulation intersect determines the sys-
tem’s limiting resolution (see Fig. 4(a)). The thresh-
old curve that indicates the  minimum detectable 
modulation for a system or sensor, also known as 
an AIM curve (aerial image modulation), describes 
the response characteristics of such systems as an 
eye, films, image tubes, CCDs, and other devices. It 
is important to note that the modulation threshold 
typically increases with spatial frequency, although 
there are some exceptions  [16]. For convenience, 
we set it as a constant at the 20% level.

As a next step, in our discussion, we represent 
the sample for the different positions of the collect-
ing lens z2 as a single object (see Fig. 5). This image 

was obtained using a  combination of cuts from 
the central sample for different distances z2 while 
maintaining the  intensity information. The main 
problem with the definition of contrast in Eq. (5) 
is that it loses information such as intensity. Thus, 
theoretically, we may find a  situation where dis-
tances z2 ensure the best contrast and resolution, 
but the intensity is low in that region, which po-
tentially harms object inspection. Indeed, as we 
might note from Fig.  5, there is a  region of dis-
tances from the object to the lense, where the in-
tensity is highest.

To overcome this hurdle, we look at image quality 
assessment techniques from the computational im-
aging. Numerous techniques are available to assess 
the quality of images, such as MSE (mean square 
error), UIQI (universal image quality index), PSNR 
(peak signal-to-noise ratio), SSIM (structured sim-
ilarity index method), HVS (human vision system) 
and FSIM (feature similarity index method)  [18]. 
We select the mean square error between the image 
and the object as a second metric for image inspec-
tion. This metric is the most known and popular in 
image quality assessment [19] and is defined as 

2

1

1MSE – | | ,
N

i i
i

Object – Image
N =

= ∑  (6)

where the  summation index i is the  pixel num-
ber either in the  representation of the  Object or 
of the  Image (see Fig.  3) and N is the  total num-
ber of pixels. Note the minus sign, which was in-
troduced to enhance the  visual comparison be-
tween the  methods. MSE, as defined in Eq. (6), 
is the  most commonly used estimator of image 
quality measurement and is a full reference metric 
where values closer to zero indicate a better quality. 
MSE measures the second moment of the error be-
tween the  Object and the  Image and incorporates 
both the variance and bias of the estimator. The es-
timator is the  procedure used to measure an un-
observed quantity of the image [18, 19]. The MSE 
represents the variance of the estimator when it is 
unbiased and has the same units of measurement as 
the quantity being calculated, such as the variance. 
The MSE calculates the average of the squared er-
rors, which is the difference between the estimator 
and the estimated result.

Whereas the contrast calculation is local and de-
pends on the number of pixels, the MSE estimates 

Fig. 5. A representation of the sample for the different 
positions of the collecting lens z2. The picture was ob-
tained by combining the central x cuts of the sample 
for different configurations.
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the average of the line group in the imaged sample, 
so it is also useful to introduce an alternative met-
ric, the local MSE

2

1

1MSE – ,
max

N
i

i
i

ImageObject –
N Image=

= ∑  (7)

where the  image is normalized to unity by divi-
sion with the  maximum value of the  line group 
max Image. This metric is useful, as it should coun-
teract situations when the  locality of the  contrast 
determination might not determine the quality of 
the image.

As expected, the  contrast map in Fig.  6(a) re-
veals numerous distances z2, where the  sample is 
resolved with a  high resolution. Some discrepan-
cies are also observed; one may note areas with sud-
denly appearing high-contrast regions, which may 
falsely occur locally due to the locality of the algo-

rithm. This might seem to contradict the common 
sense, since in single-shot imaging a good resolu-
tion is possible only at a  single distance z2 where 
the image brightness is also the best.

The metric from the  computational imaging  – 
the  normalized MSE  –  in Fig.  6(b) supports this 
result, as it largely follows the trends of the contrast 
map compared to Fig. 6(a). Although in some areas 
with a high contrast, we observed higher than ex-
pected MSE values. This is a new result for the the-
ory of imaging, as both diferential metric (contrast) 
and integral metric (MSE) demonstrate similar re-
sults, indicating that in the nonparaxial single-pixel 
imaging the best contrast position is less restricted 
than in the single-shot imaging.

The assumingly contradictory riddle of the non-
paraxial single-pixel imaging is solved in Fig. 6(c), 
where we plot the brightness of the  recorded im-
age. The  image is brightest at the  single distance 

Fig. 6. Dependence of various image quality metrics on the position of the imaging lense z2 and the line width in 
millimetres for contrast (a), normalized mean square error (b), image brightness (c) and mean square error (d).
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z2  ≈  19.5  mm, which is more or less in line with 
expectations from the single-shot imaging theory. 
The standard integral metric (MSE) is presented in 
Fig. 6(d) and, as we note, it is basically an overlap 
of the contrast and brightness maps from Fig. 6(a, 
c). This is especially noticeable by the appearance 
of high MSE values in regions with a  low overall 
image brightness.

Our initial quest to introduce a  toy sample for 
the fine determination of the resolving power of an 
optical system in nonparaxial single-pixel imaging 
has resulted not in the determined answers but in 
even more new questions, which have to be investi-
gated. First of all, the results indicate that the con-
dition for the best contrast decouples, i.e. becomes 
independent from the condition for the best image 
brightness. This makes the assessment of the image 
quality in the single-pixel image not as straightfor-
ward as in the single-shot imaging, where the best 
resolution and the best brightness are observed.

In conclusion, we have presented a  toy model 
for single-pixel imaging in the nonparaxial regime, 
which enables us to determine the  resolution of 
the imaging system with a high fidelity. It turns out 
that image quality assessment is not as straightfor-
ward in nonparaxial single-pixel imaging as it is 
in single-shot imaging. The evaluation back up by 
diffraction theory has revealed that the  best con-
trast and the best image brightness are decoupled 
in the nonparaxial single-pixel imaging. To verify 
this claim, we have performed image quality as-
sessment benchmarks using two different integral 
computational metrics: mean square error and 
normalized mean square error. These benchmarks 
from computational imaging theory somehow re-
strained the conditions obtained from the physical 
theory, but it seems that the conditions for a good 
resolution and contrast are still independent from 
the  conditions for a  good image brightness. This 
study raises the  question whether these findings 
can be transferred to alternative imaging setups, 
like those already present in the literature [13, 14]. 
Further numerical and experimental studies on 
this topic are undergoing and will be presented 
elsewhere.
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DĖL VAIZDO KOKYBĖS ĮVERTINIMO NEPARAKSIALINIAME VIENO PIKSELIO 
VAIZDINIME

K. Mundrys a, S. Orlov a, P. Kizevičius a, L. Minkevičius b, G. Valušis b

a Fizinių ir technologijos mokslų centro Fundamentinių tyrimų skyrius, Vilnius, Lietuva
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Santrauka
Esant didelei skaitmeninei apertūrai, vieno kadro 

vaizdinime atsiranda iškraipymų, dėl kurių kokybiškus 
vaizdus gauti yra sunku, o kartais gal net neįmanoma. 
Šias kliūtis galima įveikti naudojant vieno pikselio vaiz-
dinimą, kai įvairios strategijos leidžia matyti objektus, 
pasižyminčius gera skiriamąja geba, kontrastu ir ryšku-
mu. Naujausi plokščiosios fotonikos pasiekimai leido 
sukurti kompaktiškas neparaksialines vaizdinimo sis-
temas, kurios yra ypač perspektyvios THz bangų ilgių 
diapazone bei yra pažangios tokiose srityse kaip komu-
nikacija, medžiagų tikrinimas bei spektroskopija. Šiame 
darbe nagrinėjama vieno pikselio vaizdinimo problema-
tika: pristatomas bandinio pavyzdys, kuris naudojamas 
dviejų zoninių plokštelių vaizdinimo sistemos skyrai, 
kontrastui ir ryškumui nustatyti. Atliekamas neparak-

sialinis bandinio vaizdinimas ir parodoma, kad geriau-
sio kontrasto ir geriausio ryškio sąlygos yra viena nuo 
kitos atsietos neparaksialiniame vieno pikselio vaizdini-
me. Tikintis apeiti šią netikėtą kliūtį, pasinaudota dviem 
integraliais vaizdo kokybės vertinimo metodais iš skai-
tmeninių vaizdų teorijos ir jais remiantis įvertinta vaiz-
do kokybė virtualiame skaitmeniniame THz vaizdinimo 
scenarijuje. Lokalizuoto vidutinio kvad ratinio nuokry-
pio metrika papildomai neapriboja gero vaizdo koky-
bės sąlygų, o suminis vidutinis kvadratinis nuokrypis 
stipriai apriboja galimų vaizdinimo atstumų diapazoną. 
Taigi, skaitmeniniai integralūs vaizdo kokybės nusta-
tymo metodai patvirtina pagrindinį šio tyrimo teiginį, 
kad vieno pikselio vaizdo skiriamoji geba yra atsieta nuo 
vaizdo ryškumo.


