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Various types of defect clusters are generated in bulk Si-based high-energy particle detectors. They become either 
recombination centres or charge trapping centres. Populated trapping centres create internal fields which may affect 
the dynamics and recombination of remaining free charges. In the semiclassical regime, the charge dynamics can 
be described by the Boltzmann equation. In this paper, the stochastic description is presented as an alternative to 
a direct solution of the Boltzmann equation approach. It is demonstrated that the hole dynamics can be described in 
the overdamped regime in both light-hole and heavy-hole cases. Electrons have to be described by including ballistic 
components. The theory allows an efficient simulation of the electron and hole dynamics in the vicinity of a defect 
cluster and demonstrates that local trapping centres are the major components enabling fast charge recombinations. 
The dipolar type internal fields of permanently trapped charges only weakly influence the charge recombination 
kinetics.
Keywords: stochastic Boltzmann equation, silicon, recombination kinetics

1. Introduction

Silicon-based semiconductor detectors are at 
the core of high-energy (HE) particle detectors in, 
e.g. Large Hadron Collider  –  LHC at CERN  [1]. 
Their principle of operation is essentially the same 
as in any type of photodetection: the incoming flux 
of particles generate photocurrent, which is being 
detected. The HE particles generate not only mo-
bile charges (electrons and holes). High energies 
of incoming particles yield various types of lattice 
point defects, which shorten the device lifetime and 
the detectors degrade [2, 3]. The avalanche-like de-
fect generation of vacancies and interstitial atoms 
has been proposed [4]. Such conditions then create 
a  non-uniform distribution of lattice defects and 
various clustering becomes possible  [4, 5]. Some 
defects become recombination centres and thus 
open an additional channel of recombination. Oth-
er types of defects become charge trapping sites. As 
the material is neutral, if some charges are trapped, 
remaining charges redistribute, thus creating inter-
nal electric fields. Locally the  internal fields may 
drive remaining free charges and thus can affect 

various electronic properties, e.g. charge recombi-
nation kinetics.

Microscopic studies of point defects in the  Si 
crystal reveal several types of interstitials and va-
cancies  [5–7] with their unique electronic prop-
erties. Point defects can essentially trap electrons 
or holes, while some are recombination centres. 
A non-homogeneous distribution of point defects 
after HE particle illumination creates defect clus-
ters and local internal fields that affect the dynam-
ics of the remaining charges on long distances [8]. 
A strong correlation between the type of defect clus-
tering and the  type of irradiation has been estab-
lished [9, 10]. It has been estimated that the largest 
amount of defects are the  recombination centres, 
which can be assumed to be distributed uniformly 
in the  vicinity of (and within) the  defect cluster. 
In the simplified picture, the charged defects thus 
create the ‘polarized’ medium for free charges and 
it thus presumably becomes a  significant factor, 
which drives the free charges that become captured 
by neutral recombination centres.

Experimentally determined recombination 
kinetics reveals charge recombination rates and 
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demonstrates that the  charge recombination time 
is directly proportional to the  overall doze of ir-
radiation [8]. It is not clear whether this variation 
of charge lifetime is due to the  increase of overall 
defect density in the bulk or due to internal elec-
tric fields in the cluster. This question is addressed 
by computer simulations of the electron and hole 
dynamics in the vicinity of the simplest possible de-
fect cluster. Coherent as well as overdamped charge 
dynamics is considered. It is demonstrated that 
overdamped dynamics results in a  poor descrip-
tion of charges. This assumption yields a shorten-
ing of the recombination kinetics. In the coherent 
regime, it is remarkable that light holes and heavy 
holes also make a difference. Most importantly, it is 
found that the  trapping centres are the determin-
ing factor which controls the  recombination rate 
irrespective of the internal fields.

2. Theory of charge distribution in a bulk crystal

Describing charge recombination requires follow-
ing the  electron and hole density in the  volume 
under consideration. In the semiclassical approxi-
mation, in the  vicinity of the conduction band 
minimum and valence band maximum, the  elec-
tron and hole quasiparticles are quantum wave-
packets, characterized by their effective masses, 
while the  evolution of their mean coordinates 
obeys the classical equations of motion. The veloc-
ity of an electron, as a  quasiparticle, is the  group 
velocity, which is related to the average momentum 
by υ = p/m*

c; we thus use υ as the dynamic variable. 
The conjugate variable is the position r. Consider-
ing the  electron and hole, the  cumulative 12-di-
mensional distribution function and its time evolu-
tion has to be considered:

ρ· (ue, uh, t) = DΔ̂ρ(ue, uh, t)

−∇̂ ∙ (ρ(ue, uh, t) F(ue, uh, t)) 

−S(ue, uh, t) ρ(ue, uh, t). (1)

Here an overdot denotes the  time derivative, and 
uT  =  (υ,  r) is a  6-dimensional vector containing 
a  momentum and a  coordinate. This is the  tradi-
tional Fokker–Planck equation describing the com-
plete dynamics [11], however, its terms are compli-
cated.

The first term on the  right describes spread-
ing of the  density in the  12-dimensional space 
with Δ̂ being the generalized Laplacian, hence D is 
the 12×12 matrix. In the most general form it de-
scribes the  diffusion of both coordinate and mo-
menta. However, as electrons cannot ‘diffuse’ into 
holes, D splits into blocks for electrons and holes. 
Additionally, the diffusion of momentum can also 
be ignored, and only the diagonal diffusion ele-
ments of electrons and holes have to be considered. 
Consequently we have only two terms

DΔ̂ = DeΔre + DhΔrh, (2)

where De and Dh are the electron and hole diffusion 
coefficients, 

e e e

2 2 2
er x y z∆ = ∂ + ∂ + ∂ is the  Laplacian 

for electron coordinates, and 
h h h

2 2 2
hr x y z∆ = ∂ + ∂ + ∂

is the  corresponding operator for holes. We will 
also use the nabla operators ∇re = x∂xe + y∂ye + z∂ze, 
∇rh = x∂xh + y∂yh + z∂zh and the corresponding op-
erators with respect to the velocity ∇υe and ∇υh.

The second term on the  right in Eq.  (1) de-
scribes the  drift of charges due to internal fields, 
with  ̂∇ denoting the 12-dimensional divergence op-
eration and F being the drift force. This force can be 
obtained by correspondence with the equations of 
motion. It should be noted that the classical equa-
tions of motion when explicitly decomposed for 
electrons and holes are

e
e

d ,
dt

=υr  (3)

e
e*

e

d ( ),
d

e
t m
= −

υ E r  (4)

h
h

d ,
dt

=υr
 (5)

h
h*

h

d ( ),
d

e
t m
= −

υ E r  (6)

where E(r) is the internal field that is present at the 
position of either an electron or a hole and affecting 
the motion of either an electron or a hole. All these 
fields may be expressed as gradients of the internal 
potential created by charged point defects. The po-
tential energy of an electron, Ue(r), and that of 
a hole, Uh(r), in the presence of opposite charge and 
static trapped charges Qd at positions Rd is given by
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r r

r R
, (7)

where the first term is due to the electron–hole in-
teraction with χ  =  e2/(4πєє0) being the  amplitude 
of the Coulomb potential, and the charge of static 
defect d, Qd, is given in terms of the  elementary 
electron charge e and qe/h = ∓1. The corresponding 
electric field affecting electrons and holes is

e/h e/h e/h
1( ) ( )
2

q U= ∇rE r r . (8)

As a result, the force, which drives the probabil-
ity density in the Fokker–Planck equation, is essen-
tially given by

e e h h

e e h h* *
e h

ˆ ( )

( ) – ( ) .

r r

e e
m mυ υ

ρ ρ ρ

ρ ρ

∇⋅ = ⋅∇ + ⋅∇

+ ⋅∇ ∇

υ υF

E r E r  

(9)

Notice that here E(re) includes the field induced by 
the hole (and not by the electron), while E(rh) in-
cludes the field induced by the electron (and not by 
the hole).

The last term in Eq.  (1) is the  recombination 
term. Assuming the homogeneous distribution of 
recombination centres we can define that the  re-
combination occurs when electrons and holes meet 
in the space. Consequently,

S(ue, uh, t) ∝ δ̂ (|re – rh|). (10)

The functions δ̂(є) should not be considered as 
mathematical Dirac functions, instead they should 
be understood as distribution functions with 
the  predefined recombination capture radius in 
space, σR. We will use the  Gaussian function, the 
recombination radius of which is associated with 
the dispersion:

2
e h

e h e h R 2
R

–
( , , ) ( , ) exp .

2
t S γ

σ

 
≡ =  

 
 

r r
S u u r r

 

(11)

The parameter γR is the  on-spot recombination 
rate, which should be considered as the  recombi-
nation rate when the wave packets of electron and 
hole are completely overlapping.

Combining these results we have the Boltzmann 
kinetic equation for the  combined electron and 
hole density:

e e h h h h h*
h

e e e*
S Re

( ) ( )

– ( ) .

r r
e

m
e

m t t

υ

υ

ρ ρ
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(12)

The two terms on the right, i.e.

e e h h
S

( )r rD D
t
ρ ρ∂  = ∆ + ∆ ∂ 

 (13)

and

e h
R

– ( , ) ,S
t
ρ ρ∂  = ∂ 

r r   (14)

represent the  scattering and recombination pro-
cesses, respectively, which in our case are repre-
sented by diffusion and recombination rates.

3. Stochastic dynamics in the coherent regime

Complete density dynamics is conceptually very de-
sirable; however, the size of the problem is huge. Solv-
ing the Boltzmann equation amounts to propagating 
electron and hole density in the 12-dimensional space. 
It is constructive to use a  different approach, i.e. to 
define the problem in terms of stochastic trajectories. 
Notice that simple stochastic differential equation

d ( ),
d x
x t
t

ξ=  (15)

with the  initial condition x(0)  =  0 and stochastic 
force properties

⟨ξx(t)⟩ = 0, (16)

⟨ξx(t)ξx(s)⟩ = 2Dδ(t – s), (17)

where D is the amplitude, generates the stochastic 
Brownian dynamics of x with the average ⟨x(t)⟩ = 0, 
and the dispersion ⟨x(t)x(t)⟩ = 2Dt. Such character-
istics correspond to a simple diffusion equation for 
the probability function ρ(x, t):

2

2

( , ) ( , ) ,x t x tD
t x

ρ ρ∂ ∂
=

∂ ∂
 (18)

with D being the diffusion coefficient.
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In the  complete semiclassical description, 
the  fluctuating force affects the  momentum of 
the particles and, additionally, due to the fluctua-
tion–dissipation theorem [12], the fluctuation force 
induces damping. Consequently, we should consid-
er the semiclassical equations of motion for a parti-
cle in the form of the Langevin equation

d ,
d
x
t

υ=  (19)

d 1– ( ).
d

f t
t M υ
υ γυ ξ= + +  (20)

The damping constant γ can be related to the par-
ticle scattering time γ = τ–1, which is available for 
semiconductor charges. Assuming the same condi-
tions for the velocity-related fluctuating force,

⟨ξυ(t)⟩ = 0, (21)

⟨ξυ(t)ξυ(s)⟩ = 2Dδ(t – s),  (22)

it can be easily shown that in the asymptotic con-
ditions t ≫ γ–1 the dispersion of velocity becomes 
constant,

e

e

( ) ( ) ,t t
�

� � ��� �� D
 (23)

while for the coordinate

2
2( ) ( ) .x t x t t
�
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D

 (24)

Accordingly, the  coordinate performs the  same 
Brownian process and the diffusion coefficients 
satisfy D = D/γ2.

An arbitrary ‘external’ drift force can be added 
into Eq. (20). Consider the stochastic differential 
equations of motion for the electron and the hole 
in the 3D space:

e
e

d ,
dt

=υr  (25)

e
e e e e*

e

d – – ( ) ( ),
d

e t
t m υγ= +
υ υ ξE r  (26)

h
h

d – ,
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= υr  (27)

h
h h h h*

h

d – ( ) ( ).
d

e t
t m υγ= + +
υ υ ξE r  (28)

The noise forces are now three-dimensional 
and can be described as sums of three independent 
noises. For electrons we have

ξυe(t) = xξυe 
(x) (t) + yξυe 

(y) (t) + zξυe 
(z) (t), (29)

⟨ξυe(t)⟩ = 0, (30)

⟨ξυe 
(j) (t)ξυe 

(j) (s)⟩ = 2γ2
eDeδijδ(t – s), (31)

and we have the same for holes. Diffusion constants 
De for electrons and Dh for holes are defined with 
respect to the coordinate-related diffusion process.

These equations generate drift and diffusion 
processes in accordance with the Boltzmann equa-
tions. However, the recombination process cannot 
be embedded into the equations of motion. Instead, 
we add an additional equation for the probability 
of such pair of charges, which mimics the  decay 
process:

e h
d ( ) – ( , ) ( ).

d
p t S p t

t
= r r  (32)

By adding this equation, we find the  complete 
stochastic description of the  system dynamics, 
which is equivalent to Eq. (12).

A large number of trajectories are required to 
reconstruct the multidimensional density function. 
Their statistical ensemble generates the  complete 
distribution function

e h e h
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e e h h
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e e h h
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(33)

Here i labels the independent trajectory, consisting 
of the set (r e 

(i) (t), υ e 
(i)(t), r h 

(i)(t), υ h 
(i)(t), p(i)(t)). How-

ever, it is not necessary to store all this information. 
If we are interested only in recombination kinetics, 
it is sufficient to follow the function

( )1( ) ( ),
N

i

i
n t p t

N
= ∑  (34)

which is just a one-dimensional function.

4. Overdamped case

The coherent dissipative dynamics of an electron 
and a hole described in the previous section should 
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be considered when the  particle damping is rela-
tively small compared to drift forces, or υ̇i ≫ γi υi, 
where i = e, h. In the recent study, the coherent dy-
namics was neglected by considering only the over-
damped regime, which corresponds to the opposite 
inequality υ̇I ≪ γiυi. Then taking ed 0,

d it
υ υ= can be 

plugged into the  coordinate equation that yields 
the  reduced set of the  equations of motion for 
the coordinates:

e
e e*

e e

d – ( ) ( ),
dt m γ

= +
r E r ξ  (35)

h
h h*

h h

d ( ) ( ),
d r

e t
t m γ
= +ξr E r  (36)

e h
d ( ) – ( , ) ( ).
d
p t S p t
t

� r r  (37)

Now ξre/h(t) is the three-dimensional coordinate-
related fluctuating ‘force’ in the form of Eq. (17). As 
a result, we can construct the coordinate-only dis-
tribution function

e h

( ) (i) ( )
e e h h

( , , )

( ) ( – ( )) ( – ( )).i i

i

t

p t t t

ρ

δ δ

=

∑

r r

r r r r

 (38)

The combined probability density also defines 
separate electron and hole distributions. The elec-
tron distribution function is obtained by integrat-
ing out the hole variables,

3
e e h e h( , ) d ( , , ),

V
t tρ ρ= ∫r r r r  (39)

and similarly for the hole distribution function,

3
h h e e h( , ) d ( , , ),

V
t tρ ρ= ∫r r r r  (40)

while the total probability of an electron and a hole 
being in the system is given by

3 3
h e e h( ) d d ( , , ).

V V
n t tρ= ∫ ∫r r r r  (41)

These functions satisfy the overdamped case of 
the Boltzmann kinetic equation [13]:
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(43)

with –R being the  average on-site recombination 
rate.

The electron and hole distribution functions are 
again related to the sum over stochastic trajectories:

( ) ( )
e e( , ) ( ) ( – ( )),i i

i
t p t tρ δ=∑r r r  (44)

( ) ( )
h h( , ) ( ) ( – ( )).i i

i
t p t tρ δ=∑r r r  (45)

Following the time evolution of

3 3
h h h e e( ) d ( , ) d ( , ),

V V
n t t tρ ρ= ≡∫ ∫r r r r

 
         (46)

allows one to define the rate of recombination char-
acteristic of the system.

5. Results

Below we present the  application of the  stochastic 
theory to the electron and hole dynamics in the bulk 
Si crystal affected by defect clusters. The  bulk pa-
rameters are considered as follows. The  presented 
theory does not include the  electron–electron and 
hole–hole interaction, hence we denote this as 
the single-particle approximation. Assuming that at 
ambient conditions the concentration of charges is 
~1015 cm–3, we obtain that a cubic box with 100 nm 
edge length would contain a  single electron and 
a single hole. Consequently, we consider such cube 
as a  sample. To start, we generate an electron and 
a hole at random locations in this box and propa-
gate them according to the equations of motion. 
As they move and reach either side of the box, they 
are translated to the opposite side, and that reflects 
the ‘old’ particle departure and the ‘arrival’ of a new 
particle. Hence particle positions always change 
and we obtain the required electron and hole con-
centrations. For effective masses we take the longi-
tudinal electron at the conduction band minimum, 
m*

e = 0.98 me, where me is the electron mass. Two 
types of holes can be taken into account with a dif-
ferent set of parameters: a heavy hole, m*

hh = 0.49 me, 
and a  light hole, m*

lh  =  0.16  me, corresponding to 
different energy bands. Given the  effective mass, 
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the particle relaxation time is obtained from the mo-
bility relation μe/h =  eτe/h/m

*
e/h, where e is the  elec-

tron charge. The  corresponding coherence decay 
rate γe/h = τ–1

e/h = e/(μe/hm
*
e/h). The Einstein relation 

Di = μikBT defines the diffusion constant and mo-
bility and, consequently, we have τe/h/m

*
e/h  =  μe/h/e 

irrespective of the effective mass. We then use ex-
perimental mobility values, μe = 1400 cm2/(Vs) and 
μh = 450 cm2/(Vs), and the corresponding diffusion 
constants, De = 36 cm2/s and Dh = 12 cm2/s. Addi-
tionally, the Coulomb field is scaled by the Si dielec-
tric constant є = 11.68. The recombination process 
is characterized by the on-spot event when the elec-
tron and the  hole encounter at the  same space 
and is characterized by Eq.  (11). We assume that 
the  on-spot recombination is fast with γ–1

R  =  1  ps 
and the recombination radius σR = 5 nm. These are 
essentially free parameters of the model and can be 
fitted to some experiments. Time step of 0.1  fs is 
used for the integration of equations. Also, for nu-
merical stability the Coulomb interaction potential 
is shifted by η = 5: 2 2 2 21/ 1/ .r x y z η→ + + +

As a starting position, we consider a homogene-
ous distribution of electrons and holes. In Fig.  1, 
we present the calculated free electron and hole tra-
jectories in the coherent and overdamped cases for 
10 ps time interval in the pure system. It is impor-
tant to note that during this time recombination is 
practically absent. This corresponds to the notion 
that recombination in a clean sample is very slow. 
However, Fig. 2 presents the importance of coher-
ence in the electron description. The hole dynam-
ics can be described using the overdamped regime. 
Only a small difference between the light hole and 
the heavy hole is noticed. 

In order to properly describe the  recombina-
tion process in the presence of defects, it becomes 
imperative to include additional recombination 
centres. Stochastic description allows one to in-
clude trapping of charges by specific trapping/
recombination centres. Assuming that the  con-
centration of such trapping centres is ∼1016  cm–3 
we find that there are about 10 trapping centres in 
the (100 nm)3 cube. Assuming homogeneous con-
ditions, their positions within the cube are chosen 
randomly using the uniform distribution in the 3D 
space. They are then characterized by the electron 
and hole capture radius Rc = 5 nm: so if an electron 
or a hole appears at a distance smaller than Rc to 
any trapping centre, they become trapped in space 

Fig. 1. Free electron and hole trajectories (l denotes 
light, h denotes heavy) in the coherent (C) and over-
damped (O) cases for 10 ps time interval in the pure 
system.

for the time tC (i.e. their motion is stopped for that 
time interval). At room temperature, the  trapped 
charges can be thermally activated and detrapped. 
The  detrapping process is statistical, even having 
exponential statistics, i.e. the  probability of being 
trapped decays in time as exp(–tC/–tC), so that tC is 
distributed exponentially. It is assumed that the de-
trapping average time is –tC = 10 ps. As the charge 
becomes detrapped, it moves again according to 
the stochastic equations of motion.

The recombination kinetics calculated using 
such conditions is presented in Fig. 2. Decay kinet-
ics in all cases is almost exponential. The coherent 
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model using the heavy hole shows the slowest de-
cay curve with the decay time 142 ps (this number 
is obtained by exponential curve fitting). The light 
hole case gives slightly faster decay kinetics with 
135 ps decay time. An identical setup, while using 
the  overdamped model gives faster decay kinet-
ics with the  100  ps decay time. Consequently, 
the overdamped model is not the perfect approxi-
mation and the error is introduced. There is no dif-
ference between using light holes or heavy holes 
in the overdamped case – the mass of the hole di-
rectly influences only coherence hole dynamics, so 
the overdamped regime is not depending on mass-
es of particles. Overall, the result is that the  trap-
ping centres influence considerably recombination 
kinetics. They essentially enable the recombination 
process.

It has been proposed that the  inhomogeneous 
distribution of defects may result in static inter-
nal electric fields, created by permanently trapped 
charges  [8, 13, 14]. In the  overall neutral system, 
the lowest multipole moment is the dipole moment. 
Consequently, the dipolar electric field shall be con-
sidered to mimic the  inhomogeneous configura-
tion defects. Two static charges of Q = ±e are placed 
at positions ±20  nm along the  z direction from 
the centre of the box. It corresponds to the scenario 

that one electron and one hole are permanently 
trapped at these positions. Using these conditions 
we have calculated the charge recombination kinet-
ics for different models. Figure 2 case A(d) presents 
the charge recombination kinetics using the coher-
ent model with the heavy hole. The recombination 
process becomes slightly faster in the  first 100  ps 
time interval. Later the process becomes similar to 
the case without the static trapped dipole. However, 
there is no considerable effect on the dynamics for 
the light hole and for the overdamped simulations.

6. Discussion and conclusions

Charge dynamics simulation approaches based on 
the  semiclassical approximation have been devel-
oped and applied to describe charge recombina-
tion in the vicinity of defect clusters. The approach 
corresponds to the  Boltzmann equation theory. 
Developed in the  form of stochastic trajectories, 
the methods contain a number of advantages. First, 
the stochastic theory is much more computationally 
acceptable, since there is no need to solve the 12-di-
mensional distribution of electron and hole density. 
The  density can be reconstructed from stochastic 
trajectories –  they can be run in parallel on a su-
percomputer, so a large number of trajectories can 

Fig. 2. Charge recombination kinetics: A, the coherent model with a heavy hole; 
B, the coherent model with a light hole; C, the overdamped model. Dashed 
line: no static dipole; solid line: with the dipole present, indicated by (d).

Time (ps)

C
on

ce
nt

ra
tio

n 
(a

.u
.)



ISSN 1648-8504   eISSN 2424-3647  D. Abramavicius / Lith. J. Phys. 63, 56–66 (2023)63

be generated independently. Second, the theory is 
also very flexible as both coherent and overdamped 
regimes are easily achievable. Third, additional 
various local trapping/recombination sites or re-
combination centres can be added. The fourth and 
the most important advantage compared to other 
very popular Monte Carlo hopping approach is 
that the space does not need to be broken into an 
artificial discrete lattice. The continuous space is 
used instead. Consequently, the numerically very 
efficient theory with overlapping properties of dif-
ferent types of defects is easily organized.

The presented flexible theory allows one to de-
termine several important observations. It should 
be noted that our previous calculations, based on 
probability density [13], considered only the over-
damped regime. In the  present study, the  coher-
ent regime was additionally considered. This gives 
two distinct qualitative features: (i) it dramatically 
affects the  electron evolution, and (ii)  consider-
ably changes the dynamics of light holes. It has to 
be noted that only the heavy hole can be described 
in the  complete overdamped regime. However, 
switching between the overdamped and complete 
coherent regime makes (especially electron) dy-
namics much less fluctuating and thus the recom-
bination becomes slower. Electron dynamics on 
the longer scale covers the same area in both co-
herent and overdamped regimes; however, the ex-
tent of small-scale fluctuations is much larger in 
the  overdamped regime. While the  introduced 
errors are not dramatic, the numerical values are 
affected. As a  result, the  electron dynamics can-
not be described in the  overdamped regime in 
bulk Si.

The previous analysis of electronic parameters 
revealed that the  most significant parameter de-
scribing charge evolution and recombination in 
the defect cluster is the diffusion coefficient [13]. 
Values of diffusion coefficients for electrons and 
holes are large enough so that electrons cover 
600  nm per 100  ps. The  hole covers a  smaller 
distance, while it is still considerably larger than 
the size of the cube under consideration. Using pe-
riodic boundary conditions we get the result that 
the particles cross the cube many times in a simu-
lation window of 200 ps. This is actually a positive 
feature, which mimics the  fact that the  number 
of electrons and holes is large. Assuming the av-
erage charge concentration of 1015 cm–3, we have 

that there is one electron and one hole in a cube of 
100 nm linear extension. As a result, the Coulomb 
interactions make a secondary effect, while charge 
dynamics in the studied conditions is almost free.

However, this study of a  single dipolar inter-
nal field is applied when defect concentration is 
relatively low. If the defect concentration is high, 
the  internal fields are no more dipolar and bulk 
properties like mobility, diffusion constant and 
effective masses may be extensively affected. As 
the  parameters become different, the  eventual 
recombination rate can be strongly affected, but 
hardly characterizable.

In the  present simulations, we thus find that 
the most significant factor influencing the recom-
bination process is related to the  appearance of 
electron and hole trapping centres. They indeed 
slow down electron and hole diffusion and thus 
effectively increase the  chances of the  electron 
to meet holes. In the pure system (without trap-
ping centres), the probability of the electron and 
the hole to be in the same volume υ when the con-
sidered box volume is V is equal to the ratio υ/V. 
By taking the box size of 100 nm and the recombi-
nation capture radius 5 nm we find that the prob-
ability is equal to 10–4. Hence by using the  ‘on 
the spot’ recombination time of 1 ps we find that 
in the pure system in these conditions the recom-
bination time becomes 104 larger, i.e. 10 ns, which 
is a proper parameter for the bulk. However, in-
troducing trapping centres (defects) we speed up 
the  process considerably, and consequently, lo-
cally in the vicinity of defect cluster with a  large 
amount of various defects the recombination be-
comes much faster – this is properly described by 
the theory.

As already described, additional internal elec-
tric fields become secondary effects. Essentially, 
they make quite a  small effect on recombination 
kinetics.

Concluding, we have presented the  theoretical 
analysis of charge recombination in the Si crystal 
in the  vicinity of trapped charge creating dipolar 
field using the stochastic coherent modelling, cor-
responding to the  Boltzmann equation. We find 
that electron dynamics is very roughly described 
in the overdamped regime and the coherent regime 
is a much better approach. Additionally, the  local 
trapping centres for mobile charges create the nec-
essary conditions for the fast charge recombination. 
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Additional internal electric fields make a  small 
contribution to the process.
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STOCHASTINĖ KRŪVININKŲ DINAMIKOS IR REKOMBINACIJOS SILICYJE 
TEORIJA

D. Abramavičius

Vilniaus universiteto Fizikos fakulteto Cheminės fizikos institutas, Vilnius, Lietuva

Santrauka
Silicio pagrindu sukurtuose elektringų dalelių detek-

toriuose didelės energijos spinduliuotė sukuria daugybę 
taškinių defektų, kurie yra laisvųjų krūvininkų pagavi-
mo ir rekombinacijos centrai. Užpildyti pagavimo cent-
rai sukuria vidinius elektrinius laukus, kurie gali daryti 
įtaką laisvųjų krūvininkų dinamikai bei jų rekombina-
cijos charakteristikoms. Norint įvertinti skirtingų reiš-
kinių įtaką rekombinacijos spartai, buvo atliktas kom-
piuterinis elektronų ir skylių dinamikos modeliavimas. 
Pusiau klasikiniame modelyje krūvininkų dinamika 
aprašoma Bolcmano lygtimi. Šiame straipsnyje nau-

dojamas alternatyvus stochastinis modelis, kuris yra 
Bolcmano lygties atitikmuo, tačiau paprasčiau realizuo-
jamas kompiuteriniais modeliavimo metodais. Be to, 
stochastiniame modelyje paprasta įtraukti pagavimo ir 
rekombinacijos centrus. Skaičiavimais parodoma, kad 
skylių dinamika gerai aprašoma, naudojant nuslopintos 
dinamikos artinį, kai inerciniai reiškiniai neįskaitomi. 
Elektronų dinamika turi būti aprašoma įskaitant iner-
cinius narius. Parodoma, kad vidiniai elektriniai laukai 
daro silpną įtaką rekombinacijos kinetikoms, o esminis 
dalykas yra tiesiog rekombinacijos centrų tankis.
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