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The separation of ionizing radiation particles is an important and challenging task, especially regarding neutrons 
and gamma rays. The separation of neutron and gamma radiation is necessary for safeguard purposes and control of 
nuclear reactions. Standard mathematical models of pulse analysis work well in the presence of large energy transfer 
(>1 MeV) from the particle to the detector. However, the quality of the separation decreases as the amount of trans-
ferred energy lessens, making it impossible to determine the exact type of particle at a sufficiently low-energy level. 

In this work, an artificial neural network model was used to solve the problem of separation at low-energy levels. 
The supervised machine learning (ML) model was used to analyse pulses received from the polyethylene naphthalate 
(PEN) scintillation detector. Several data sets after the  PEN exposure to neutron/gamma (combined 239PuBe and 
238PuBe source), alpha (238Pu) and beta (90Sr/90Y) sources were used to train the models. The information obtained 
from the separation of neutrons and gamma particles was compared with the information obtained using standard 
pulses delayed fluorescence analysis methods. The obtained results showed that the model was able to separate par-
ticles in the fields of low- and high-energy transfer. 
Keywords: radiation particle discrimination, ANN, machine learning, scintillation detectors

1. Introduction

Neutron detection is one of the  most impor-
tant tasks in neutron spectroscopy studies and in 
the  design and construction of setup for neutron 
shielding. Scintillation detectors are most suitable 
in the field due to their ability to register the spec-
trum and determine the  particle type indepen-
dently of neutron energy, whereas gaseous 3He 
detectors are much more effective in the  region 
of thermal neutron energy. Additionally, the  3He 
gas itself is expensive due to its low natural abun-
dance and required production from radioactive 
tritium  [1]. A  negative feature of scintillation de-
tectors is their sensitivity to gamma radiation, thus 
impulses induced by gamma photons are una-
voidable when recording neutron flux, because of 
the nature of neutrons. As a result, the accuracy of 
the detectors decreases when neutrons are record-

ed. Pulse shape discrimination (PSD) methods are 
used to distinguish neutron-induced pulses [2–4]. 
PSD can be applied due to the delayed fluorescence 
most seen in organic scintillators, anthracene being 
one of the most popular organic crystals usable for 
this purpose  [5]. Light is likely to be emitted via 
the  triplet–triplet annihilation (TTA) energy re-
laxation mechanism when heavy ionizing radiation 
particles lose energy in organic scintillator detector 
material [6]. Singlet excitation state relaxation pro-
vides a prompt and major part of emitted scintilla-
tion light. Due to TTA, part of the light is emitted 
late, resulting in delayed fluorescence. 

The common PSD methods are the ratio of de-
layed fluorescence intensity with the prompt fluo-
rescence component comparison, the rise time and 
the  zero-crossing methods. Comparison of a  de-
layed fluorescence integral with a full pulse integral 
is used most often.
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The scintillation light enters the  photomulti-
plier, where it is converted to electrons because of 
the photoelectric effect. After the secondary emis-
sion of electrons in the phototube, the total charge 
is converted into an electrical pulse. The pulse is 
digitized via the  ADC converter. The  results are 
used in further analysis.

The separation quality of neutrons and gam-
ma ionizing radiation is described by the  figure 
of merit (FOM) parameter. The FOM parameter 
is defined as a  distance between two different 
types of pulses in a specific energy range, divid-
ed by the sum of the full width at half maximum 
(FWHM) of the PSD ratio of pulses [7]. The high-
er the FOM parameter, the better the separation 
of the  pulse inducted by neutrons and gamma 
radiation particles. When the  FOM parameter 
becomes <1, the separation becomes inaccurate. 
In this case, only the  probability that the  parti-
cle is determined correctly can be assessed be-
cause the normal Gaussian distributions overlap. 
The particle separation quality of scintillation de-
tectors depends not only on the detector materi-
als, amplification circuit electronics, or the ADC 
converter but also on the analytical methods. Be-
cause of that ML opens new possibilities in this 
field by analysing each particle charge event. ML 
models are already used to analyse different elec-
tronic pulses and to detect low-intensity pulses in 
the  background of high noise  [8]. Support vec-
tor machines (SVM) were used before to increase 
the  accuracy of particle discrimination using 
organic scintillators in a  low-energy area  [9]. It 
was shown that SVM methods can provide bet-
ter accuracy in charge integration than the PSD 
method. 

Several machine learning methods were com-
pared in Ref.  [10]. The  results of methods have 
demonstrated superior performance in the  clas-
sification of nuclear reactions (6Li + n).

An application of models usually consists of 
several stages: selection of a  suitable algorithm 
and preparation of its code, training of model pa-
rameters using a  training data set, evaluation of 
test data in the  algorithm, evaluation of model 
accuracy and improvement of the  model algo-
rithm for better results. The  results presented in 
this work were obtained by analysing the shape of 
pulses induced by ionizing radiation using an ar-
tificial neural network model.

2. Materials

Polyethylene napthtalate (PEN) is a  plastic suit-
able for use as a scintillation detector that does not 
require additional wavelength shifting dyes  [11]. 
The maximum photoluminescence of this material 
depends on the luminescent molecules – excimers. 
The  PEN used in the  experiments was obtained 
from a research group at the Max Planck Institute. 
Polymer preparation and melting technologies are 
described in Ref. [12]. The physical parameters of 
the obtained samples are provided in Table 1.

Table 1. Physical and optical parameters of the  ob-
tained samples of polyethylene naphthalate (PEN). 

Parameter Value
Width 30 mm
Length 30 mm

Thickness 3 mm
Density 1.33 g/cm3

Refractive index 1.62

The photoluminescence peak of PEN is at 
445  nm, the  spectral measurements were per-
formed using a  Thermo Scientific Evolution 220 
spectrometer. This material has the  properties 
required for the  separation of ionizing radiation 
because part of the scintillation light emitted after 
the interaction with the particle is from the TTA 
energy relaxation process. The  shape of pulses 
varies depending on the type of particle that hits 
the  scintillation detector material. In the  case of 
an interaction with a  heavy ionizing radiation 
particle such as an alpha particle or a recoil pro-
ton (because of neutron interaction with matter), 
the  ratio between the  delayed fluorescence in-
tegral and the  total pulse integral is higher than 
during the interaction with the light ionizing ra-
diation particle, e.g. beta or gamma. The examples 
of normalized pulses induced by averaged alpha 
and beta particles are given in Fig. 1. The pulses 
for Fig. 1 were obtained after the PEN exposure to 
alpha and beta sources, 238Pu (Emax = 5.5 MeV) and 
90Sr/90Y (Emax  =  2.2  MeV), respectively. The  plot 
shows that pulses differ in the  delayed fluores-
cence pulse region. The pulse shape difference of 
neutrons and gammas is similar to that of alphas 
and betas, differences are explained in the analysis 
chapter.
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3. Experimental setup

The experimental scheme is shown in Fig. 2. PEN 
detector scintillation light pulses caused by ioniz-

Fig. 1. Shapes of the  averaged pulses example ob-
tained after the  PEN exposure to alpha (238Pu 
(Emax = 5.5 MeV)) and beta (90Sr/90Y (Emax = 2.2 MeV)) 
sources. Each shape is equal to 250 averaged pulses.

Fig. 2. Schematic of the experimental equipment with the PEN 
detector and various sources of ionizing radiation used in 
the experiments. Photomultiplier (PT) was connected to a high 
voltage power source Ortec 556. Picoscope 2206 was used as an 
analog-digital converter (ADC) and data analyzer. The PT and 
amplifier were mounted in an aluminum case and the PEN was 
mounted on the PT optical input window (23 × 23 mm).

ing radiation particles were recorded by a Hama-
matsu photomultiplier (H11934-300) with an ac-
tive window of 23 × 23 mm. The photomultiplier 
is powered by a high-stability, Ortec 556 high-volt-
age source using –700 V voltage. The pulses from 
the photomultiplier are amplified in a preamplifier 
and recorded by a  Picoscope 2206 digital oscillo-
scope with a  resolution of 8 bits and a  frequency 
band of 50  Mhz. The  registered pulse window is 
2048 ns.

Three data sets were obtained during the  ex-
periments: alpha – after the PEN exposure to alpha 
particle flux (238PuBe source), beta – after the PEN 
exposure to beta particle flux (90Sr/90Y source) and 
neutron/gamma – after the PEN exposure to com-
bined neutrons and gamma photon flux (combined 
239PuBe and 238PuBe source).

4. Analysis

The essence of neutron detection by a  scintil-
lation detector is the  energy recording of recoil 
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protons in the detector material. Neutrons, simi-
larly to gamma radiation photons, are recorded 
via the secondary particles, i.e. in both cases ana-
lysed pulses are derived from the secondary par-
ticles. In the case of interaction with the gamma 
radiation photon, the  interaction of secondary 
electrons (Compton and photoelectric effect) 
with the detector is analysed, while in the case of 
neutron interaction, the interaction of recoil pro-
tons is analysed, that is similar to the interaction 
of the  alpha particle with the  detector material. 
The pulse analysis using a comparison of the de-
layed (QD) and total pulse integral (QT) is plotted 
in Fig. 3. Here, neutron-induced pulses are plot-
ted in the right part of the graph and gamma in 
the left part. 

As shown in Fig.  3, from a  certain threshold 
(QT  <  15000), it becomes undefined what type 
of particle hits the  detector as the  areas overlap. 
From that limit, it is possible to determine only 
the statistical probability of a specific type of ion-
izing radiation particle interacting with the detec-
tor material. As the energy left by the particle in 
the detector material decreases, separation errors 
increase and the accuracy of the particle determi-
nation decreases. 

An artificial neural network was used to deter-
mine the type of particles and to increase the ac-
curacy of detection. Models were developed in 
the  Knime analytics platform  [13] environment 
using python Keras (version 2.2.4) and Tensor-
flow (version 2.2.0) software packages.

The model was made using 3 Keras network 
layers (an input layer, a first dense layer with Tanh 
activation function and a second dense layer with 
a Sigmoid activation layer). Cross validation was 
applied to the  model to fine-tune parameters, 
such as the number of the first dense layer ouput 
units (8 was used as optimal). Other combinations 
and the quantity of layers did not noticeably im-
prove the quality of the model. The Keras network 
learner was trained using a maximum of 100 ep-
ochs (or till the loss function reaches plateau con-
ditions) with 200 training batches and 200 valida-
tion batches. The optimizer was set to Adam with 
a  learning rate equal to 0.001. The  binary cross 
entropy function was used as a  loss function in 
the  learning process. A  validation data set was 
used to calculate the  loss function value on each 
epoch. 

5. Data preparation and model training

Data cleaning was applied before training. Clean-
ing is needed because it is not possible to ensure 
data reliability due to natural gamma radiation and 
high-energy cosmic neutron radiation which gives 
false results. 

Models were trained using combined alpha 
and beta and prepared for training neutron/
gamma radiation pulse data sets. The data set of 

Fig. 3. (a) Total pulse (QT) integral versus delayed 
fluorescence and the  total pulse integral ratio (QD/
QT) for neutrons and gamma rays of the PEN detec-
tor sample. Gammas are in the left part of the graph 
because of lower delayed fluorescence intensity. Data 
was truncated on QT > 35000 because of the limits of 
the registration maximum voltage window in ADC. 
Pulses were registered using a  3  mm PEN detector. 
(b) Dashed and continuous lines stand for normal 
Gauss pulses distribution of the  total pulse (QT) in-
tegral versus delayed fluorescence and the total pulse 
integral ratio (QD/QT) for neutrons and gamma rays.
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neutron/gamma radiation training contained 
cleaned and filtered [QT > 15000] pulse informa-
tion. As mentioned before, neutron/gamma sepa-
ration information under that threshold is not 
accurate enough (Fig.  3). Data sets of alpha and 
beta pulses were chosen for the reliability of their 
data in the low-energy field. The filtered neutron/
gamma data set was used because alpha and beta 
data sets do not provide enough information in 
the high-energy area [QT > 20000]. 

A comparison of the total and delayed fluores-
cence integrals of used data sets is presented in 
Figs. 4 and 5. 

The data set (76000 pulses) was divided into 
three parts: training (70%), testing (24%) and val-
idation (6%) sets. 

Whole pulse transient data, as shown in Fig. 1, 
was used to model training. Each pulse length was 
equal to 1,024 data points. Before training models, 
the data was scaled within the limits of each pulse 
to eliminate possible bad decisions on the  abso-
lute value of the pulse height. A trained and tested 
model was used to determine neutron and gamma 
ionizing radiation particles from a raw data set ob-
tained by recording the total neutron and gamma 
flux from a 239PuBe and 238PuBe source.

6. Results

Figure 6 shows the initial ROC results using the test 
data set, the  area under the  curve value equal to 
0.98. The area under the ROC curve directly rep-
resents the quality of the neutron/gamma discrimi-
nation in the test data set. 

Fig. 4. Delayed fluorescence and total integrals ratio 
(QD/QT) versus the total integral (QT) for α and β ion-
izing particles irradiation. Data was obtained after 
the PEN exposure to alpha and beta sources indepen-
dently. α is 238Pu (Emax  =  5.5  MeV) and β is 90Sr/90Y 
(Emax  =  2.2  MeV). α ionizing radiation particles are 
in the upper part of the graph and β particles are in 
the lower part. Pulses were registered using a 3 mm 
PEN detector. Represented data were used for model 
training.

Fig. 5. Delayed fluorescence and total integrals ratio 
(QD/QT) versus the total integral (QT) for neutron and 
gamma ionizing particle radiation. Data was obtained 
after the  PEN exposure to combined neutron and 
gamma flux (combined 239PuBe and 238PuBe source). 
Neutrons are in the upper part of the graph and gam-
ma particles are in the lower part. Pulses were regis-
tered using a 3 mm PEN detector. Data was truncated 
on QT > 35000 because of the  limits of the registra-
tion maximum voltage window in ADC. Highlighted 
gray area marks the data part that was used for model 
training.

Fig. 6. ROC curve of the  trained ANN model. 
The area under the curve is equal to 0.98. Results were 
obtained using a test data set.
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Raw (not cleaned but normalized) pulse data 
obtained by recording the total neutron and gamma 
flux were grouped by a neural network. The results 
are represented in Fig. 7. Graphs are showing how 
the proposed model can determine the type of in-
teracting ionizing radiation particles. However, re-
liable data are obtained only in the energy domain 
where the verification of separation of particles is 
possible using mathematical impulse integral com-
parison methods such as a comparison of QT and QD 
integrals. The models determine the type of radia-
tion in the low-energy field, but there are currently 
no tools to guarantee the reliability of the informa-
tion. Figure 8 shows the difference between the raw 

Fig. 8. Comparison of raw pulse integral normal dis-
tribution with pulse integrals grouped by the artifi-
cial network model. Raw data are represented as lines 
grouped by ANN as symbols.

Fig. 7. (a) Neutrons (red) and gammas (black) puls-
es grouped by the  artificial neural network model. 
(b)  Lines stand for the  pulses grouped by artificial 
neural network distribution. Initial data was truncat-
ed on QT > 35000 because of the limits of the registra-
tion maximum voltage window in ADC.

data Gaussian distribution and grouped data by 
ML. It is clear from the graph that distributions are 
mostly matching and the  biggest mismatches are 
in the 0.1–0.13 integral ratio area. The mentioned 
area is the region where neutron and gamma pulse 
integrals are starting to overlap, and it is the most 
difficult area from a statistics perspective as prob-
abilities of true positive decisions are based on real 
neutrons and gamma proportion. ML is selecting 
more neutrons than the normal distribution shows 
in that region.

7. Conclusions

The proposed ANN network provides superior per-
formance in the test data set classification. Moreo-
ver, the model provides a correct pulse grouping in 
the high-energy region; however, in the low-energy 
region more mismatches from the  normal distri-
bution appear. Based on a comparison of the sta-
tistical model response distribution and raw data 
normal distribution, it can be stated that the model 
is statistically correct, although it cannot be stated 
for each pulse in the low-energy range. Additional 
models and data preparation methods are needed 
to increase model accuracy in low-energy regions.
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DIRBTINIO NEURONINIO TINKLO TAIKYMAS JONIZUOJANČIOSIOS 
SPINDULIUOTĖS DALELĖMS IDENTIFIKUOTI PAGAL PLASTIKINIO 

SCINTILIACINIO DETEKTORIAUS ATSAKĄ

J. Garankin, A. Plukis

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Santrauka
Jonizuojančiosios spinduliuotės dalelių atskyri-

mas  –  svarbi ir sudėtinga užduotis, ypač neutronų ir 
gama spindulių atžvilgiu. Neutronų ir gama spinduliuo-
tės atskyrimas yra būtinas radiacinės saugos tikslais ir 
branduolinių reakcijų kontrolei. Standartiniai matema-
tiniai impulsų analizės modeliai gerai veikia, esant  dide-
lei dalelės energijos perdavai (>1 MeV). Atskyrimo ko-
kybė prastėja mažėjant perduodamos energijos kiekiui, 
todėl neįmanoma nustatyti tikslaus dalelės tipo, esant 
gana žemam energijos perdavos lygiui.

Šiame darbe buvo panaudotas dirbtinio neuroni-
nio tinklo modelis, sprendžiant atskyrimo, esant žemai 
energijos perdavai, problemą. ML (mašininio mokymo-
si) modelis buvo naudojamas analizuojant impulsus, 

gautus iš PEN (polietileno naftalato) scintiliacinio de-
tektoriaus. Dirbtinio neuroninio tinklo modeliams mo-
kyti buvo naudojami duomenų rinkiniai, gauti veikiant 
PEN detektorių alfa (238Pu šaltinis), beta (90Sr / 90Y šal-
tinis) ir kombinuotu neutronų ir gama fotonų (239PuBe 
ir 238PuBe šaltinių mišinys) srautais. Neuroninio tinklo 
atsako duomenys buvo lyginami su standartiniais ma-
tematiniais jonizuojančiosios spinduliuotės atskyrimo 
būdais, kuriuose naudojamas greitosios ir uždelstosios 
fluorescencijos santykis. Gauti rezultatai parodė, kad 
modelis sugeba labai gerai atskirti daleles didelės ener-
gijos perdavos srityje, taip pat jis identifikuoja daleles ir 
mažos energijos perdavos srityje, tačiau nėra įrankių, 
leidžiančių patikrinti rezultatų patikimumą. 


