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THE GLORIA MUNDI OF SYK DOES NOT TRANSIT YET
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This paper discusses the examples of 0 + 1-dimensional Liouvillean dynamics instigated by the various 
deformations of the Sachdev–Ye–Kitaev (SYK) model. In reference to such deformations the main focus is 
on the regions of parameter space where the competing SYK couplings are of a comparable strength and 
cannot be treated as each other’s perturbations in the vicinity of the conformal fixed points corresponding 
to the pure SYKq models with different values of q. Crossovers between such fixed points (‘SYK transits’) can 
be efficiently studied in the equivalent framework of single-particle quantum mechanics.
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1. The rise of SYK

The glorious rise of the celebrated SYK model [1–8] 
into one of the central themes in modern interdis-
ciplinary theoretical studies was due to a rare con-
fluence of such precious properties as its elegant 
solubility, maximally chaotic behaviour, asymptotic 
conformal symmetry, and more. The numerous in-
depth analyses of the SYK model revealed a number 
of important connections between such seemingly 
disjoint subjects as random matrices, quantum 
black holes, disordered quantum dots, and, possi-
bly, strange metallic behaviours in the various con-
densed matter systems.

One of these novel connections may have al-
ready contributed towards a resolution of the long-
standing black hole information paradox by dem-
onstrating that the  properly (re)defined Hawking 
radiation entropy can be unitary, following the pre-
viously predicted Page curve [9, 10].

In the condensed matter context, the SYK mod-
el has served as a powerful inspiration for a great 
many proposed non-Fermi-liquid (NFL) scenarios 
[11–26]. However, the very existence of numerous 
plausible explanations of, e.g. the ubiquitous linear 
temperature dependence of resistivity in bad met-
als [27–43], may seem to suggest that its ultimate 
explanation is yet to be found.

Nevertheless, alongside the renewed interest in 
hydrodynamics inspired by the holographic ideas, 
the SYK scenaria have been particularly important 
for pursuing the ad hoc field of ‘bottom-up’ (a.k.a. 
‘non-AdS/non-CFT’) holography which purports 
to describe a variety of (allegedly) strongly corre-
lated condensed matter systems [44–50]. Indeed, 
with the once abundant and defiantly upbeat claims 
of ‘explaining’ high-Tc materials, heavy fermions, 
graphene, etc. by virtue of some uncontrolled cal-
culations in the conveniently chosen (and/or previ-
ously studied) classical gravity theories all but gone, 
the SYK model has remained a rather unique theo-
retical playground for obtaining rigorous results.

In that regard, the  SYK model would be often 
referred to as a  genuine example of low-dimen-
sional holographic correspondence – even despite 
the  fact that, both being effectively one-dimen-
sional, the  low-energy sector of SYK and its dual 
(formally, two-dimensional) Jackiw–Teitelboim 
(JT) gravity present a form of equivalence between 
different realizations of the  quantized co-adjoint 
orbit of the  (chiral) Virasoro group. Such equiva-
lence does not quite rise to the level of full-fledged 
holographic duality, as the  JT bulk dual is non-
dynamical and determined by the  boundary de-
grees of freedom. By contrast, in order to qualify as 
a true holographic scenario the bulk theory would 
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have to have some non-trivial bulk dynamics that 
gets quenched and turns classical only in a certain 
(‘large-N’) limit [44–50].

Moreover, similar remarks can also be made 
about the  (historically, somewhat less extensively 
discussed) correspondence between the  3d grav-
ity with BTZ-like black hole backgrounds and 
the  various (KdV and alike) families of solvable 
1 + 1-dimensional systems (see, e.g. Ref. [51] and 
references therein).

2. The SYK deformations

Since the beginning of the SYK era there have been 
attempts to explore deviations from the  original 
SYK4 model in order to assess the generality (or, con-
versely, uniqueness) of the behaviour that it repre-
sents. In particular, there has been much discussion 
of the conjectured NFL–Fermi liquid (FL) transition 
in the hybrid SYK4–SYK2 model [1–8, 11–26].

A renormalization flow between the  two fixed 
points has been mostly studied by means of pertur-
bation theory operating in terms of the propagator 
G(τ1, τ2) of N ≫ 1 spaceless Majorana fermions [11–
26]. In the conformal limit of the generalized SYKq of 
order q ≥ 4 the latter exhibits the fermion dimension 
Δ = 1/q, thus making the perturbation proportional 
to Gq/2 strongly relevant (dimension one) in the near 
vicinity of the  UV SYKq fixed point. Conversely, 
the  formerly leading term Gq becomes strongly ir-
relevant (dimension four) near the IR fixed point of 
SYKq/2. A unique feature of the q = 4 case, though, is 
that the transition occurs not between two different 
NFLs but the SYK4 NFL and the disordered FL.

Notably, in the course of crossing over between 
the  different fixed-point regimes the  value of q 
of the  dominant term plays a  role akin to that of 
the central charge in 2d conformal field theories.

As far as the potential physical applications are 
concerned, some of the previous analyses [11–26, 
52–55] suggest that the  putative phase transition 
may take place at critical couplings vanishing as 
powers of 1/N – which value would be practically 
indistinguishable from zero in a macroscopic sys-
tem – while others yield values that remain finite in 
the N → ∞ limit.

The common approach to a  SYK-type model 
starts out by integrating the fermions out, thereby 
arriving at the action in terms of the bi-local fields 
G(τ1, τ2) and the corresponding self-energy Σ(τ1, τ2),
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where the  functional F[G] results from averaging 
over the  Gaussian-correlated random amplitudes 
of all-to-all q-body entanglement. Moreover, such 
entangling couplings can be made non-uniform, 
thus introducing a  notion of spatial dimensions 
and further extending the class of attainable mod-
els to include those with ‘distance’-dependent en-
tanglement [56, 57].

Solving for the self-energy, the Schwinger–Dy-
son equation derived from (1) takes the form

1 1 2 3 1 3 3 2

1 2

( , ) – d ( , )

( – ).

FG G
Gτ

δτ τ τ τ τ τ τ
δ

δ τ τ

∂ =∫
  

(2)

In the original SYKq model with F(G) = J2Gq Eq. (2) 
remains invariant under any diffeomorphisms 
τ → f(τ) of the thermodynamic time variable τ sub-
ject to the boundary condition f(τ + β) =  f(τ) + β 
as long as the derivative term is neglected and pro-
vided that G and Σ transform as

G(τ1, τ2) → Gf = (f '(τ1)f '(τ2))∆G(f(τ1), f(τ2)), 

(3)Σ(τ1, τ2) → Σf = (f '(τ1)f '(τ2))1–∆Σ(f(τ1), f(τ2)).

At Jτ  ≫  1 a  representative power-law solution to 
Eq. (2) reads G0(τ1, τ2) ~ sgnτ/(Jτ)2Δ (hereafter τ = τ1 – τ2).

Choosing a  particular mean-field solution 
reduces the  invariance under arbitrary diffeo-
morphisms down to the subgroup of the Mobius 
transformations SL(2, R). Correspondingly, a gra-
dient expansion of the  logarithm in Eq. (1yields 
the  (approximately) local effective action which 
describes the finite temperature dynamics of 
the reparametrization mode [58–79]
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where Sch stands for the  Schwarzian deriva-

tive 
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 obeying the  dif-

ferential ‘chain rule’ Sch{F(f),  x}  =  Sch{F(f),  f} × 
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× f ′2  +  Sch{f,  x} and operating on the  manifold 
of (nearly) degenerate states related by virtue of 
the transformations (3).

3. Liouvillean quantum mechanics

Under the customary parametrization f ′(τ) = eϕ(τ) 
the  Schwarzian action (4) assumes the  (pseudo-)
free form S0(ϕ) ∼ ∫ dτ(ϕ′)2. In the process of aver-
aging the products of propagators
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over the fluctuations of ϕ, the action S0(ϕ) gets aug-
mented by the  Liouville term ΔS2(ϕ)  =  h2∫dτe2ϕ(τ) 
with h2 ∼  J. Technically, upon promoting the  de-
nominator in (5) to the exponent with the help of 
some auxiliary integration a la Feynman the over-
all effective potential acquires a piece-wise Liouville 
term acting during the  time intervals between 2p 
consecutive insertions of the operator eiΔϕ [81, 82].

The resulting action S0 + ΔS2 can then be quan-
tized by considering the corresponding (rescaled) 
Schroedinger equation [81, 82]
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the scattering states of which ψk(z)  ∼  K2ik(2√z–) 
(here z  =  λeϕ) belong to the  continuum with 
the  spectrum Ek  =  k2 and the density of states 

( ) ~ sinh 2 2 /E NE Jρ π  [58–79, 81, 82].
These exact expressions can be used to compute 

the matrix elements ⟨0|eΔϕ|k⟩ exactly. Such calcula-
tions reveal the universal limit of an arbitrary pow-
er of Gf averaged over the soft mode fluctuations in 
the  late-time, τ > N/J – or, at finite temperatures, 
in the strong coupling, Jβ/N ≳ 1 – regime [81, 82],
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This behaviour is markedly different from the (non-
universal) mean-field one Gp

0 ∝  1/τ2p/q at shorter 
times (τ < N/J) or weak couplings (Jβ/N ≲ 1).

In that regard, the presence of the exponential 
term ΔS2(ϕ) in the overall effective action is instru-
mental. In its absence the Gaussian fluctuations of 

the  field ϕ governed by S0(ϕ) would have caused 
non-algebraic decay, thus being unable to deliver 
the universal power-law (7). In fact, such a behav-
iour could have never emerged out of the  purely 
Gaussian ϕ fluctuations even if the  correlator 
⟨ϕ(τ)ϕ(0)⟩ were logarithmic, as ln⟨Gp

f ⟩ would still 
depend on p and Δ (in both cases, quadratically).

The effective action might also include the vari-
ous intrinsically non-local terms
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that can dominate over (4) for Δn ≤ 3/2. In the pre-
vious analyses, such terms would be routinely sub-
stituted with the local operators ΔSn = hn ∫ dτ eΔnϕ(τ) 
thus further modifying the  equivalent quantum 
mechanical Hamiltonian in (6).

4. Bi-quadratic SYK deformation

This important example of the deformed SYK mod-
el has been extensively discussed in the context of 
random tunnelling between two different SYK sys-
tems. For example, it arises in such, at first sight, 
unrelated fields as theoretical cosmology (‘travers-
able wormhole’) [58–79] and coupled quantum 
dots [83–93].

In most analyses, the  perturbed propagator 
would be taken in the  form (3) of a  ‘gauge-trans-
formed’ mean-field solution G0, thereby account-
ing for the ‘soft’ reparametrization mode f(τ) while 
ignoring any potential changes to the  mean-field 
background field configuration itself.

In particular, adding the  SYK2 (‘tunnelling’) 
term with the  amplitude Γ replaces the  Liouville 
potential in the SYK4 action (written in the Euclid-
ean signature) with the Morse-type one [94–97]
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The corresponding Schroedinger equation with 
the (properly rescaled) Hamiltonian

2 2 41– e e e ,
2

H φ φ φ
φ λ λ′= ∂ + + +  (10)

that can be solved exactly in terms of the  wave 
functions (here z  =  2λeϕ) ψk(z)  ∼  e–ϕ/2Wλ,ik(z) 
with the  continuous spectrum Ek  =  k2  +  1/4  +  λ2 
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if the  last – subdominant at low temperatures (or 
large negative ϕ)  –  term in (10) can be dropped 
[94–98].

Besides, for λ < 0 the Hamiltonian (10) appears 
to possess a finite number of bound states

– –1/2– /2 2 –2 –1( ) ~ ( ),n z n
n nz z L zλ λψ  (11)

at the discrete energies En = –(λ – n + 1/2)2, n = 0, …, 
[λ – 1/2]. Near its minimum this spectrum can be 
approximated by the oscillator one.

A somewhat different path leading up to 
the  Morse-type action (9) was taken in Ref. [98]. 
The  effect of the  tunnelling term with Δ1  =  1/2 
was argued to be two-fold: first, it contributes to 
(and/or refines) the  purely Schwarzian (or ‘hard’ 
mode) saddle-point solution and, second, controls 
the pseudo-Goldstone (or ‘soft’ mode) fluctuations. 
These roles would be separately played by the ‘lon-
gitudinal’ (or radial, eξ = 1 – f ', in the holographi-
cally dual JT picture) and ‘transverse’ (or angular, 
ϕ) fluctuations, respectively. The former was argued 
to be strongly non-Gaussian and the effect of such 
fluctuations was claimed in Ref. [98] to strength-
en (somewhat unexpectedly) the  SYK4 conformal 
mean-field behaviour over a broader range of pa-
rameters.

More specifically, the strong coupling Schwar-
zian regime was argued to sustain the SYK2 per-
turbation at all couplings γ ≡ Γ/J below γc ∼ 1/N 
while at its higher values the  propagator was 
found to crossover to the q = 2 FL fixed point. This 
was argued to be suggestive of a zero-temperature 
phase transition taking place at γc, rather than at 
a much larger value of order 1/N1/2, as per the na-
ive estimate. Such parametric reduction of γc was 
claimed to manifest a stabilizing effect of the SYK2 
coupling on the  mean-field conformal solution 
against the Schwarzian fluctuations due to the for-
mation of a  polaron-like non-perturbative field 
configuration.

Correspondingly, the earlier perturbative analy-
sis by the same authors revealed that a weak SYK2 
coupling does not alter the Schwarzian asymptotic 
(7) up to the values of γ of order γc [55].

Such observations appear to be generally con-
sistent with those of Refs. [99, 100] that conjec-
tured the  existence of a  chaotic-integrable transi-
tion in the SYKq–SYK2 model at finite temperatures. 
Above the  transition temperature the  system was 

found to behave chaotically while below it the cha-
os-related Lyapunov exponent (see below) dropped 
to zero, thus hinting at the FL nature of the under-
lying ground state.

On the  technical side, upon, first, introducing 
two Lagrange multipliers λ and Λ and, then, vol-
untarily relaxing the corresponding constraints by 
fixing their mean-field values, Ref. [98] arrived at 
the effective action
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In this (perhaps, somewhat excessive) parametri-
zation, the functional integration about the mean-
field SYK4 fixed point factorizes into, first, taking 
a  quantum mechanical expectation value over 
the exact ground state ψ0(ξ) of the Hamiltonian (10) 
and, then, additionally averaging over the Gaussian 
(perturbative) ϕ fluctuations. In Ref [98], neither 
mechanism was found to have any profound effect 
on the correlators, though.

In particular, an arbitrary power of the  mean-
field propagator would still retain its bare mean-
field form provided that the  ϕ-fluctuations were 
controlled by a  large parameter λ. Likewise, 
averaging over the  ground state of (10) adds 
the  square of a  non-singular expectation value 
⟨0|epΔϕ|0⟩  =  ∫ dϕepΔϕψ2

0(ϕ) which does not give 
rise to any decaying power-law factor either. In 
that sense, the  largely negligible effect of, both, 
the  Gaussian fluctuations and the  ground state 
averaging may indeed be viewed as increased sta-
bility of the mean-field regime in the presence of 
even a small SYK2 coupling.

It should be noted, though, that under the  as-
sumption of λ < 0 the Morse potential in (10) ap-
pears to differ from that of Refs. [52–54] which 
is strictly repulsive, monotonic (λ > 0), and lacks 
any bound states. It might also be concerning that 
if the potential in (10) were to support any bound 
states with En  <  0, then the  fluctuation-averaged 
two-point correlator ⟨Gf(τ)⟩  =  Σne

–EnτN(En) would 
be receiving  –  on top of the  universal term (7) 
that stems from the continuum of scattering states 
with Ek  >  0  – a  nonunitary (exponential) contri-
bution, the potential divergence of which could 
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only be arrested by the  squared matrix element 
N(En < 0) = |⟨0|eΔϕ|n⟩|2.

Interestingly, for J  =  Γ the  aforementioned 
monotonic and non-monotonic Morse poten-
tials represent two super-partners fitting into one 
super-symmetric pair W±(ϕ)  =  V2  ±  dV/dϕ with 
V(ϕ) ∝ eϕ. The ground state of the binding potential 
then takes the form ψ0(ϕ) ∝ exp(– ∫ V dϕ).

Conceivably, the  effective action S(ϕ) may de-
velop other interesting regimes at the points of still 
higher symmetry. One such example would be pro-
vided by the Hulten potential

e( ) ,
1– e

W
φ

φφ λ=  (13)

first three terms of the  expansion of which in 
powers of eϕ coincide with the  ‘hyper-symmet-
ric’ (or ‘tri-critical’) point J = Γ = 1/β in (9). Also, 
the 1/ϕ-behaviour at a small negative ϕ would be 
similar to that in the Coulomb potential, although 
the  potential (13) features only a  finite number 
([λ]) of bound states at En = –[(λ2 – n2)/2λn)]2.

5. Large q limit

An alternate approach to the SYK models exploits 
the large-q approximation, where the propagator is 
sought out in the form 

1 2( ) sgn 1 ( ) ... .
2

G g
q

τ τ τ
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 (14)

Higher order corrections in 1/q can also be evalu-
ated, albeit at the  increasingly prohibitive costs 
[58–79].

The action in the path integral over the field g 
then takes the form
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with the corresponding equation of motion
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Formally solving (16) one obtains the classical tra-
jectory 
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with the use of which thermodynamics of the sys-
tem can be studied by putting τ  =  β/2 [52–54]. 
In particular, the  turning point g0 < 0 of the po-
tential can be directly related to the  mean-field 
energy [54]
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As already mentioned, one possible generalization 
of the  bi-quadratic (Schwarzian plus tunnelling) 
q = 4 action to the larger values of q is provided by 
the SYKq–SYKq/2 functional

2 /2 2
/2
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q q

q qJF G G
q q

τ τ τ τΓ
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The corresponding effective potential

W(g) = J2e2g + Γ2eg (20)

allows for the explicit saddle point solution [52–54]

2 2 2 2( ) – ln(1 4 ),g Jτ τ τ= + + Γ +Γ  (21)

that gives rise to the mean-field propagator

0 2 2 2 2 2/

1 sgn( ) .
2 (1 4 ) q

G
J

ττ
τ τ

=
+ + Γ +Γ  

       (22)

For future reference, the  final-temperature coun- 
terpart of (21) reads 2 2 2 4( ) – ln[( /g v Jτ β= +Γ ×   

2 2 2cos(2 / – ) )( / 2 )]v v vτ β β+Γ , where the  parameter 
v is to be determined from the relation 2v2 = Γ2β2 

+ 2 2 2 4 4cos v J v β β+Γ and becomes v = 1–O(1/βJ) 
for Γ = 0 [52–54].

It is worth noting that in the look-alike equa-
tions (10) and (20) the  field variables ϕ and g 
depend on the  ‘centre-of-mass’ (cf. Eq. (8)) and 
relative times, respectively. Also, unlike the  ap-
proximate conformal propagator G0, the  expres-
sion (22) is UV-finite and naturally regularized 
at τ ∼ min [1/J, 1/Γ]. Hence, by contrast with the 
latter, the saddle-point solution (22) remains ap-
plicable at all γ, both large and small. Therefore, 
the fluctuations of g(τ) describe pseudo-Goldstone 
excitations about the fixed ‘valley’ in the space of 
field configurations which no longer needs to be 
adjusted.
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6. Quadratic fluctuations

Small fluctuations about the  mean-field solution 
(22) are described by the Gaussian action

0

2

2 1 2 1 22 2d d ( ) ( ).
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N SS g g
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τ τ δ τ δ τ∂
=

∂∫ ∫
   

(23)

For a potential W(g) = Σncne
ng these fluctuations δg 

would then be governed by a  functionally similar 
kernel ∂2W/∂g2 = Σn cnn(n – 1)eng. Albeit similar in 
its appearance to the previously discussed S(ϕ), this 
action is bi-local and cannot be readily used for de-
riving the Hamiltonian and quantizing it by means 
of the substitution g′ → –i∂/∂g.

In contrast to the Schwarzian action (4) the δg 
fluctuations are scale-invariant and their strength 
is independent of energy or temperature, being in-
stead controlled by the numerical parameter N/q2. 
For a finite q the strength of such fluctuations de-
creases with increasing N, yet it remains fixed in 
the double-scaling limit, N → ∞ and N/q2 = const.

Inverting the  Hessian operator evaluated at 
the saddle point (21) requires one to find the Green’s 
function of the retarded kernel D(T, τ) = ⟨δg(T + τ–2)
δg(T –  τ–2)⟩ = ⟨12|K–1|12⟩ that satisfies the equation
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Upon Fourier transforming with respect to the ‘cen-
tre-of-mass’ time variable T one can use the spec-
tral decomposition
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in terms of the eigenfunctions of the equation
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By analogy with the  aforementioned averaging 
over the ϕ-fluctuations the Gaussian average over 

δg in the vicinity of the saddle point (22) produces 
the ‘Debye–Waller’ factor
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Notably, this averaging is to be performed over 
the entire function δg, thereby making no distinc-
tion between the ‘angular’ and ‘radial’ modes.

This might be somewhat similar to, e.g. 
the standard weak-coupling analysis of the two-di-
mensional nonlinear O(N) σ-model, that seems to 
emphasize a  distinction between the  longitudinal 
and transverse fluctuations of the order parameter 
(one gapped and N–1 Goldstone modes, respective-
ly). By contrast, the exact solution demonstrates no 
such difference as the true O(N)-symmetric spec-
trum consists of the N identical gapped modes.

Evaluating (20) on the  classical trajectory (21) 
at zero temperature one finds the effective poten-
tial that asymptotically decays at large τ as ∼ 1/τ2 
in both cases of large and small γ. The one-dimen-
sional Green’s function of the resulting eigenvalue 
equation

2 2
2– – 0,τ
κ ω ψ
τ

 ∂ + = 
 

 (28)

with κ > −1/4, can be found in the closed form

 

(29)
(1)

(1)

(1) (1)

( )( , )
2i ( )

( ) ( ) – ( ) ( ) ,

v

v

v v v v

HD
H a

H J H J a

ω
ωτπτ τ ττ
ω

ωτ ωτ ωτ ω

>

< <

′ ′=

 × 

where τ> and τ< stand for the larger/smaller τ and τ′, 
respectively, 1/ 4v κ= + , and a is the UV cutoff.

For ω  =  0 (29) amounts to the  previously de-
rived expression the finite-temperature version of 
which reads [58–79]

0
1( , ) 1 tan

2

1– tan – ,
2

VD x x x x
V

Vx x

π
π

π

< <

> >

  ′ = + +    
  ×     

 (30)

where x = πτ/β and V = v + 2–π cot πv/2.
Expanding the Bessel functions one once again 

finds only a mild effect of the Gaussian fluctuations 
(this time around, of δg), as the ensuing reduction 
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of the  amplitude ⟨Gp(τ)⟩/Gp
0(τ)  =  exp(O(1)Δ2p2) 

does not alter the mean-field exponent of the pow-
er-law decay.

7. Quadratic fluctuations in g-space

As an alternative to (26) one can formulate the ei-
genvalue equation in terms of the g-variable [54]

0

2

0 0 2

2

–2 – –

,

g g n
g

n n

WW W W W
g

ψ

ω ψ

 ∂ ∂ ∂ +
 ∂ 
=

 
(31)

whereW0  =  W(g0) without the  need to explicitly 
solve for the classical trajectory g(τ).

However, a generally non-trivial derivative ∂τg pre-
cludes an immediate use of the known solutions such 
as (11) in the case of, e.g. the Morse potential W(g). 
Then treating (31) as a generic second-order equation

p(x)∂2
xψ + q(x)∂xψ + (E – V)ψ = 0 (32)

and eliminating the linear derivative term one can 
convert Eq. (31) into the  standard Schroedinger 

equation with the potential 
2Q
Q
xV V ∂′ = +  in terms of 

the wavefunction χ = ψQ with Q(x) = exp(∫dx q/2p).
Using this equation in the classically accessible 

domain g0 < g < 0 one can study the system’s thermo-
dynamics. For example, in the case of the Hulten 
potential (13) one obtains non-trivial temperature 
dependences of energy E = E0 – O(J4/3β1/3) and en-
tropy S = S0 – O((Jβ)4/3) that suggest rather pecu-
liar thermodynamic relations.

8. Ladder eigenfunctions and chaos exponents

A chaotic behaviour may develop in the  comple-
mentary (classically prohibited) regime g < g0. One 
popular quantifier of chaos is provided by the out-of-
time-order correlator (OTOC) given by the averaged 
amplitude ⟨Gf (τ1, τ3)Gf (τ2, τ4)⟩ analytically contin-
ued from the domain τ4 < τ2 < τ3 < τ1 to the complex 
times τ1 = β/4 – it/2, τ2 = –β/4 – it/2, τ3 = it/2 and 
τ4 = –β/2 + it/2.

On top of a non-exponential regular part of the 
zeroth order in 1/N the  OTOC function demon-
strates an exponentially growing first-order correc-
tion. In the case of the SYKq–SYKq/2 model it reads

L
1 ( )( ) – e ,tfOTOC t O
J B

λγ
β

 
=  

 
 (33)

where f(0) = O(1). It is controlled by the Lyapunov 
chaos exponent determined by the  ladder eigen-
state equation constructed out of the  Wightman 
correlators Glr(t) = G(τ = it + β/2) [58–79]. Taking 
ωn in Eq. (26) to imaginary values ωn →  iλL yields 
the exponentially growing ansatz D(T, t) ∼ eλLTψ(t), 
where the  real-time eigenfunction ψ(t) solves 
the equation [54]

2
2

2

2
L

cos 2sin– – –
cosh cos (cosh cos )

–
2

x x x

v

θ θ ψ
θ θ

λ β ψ
π

 
∂ = + + 

 
 
 

 (34)

with θ  =  tan–1(v/Jβγ2). Importantly, the  potential 
in Eq. (34) is monotonic and its sign is opposite of 
that in Eq. (26).

For γ = 0 this potential is the original SYK’s one, 
V0(x)  =  –2/cosh2x, that supports no bound states 
other than the ground one, ψ0(x) ∼ 1/coshx, with 
the  eigenvalue E0  =  –(λLβ/2πv)2  = −1 [58–79]. As 
has been repeatedly pointed out in the  literature, 
this value of the  chaotic operator growth is (al-
most) maximally possible, its reduction at a strong 
coupling (Jβ ≫ 1) being solely due to the tempera-
ture-dependent factor v,

L
2 11– .O

J
πλ
β β

  
=   

  
 (35)

In the  complementary weak coupling regime 
(Jβ ≪ 1) the chaotic exponent is λL ∼ J.

In principle, the rest of the spectrum in Eq. (34) 
could provide for some slower growing terms. How-
ever, for γ = 0 no such terms appear as the next (sin-
gle-node, hence first excited) state would be given by 
the function ψ1 ∼ g' with the eigenvalue E1 = 0 [54].

Also, at longer times t ≫  β the  behaviour of 
the OTOC function is determined by the 2-parti-
cle density of states, resulting in another universal 
power-law, OTOC(t) ∝ 1/t6 [81, 82].

In Ref. [98], a weak SYK2 term in (20) was found 
not to drastically alter the strong-coupling behav-
iour, except for a  reduction of the  amplitude by 
a  factor O(1/Jβγ

2)  <  1 in the  entire interval 
1/N  ≲  γ  ≲  1/N1/2. At such parameter values 
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the  Schwarzian fluctuations were found to be sup-
pressed, thus extending the validity of the SYK4 mean-
field solution beyond the energy scale J/N all the way 
down to Jγ2 at which the FL behaviour finally sets in.

In Ref. [54], the chaotic exponent of the large-q 
biquadratic model was computed with the  use of 
perturbation theory about the state ψ0 for a small γ, 
thereby finding

2
L 2

2 11– min , .O J
J

πλ βγ
β βγ

    =    
    

  (36)

For comparison, Refs. [99, 100] found the  expo-

nent 2 2
L

2 [1– ( )]Oπλ β
β

= Γ  in the  SYKq–  SYK2 

model, suggesting the  possibility of a  finite-tem-
perature transition for an arbitrarily small Γ.

The latter should, however, be contrasted against 
the result of Ref. [101] which reported λL ∼ 1/Jβ2γ3 
for γ ≫ max [1, 1/Jβ]. Such a behaviour conforms 
to the  generic quadratic temperature depend-
ence of λL in the disordered FL and could indicate 
the absence of a genuine finite-temperature phase 
transition for a sufficiently large Γ.

Adding to the  list of possibilities, in Ref. [54] 
some non-maximal (temperature-independent and 
growing with the  increasing integer parameter n) 
values of λL were reported on the basis of a numeri-
cal solution of some other (‘variable scaling’) model 
with W(g) ∝ 1/(–g)n.

As far as more general potentials W(g) are 
concerned, the  Hulten potential (13), for one, 
falls somewhere in between the  ‘super-symmet-
ric’ (γ  =  1) point of the  SYKq–SYKq/2 model and 
the ‘variable scaling’ one. The corresponding eigen-
value equation now reads

 (37)
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2
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2 1 1– – –
cosh cosh

– ,
2

x x x

v

ψ
δ δ

λ β ψ
π

  ∂ =  +  

 
 
 

where 2 21 4 / Jδ γ βγ= + . At the  super-sym-
metric point, where δ = 51/2/Jβ and for low tempera-
tures (δ ≪ 1), the potential in Eq. (37) approaches 
the original SYK’s V0(x) and the maximally chaotic 

behaviour L
2

v
πλ
β

→  is once again restored. In 

the opposite limit of δ ≫ 1, the potential flattens out 
and the  Lyapunov exponent decreases monotoni-
cally all the way to zero. It does not vanish at any 
finite temperature, though, thus calling for a closer 
look at any scenario of a finite-temperature phase 
transition – or a zero-temperature one predicted to 
occur at a critical γc vanishing as a power of 1/N.

9. Summary

This paper discussed various generalizations of 
the  SYK model that lead to the  one-dimensional 
Liouvillean quantum mechanics. Of a particular in-
terest are the crossovers between the different con-
formal fixed points where all pertinent coupling 
constants are likely to be of the  same order. Such 
‘SYK transits’ are not directly amenable to pertur-
bation theory in the vicinity of the fixed points in 
question but can still be explored in the  large-q 
limit. To that end, one can utilize the already avail-
able – and seek out new – non-perturbative mean-
field solutions akin to (22) that interpolate between 
the distinct conformal regimes. This way one could 
advance the  previous studies of the  bi-quadrat-
ic model (20) and its further extensions within 
a broader class of the effective potentials W(g).

In particular, this preliminary analysis finds that 
the  Lyapunov exponent at the  ‘super-symmetric’ 
point of the  model (20) remains non-zero down 
to the  lowest temperatures. This observation may 
call for inspection of the earlier conclusions about 
the onset of the non-chaotic FL phase at a critical 
coupling γc which could be as weak as O(1/N1/2) or 
even O(1/N) [11–26, 98–100].

Also, further generalizations of the  standard 
Liovillean action related to the various analytically 
solvable quantum mechanical Hamiltonians might 
be of interest well above and beyond the  original 
SYK context.
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