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In this article, it is suggested that a pedagogical point of departure in the teaching of classical mechanics is the Li-
ouville’s theorem. The theorem is interpreted to define the condition that describes the conservation of information 
in classical mechanics. The Hamilton’s equations and the Hamilton’s principle of the least action are derived from 
the Liouville’s theorem.
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1. Introduction

In this article, the theory of classical mechanics is 
approached from a different perspective. Its pur-
pose is entirely pedagogical. I have taught classi-
cal mechanics in the traditional way, starting with 
Newton’s laws of motion, and following up with 
Hamilton’s principle, the  Euler–Lagrange equa-
tions of motion, the  Hamilton’s equations and 
the Liouville’s theorem. The students have, in gen-
eral, had problems seeing the  relations between 
the  standard mathematical representations of 
classical mechanics. In each class, there are typi-
cally a few students that ask whether there exists 
a  foundational principle of classical mechanics 
that is independent of the  specific mathematical 
representation being chosen. I have never been 
able to answer this question in a satisfactory man-
ner. This article grew out of the desire to address 
this question.

Clearly, there is no reason to believe that there 
exists a  unique principle. However, in this arti-
cle a specific point of departure is identified and 
shown to lead to the  traditional formulations. 

The suggested principle is that of the conservation 
of information. It is argued that the Liouville’s the-
orem is the  mathematical representation of this 
principle. The  Hamilton’s equations, the  Hamil-
ton’s principle of the  least action and the  invari-
ance of the Poisson algebra are then understood as 
different manifestations of the Liouville’s theorem.

There is nothing new appearing in this article. 
Everything is known from before. What then, one 
might ask, is the  purpose and use of the  article? 
The answer is threefold. First, and foremost, it sug-
gests an alternative way to teach the  subject. As 
a teacher for many years, it is obvious that it is ben-
eficial to have a diverse repertoire when it comes to 
presenting and explaining a topic. Personally, I take 
great pleasure in being able to explain the subject to 
my students in different ways. Secondly, it provides 
a different point of view on an old and well-known 
subject. Even though it might not be of any use in 
the immediate, or near, future, it is generally good 
to be aware of a multitude of equivalent perspec-
tives on any given problem. Thirdly, to the best of 
my knowledge, the Hamilton’s principle has never 
been derived from the Liouville’s theorem.
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2. Determinism and information

In classical mechanics, it is a fundamental assump-
tion that the evolution of a system is deterministic 
in both directions of time, i.e. both into the future 
and into the  past. The  deterministic evolution of 
a  system means that it is possible, with absolute 
certainty, to say that any given state of the system 
evolved from a definite single state in the past and 
will evolve into a definite single state in the future. 
There cannot be any ambiguity in the evolutionary 
history of a system. Thus, the deterministic evolu-
tion implies that nowhere on the phase space can 
states converge or diverge (see Fig. 1).

represent an evolution which is non-deterministic 
into the past.

The origin for the apparent violation of revers-
ibility in physical processes is not due to a funda-
mental character in physical laws, but rather it is 
due to the ignorance of the observer. The observer 
has not taken into account all the details of the sys-
tem. Degrees of freedom for the system have been 
ignored. In the case of the sliding block of cheese, 
it is the  individual motion of atoms in the  block 
and the  table which has been ignored. Assum-
ing that all degrees of freedom for the block and 
the table are followed in detail as the block slides 
on the table it is clear that each unique initial state 
will give rise to a unique final state where the dis-
tinction between the final states is given by the dis-
tinct final position and the velocity of each atom in 
the block and table.

A direct consequence of the assumption of de-
terministic evolution is that distinctions between 
physical states never disappear. If there is an initial 
distinction between the states, this distinction will 
survive throughout the  entire motion of the  sys-
tem. These distinctions between the states seem to 
disappear as time unfold is merely a consequence of 
the difficulty for an observer to keep a perfect track 
of the motion of all particles. In the case of the slid-
ing block, for a  human observer, the  distinction 
between individual motions of atoms in the block 
and the table is too small to measure and therefore 
it appears as though two distinct initial states, char-
acterized by distinct initial speeds, which are easy 
to measure, converge to the same final state, i.e. that 
the block is at rest. In conclusion, the assumption of 
deterministic evolution can equivalently be stated 
as follows:

The distinction between the physical states of 
a closed system is conserved in time.

Due to the conservation of the distinction between 
physical states, any set of states which lie in the in-
terior of some volume element on phase space 
will remain the interior of this volume element as 
the system evolves in time.

If a system is followed, as it evolves in time, in 
detail by an observer, it means that the observer 
has perfect and complete knowledge about all 
the degrees of freedom of the system, i.e. the ob-
server knows, with an infinite precision, the exact 

Fig. 1. Non-deterministic evolution implies that sys-
tem trajectories would cross each other on the phase 
space, here at point (q

0
, p

0
).

Systems that appear to evolve non-deterministi-
cally give rise to the appearance of irreversible pro-
cesses in nature. The reason for this is that if a sys-
tem starts out in a given state, it is not necessarily 
the case that the system ends up at the same initial 
state by reversing the motion of the system in time. 
An example of a  seemingly irreversible process is 
the sliding of a block of cheese along a table. Due 
to friction the block will always come to rest, ap-
parently independently of the  initial condition of 
the  block. Thus, it appears as though the  multi-
tude of possible initial states for the  block, given 
by the possibility of sending off the block with dif-
ferent initial speeds, all converge to the same final 
state where the block is at rest. Knowing the final 
state of the  system does not help in predicting 
the initial state of the system. Therefore, the experi-
ment with sending off the block of cheese seems to 
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position and momenta of all particles within 
the system. In such an ideal scenario, the observ-
er has no problem to see the distinction between 
the  states of the  system. The  amount of knowl-
edge, or information, about the system possessed 
by the observer, at any instant of time, is complete. 
Since the  ideal observer never loses the  track of 
the system, the distinction between states is never 
lost. In other words, the knowledge, or informa-
tion, that the observer has about the system is not 
lost as the system evolves in time.

If, however, as is the  case in practical reality, 
the observer has a limited ability to track the mo-
tion of individual particles, the observer does not 
possess complete information about the  system. 
Even worse, the observer may, as is usually the case 
for complicated systems with many degrees of 
freedom, find it more and more difficult to track 
the  system as time unfolds. In such a  scenario, 
the amount of information about the system, pos-
sessed by the observer, decreases with time. In other 
words, from the perspective of the ignorant observ-
er, information about the system is lost. However, 
it is important to emphasize that this apparent loss 
of information is entirely due to the  ignorance of 
the  observer. If all the  degrees of freedom were 
tracked with an infinite precision, information 
would never be lost. In the case of the sliding block 
of cheese, the  observer has lost information be-
cause the system was known to exist in one of two 
distinct initial states, obtained by measuring the in-
itial speed of the block, whereas it is not possible to 
distinguish between the two final states.

In conclusion, the  loss of the  distinction be-
tween states implies that information has been 
lost. Thus, the conservation of distinction between 
the states can equivalently be stated as an assump-
tion of information conservation:

The information contained within a closed system is 
conserved in time.

In other words, the assumption that classical sys-
tems evolve deterministically, i.e. that the  state of 
the system is perfectly predictable by an observer 
both into the future and back to the past, is equiva-
lent to the statement that an observer of the system 
possesses complete information about the system, 
and assuming that the system is closed, this amount 
of information is never lost.

3. The Liouville’s theorem

Consider the arbitrary region Ω on the 2-dimen-
sional phase space, with the volume VΩ and the vol-
ume element ∆q∆p. The  mathematical condition 
imposing information conservation is

0,N
t

∆
=

∆
 (1)

where N is the number of states within the phase 
space volume Ω. The  condition states that N can 
neither increase nor decrease within the time inter-
val ∆t. For this condition to be satisfied, it is neces-
sary that the incoming and outgoing flow of states 
through Ω within ∆t cancels, i.e. that

∆(ρ(q, p) ̇q) + ∆ (ρ(q, p)ṗ) = 0, (2)

where ρ(q, p) is the density of states on the phase 
space, and the flow differences are defined by, re-
spectively,

∆(ρ(q, p) ̇q) ≡ {ρ(qout, p) ̇qout – ρ(qin, p) ̇qin}∆p (3)

and

∆(ρ(q, p)ṗ) ≡ {ρ(q, pout)ṗout – ρ(q, pin)ṗin}∆q. (4)

In a differential form the condition, after having 
been extended to be valid for an arbitrary length of 
time, reads in the vector notation as

( ) 0,
t
ρ ρ∂
+∇⋅ =

∂
v  (5)

where

, ,
q p

 ∂ ∂
∇ ≡  ∂ ∂ 

 (6)

is the differential operator on the phase space, and

v ≡ (q̇, ṗ) (7)

is the  velocity by which states flow on the  phase 
space. Equation (5) is the  Liouville’s continuity 
equation [1] for the density of states on the phase 
space. It says that the  number of states is locally 
conserved. The term ∇·(ρv) represents the net flow 
of states through Ω, i.e. the  difference between 
the  outflow and inflow of states. The  continuity 
equation can be rewritten as
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d 0,
dt
ρ ρ+ ∇⋅ =v  (8)

by using the total time derivative of the density of 
states and the product rule applied to the net flow 
of states. Thus, if the divergence of the phase flow 
velocity vanishes, i.e. if

∇ · v = 0, (9)

then, by the  continuity equation, the  density of 
states on the phase space is constant in time along 
the flow on the phase space, i.e.

d 0.
dt
ρ
=  (10)

In such a  situation, the  flow of the  system on 
the phase space is incompressible because the con-
dition that the density of states at any given location 
(q, p) on the phase space, within an arbitrary region 
Ω, does not change over time ensures that the states 
do not lump together. In other words, in conclusion, 
a necessary and sufficient condition for the flow of 
the system on the phase space to conserve informa-
tion is that the divergence of the phase flow velocity 
vanishes. This is the Liouville’s theorem [1].1

The 2-dimensional Liouville’s theorem straight-
forwardly generalizes to the 6N-dimensional phase 
space. Each conjugate pair (qj, pj), where j ∈ [1, 3N], 
gives rise to an independent Liouville’s continuity 
equation, i.e.

d
0, [1, 3 ],

d
j

jp j N
t
ρ

+ ∇⋅ = ∈jv  (11)

where ρj ≡ ρ(qj, pj) is the density of states in the 2-di-
mensional subset (qj,  pj) of the  6N-dimensional 
phase space and v⃗j ≡ (q̇j, ṗj) is the phase flow veloci-
ty along this subset. Thus, information is conserved 
on the  6N-dimensional phase space if the  diver-
gence of each phase flow velocity v⃗j vanishes, i.e. if

∇ · vj = 0  ∀j ∈ [1, 3N]. (12)

1 To the best of the author’s knowledge, the physical formulation and 
relevance of the Liouville theorem was first stated by J.W. Gibbs in 1902 [2]. 
There it was referred to as the ‘Principle of Conservation of Density-in-
phase’ or equivalently as the ‘Principle of Conservation of Extension-in-
phase’. However, the mathematical background for the theorem dates back 
to J. Liouville in 1838 [3].

4. Hamilton’s equations

The vanishing divergence of the flow velocity vj for 
all conjugate pairs (qj, pj), j ∈ [1, 3N], written out 
explicitly in terms of its velocity components q̇j and 
ṗj, becomes

0 [1, 3 ].j j

j j

q p
j N

q p
∂ ∂

+ = ∀ ∈
∂ ∂

 

 (13)

Let H be a smooth function on the 6N-dimen-
sional phase space with the  property that it con-
tains no terms that mix different conjugate pairs, 
e.g. pi  · pj, ∀i ≠  j. In this situation, taking into ac-
count that the set of conjugate pairs 3

1{( , )} N
j j jq p =

are postulated to be independent, the condition of 
vanishing divergence can equivalently be stated by 
the  set of differential equations known as Hamil-
ton’s equations,

[1,3 ],j
j

q j N�
� � �
�

� H
p

 (14)

– [1,3 ].j
j

p j N
q
�

� � �
�

� H  (15)

Under these circumstances, the Hamilton’s equa-
tions are, according to the Liouville–Arnold theo-
rem [4, 5], integrable from a  set of known initial 
conditions. This simply means that they describe 
an evolution of the system which is unique and de-
terministic. Thus, given the function H, the flow of 
the system in time is determined by how H changes 
on the phase space. In this sense, H is said to be 
the  generator for the  motion in time of the  sys-
tem on the  phase space. The  flow of the  system 
on the  phase space, described by the  Hamilton’s 
equations, is referred to as a Hamiltonian flow.

5. The Hamiltonian and Lagrangian

Equation (14), for a specific conjugate pair (qj, pj), 
corresponds to the integral equation

( ) d ( ).j j j jp q p� � �H p  (16)

The momentum pj and speed q̇j are assumed to 
be in one-to-one correspondence. This means that 
for each value of  q̇j there is a unique value for pj, and 
vice versa. The function H(pj) is then geometrical-
ly interpreted as the unique area under the   ̇qj(pj)-
graph, bounded by (0, pj) and (0, q̇j(pj)), see Fig. 2. 
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Due to the one-to-one correspondence between pj 
and q̇j it is possible to define a  related area, L(q̇j), 
given by the unique area under the pj(q̇j)-graph,

( ) d ( ).j j j jq q p q� �� � �L  (17)

This integral equation corresponds to the differ-
ential equation

d ( )
.

d

j
j

j

q
p

q
�

�
�
L

 (18)

The total area of the rectangle bounded by (0, pj) 
and (0, q̇j) is given by

L(q̇j) + H(pj) = pj · q̇j. (19)

It is possible to include a  dependence on 
the generalized coordinate qj under the constraint 
that any qj-dependent terms in the  functions H 
and L cancel, such that the  total area is qj-inde-
pendent. Thus, in general, the functions H and L, 
referred to as the  Hamiltonian and Lagrangian, 
respectively, satisfy the so-called Legendre trans-
formation, i.e.

L(qj, q̇j) + H(qj, pj) = pj · q̇j, (20)

where

0
( , ) d ( ) – ( ),

jq

j j j j j jq q q p q U q� �
�

� � �L  (21)

0
( , ) d ( ) ( ).

jp

j j j j j jq p p q p U q� �� �H
 
           (22)

The requirement that the  total area is qj-inde-
pendent causes the  Hamiltonian and Lagrangian 

to have a  relative sign difference for the  function 
U(qj).

For the 6N-dimensional phase space, the Ham-
iltonian and Lagrangian are defined by

3

0
1

( , ) d ( ) – ( ),
j

N q

j j j
j

q q q p q U q
�

�� �
�

� � �L
 
          (23)

3

0
1

( , ) d ( ) ( ),
j

N p

j j j
j

q p p q p U q
�

� �� � �H
  
        (24)

where the function U(q), defined by
3

1
( ) ( ),

N

j
j

U q U q
=

≡∑  (25)

is referred to as the potential energy of the system.

6. Principle of stationary action

The pair of Hamilton’s equations

– – 0,j
j

p
q
�

�
�

�H
 (26)

– 0,j
j

q
p
�

�
�

� H
 (27)

is the local differential representation of the princi-
ple of information conservation on the phase space. 
A global, or integral representation can be obtained 
by considering the  entire evolutionary path from 
some initial time ti to some final time tf, where 
the Hamilton’s equations are integrated over time.2 
For this purpose, multiply the Hamilton’s equations 
with two independent arbitrary functions of time, 
δqj(t) and δpj(t), representing, respectively, small 
displacements in qj and pj on the  phase space, in 
the following manner:

– – ( ) 0,j j
j

p q t
q

�
� ��

�� �� ��� �
�H

 (28)

– – ( ) 0.j j
j

q p t
p

�
� ��

�� �� ��� �
� H

 (29)

The displacements δqj(t) and δpj(t) are pictured 
as slight variations of the physical path on the phase 
space, i.e.

2 For the derivation of an integral representation on the configuration 
space starting from the Newton’s second law of motion, see Chapter 10 
in Ref. [6].

Fig. 2. The areas under q̇j(pj) and ṗj(qj) graphs define 
the Hamiltonian and Lagrangian, respectively.
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qj(t) → qj(t) + δqj(t), (30)

pj(t) → pj(t) + δpj(t). (31)

Equations (28) and (29) are equivalent to 
the  Hamilton’s equations since they hold for ar-
bitrary variations. The  fact that it is necessary to 
introduce two displacement functions is due to 
the independence of the state parameters qj and pj. 
The boundary conditions are given by

δqj(ti) = δqj(tf) = 0, (32)

δpj(ti) = δpj(tf) = 0, (33)

i.e. the  variations vanish at the  initial and final 
times. Integrating the  Hamilton’s equations over 
time from ti to tf gives, to the  leading order in 
the variations,

f

i

d – – ( ) – ( )

0.

t

j j j jt
j j

t p q t q p t
q p

� �
� �� � � �� �

�� �� � � �� � � �� �� �� � � �� �
�

� � �H H
 

(34)

Integration by parts and recalling the boundary 
conditions give

δA(qj, q̇j) = 0, (35)

where
f

i

( , ) d ( , )
t

j j j jt
q q t q q� �� �A L  (36)

is the action of the system within the subset (qj, pj) 
on the 6N-dimensional phase space. The action on 
the entire phase space is given by

f

i

f

i

3

1

( , ) d ( , )

d ( , ).

N t

j jt
j

t

t

q q t q q

t q q

�

�

�

� �

�

� �

�

A L

L
 (37)

This is the  Hamilton’s formulation of the  prin-
ciple of stationary action, or briefly, the Hamilton’s 
principle. It is a global representation of information 
conservation, i.e. a statement on the entire evolution-
ary path which must be satisfied if the system is to 
adhere to the principle of information conservation.

Since the Hamilton’s principle can be derived from 
the Hamilton’s equations, which in turn are an imme-

diate consequence of the requirement that the diver-
gence of the Hamiltonian flow velocity vanishes, it 
should be possible to obtain the Hamilton’s principle 
directly from the requirement that ∇ · vj = 0 is invari-
ant under the displacements δqj(t) and δpj(t). Given 
that the  variations are small, the  flow velocity v⃗j 
can be expanded as a Taylor series about the state 
(qj, pj), where terms that are of quadratic or higher 
order in the variations δqj and δpj can be ignored. 
The infinitesimal change in vj thus becomes

( , ) – ( , )

.

j j j j j j

j j
j j

q q p p q p

q p
q p

δ δ δ

δ δ

= + +

∂ ∂
= +

∂ ∂

j j j

j j

v v v

v v
 (38)

The divergence of the flow velocity transforms as

∇ · vj → ∇ · (vj + δvj) = ∇ · vj + ∇ · δvj.              (39)

If ∇  · δvj ≠ 0, information is not conserved for 
the deviated path. Therefore, it is required that

∇ · δvj = 0, (40)

which is equivalent to

δ(∇ · vj) = 0. (41)

This statement is for a blob of volume dV which 
encloses the  single state (qj,  pj). Information con-
servation should hold for all varied states along 
the evolutionary path of the system, from the ini-
tial state (qj, pj)i, at time ti, to the final state (qj, pj)f, 
at time tf. Thus, the  above statement should be 
integrated over all the blobs of volume dV along 
the  path, i.e. the  integration is over a  tube, with 
the volume V, the interior of which defines the re-
gion of extended phase space where the principle of 
information conservation is fulfilled. Thus,

f

i

d d 0.
t

t V
t Vδ ∇ ⋅ =∫ ∫ jv  (42)

Applying the divergence theorem

d
V V

V
∂

∇ ⋅ = ⋅∫ ∫j jv dS v  (43)

gives

f

i

d dS 0.
t

t V
t�

�
� �� � jv

�
 (44)
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The integrand dS  ·  vj represents the  density of 
the net Hamiltonian flow out of the tube. The sur-
face area element dS is given by

dS = dS n, (45)

where n = (pj, qj) is the normal vector to the sur-
face of the  tube, i.e. n gives the  direction in 
the phase space in which the system has to flow if 
it is to eventually reach a region where the prin-
ciple of the  conservation of information no 
longer holds. Thus, with vj = (q̇j, ṗj), the integrand 
becomes

(pj, qj) · ( ̇qj, ṗj) = pj ̇qj + qjṗj. (46)

Using that qj = ∫dqj and the Hamilton’s equation 
–j

j

Hp
q
∂

=
∂



, the integrand can be written as

– d – d – .j j j j j j j
j

p q q p q p q
q
�

� �
�� �� � �H H H

  
(47)

Equivalently, the  integrand could have been 
written as

qjṗj + H, (48)

by using that pj  =  ∫dpj and the  other Hamilton 
equation 

j
j

Hq
p
∂

=
∂



. However, the  form pj ̇qj  – H is 

the preferred choice due to the fact that it is equal 
to the Lagrangian L(qj, q̇j). Thus, on the 6N-dimen-
sional phase space it is obtained that

f

i

d d 0.
t

t
t S� �� � L  (49)

The equality must hold independently of the sur-
face area of the tube, i.e. the principle of informa-
tion conservation should hold true independently 
of the number of states in which the system can ex-
ist. Therefore, the integration over the surface area 
can be taken outside of the infinitesimal variation, 
giving that

d 0,
f

i

t

t
t� �� L  (50)

which is, again, the  Hamilton’s principle. Thus, 
the  Hamilton’s principle can be derived directly 
from the Liouville’s theorem.

7. Invariance of the Poisson algebra

Given that the divergence of the Hamiltonian flow 
velocity vanishes, the  Liouville equation can be 
written as

0.
t
ρ ρ∂
+∇ ⋅ =

∂
v  (51)

The Poisson bracket {ρ, H} between the density 
of states ρ and the Hamiltonian H is defined by

{ , } – .
q p p q
� �� � � � � �

� � � �
� � � �

v H HH
   

        (52)

In general, the Poisson bracket {A, B} between any 
two arbitrary functions A and B on the phase space 
is defined by

{ , } – .A B A BA B
q p p q
∂ ∂ ∂ ∂

≡
∂ ∂ ∂ ∂

 (53)

In this notation, the  Hamilton’s equations are 
written as

q̇ = {q, H}, (54)

ṗ = {p, H}. (55)

The Poisson bracket satisfies a  set of algebraic 
properties. It is antisymmetric, i.e.

{A, B} = – {B, A}. (56)

It satisfies linearity, i.e.

{aA + bB, C} = a{A, C} + b{B, C}. (57)

Furthermore, it satisfies the  product rule and 
the Jacobi identity, i.e.

{AB, C} = A{B, C} + {A, C} B, (58)

{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0.     (59)

These properties define the Poisson algebra of 
classical mechanics. Since the Liouville’s equation 
for the  incompressible Hamiltonian flow can be 
expressed in terms of the Poisson bracket, the Li-
ouville’s theorem can equivalently be stated by 
saying that the evolution in time of any given sys-
tem conserves information if it leaves the Poisson 
algebra invariant.
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8. Conclusions

The Liouville’s theorem is interpreted as the math-
ematical condition representing the physical con-
servation of information in classical mechanics. 
The  Hamilton’s equations, the  Hamilton’s prin-
ciple and the  invariance of the  Poisson algebra 
are distinct, but equivalent, manifestations of the 
theorem.
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