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We study the applicability of feedforward autoencoders in determining the ground state of a quantum system 
from a  noisy signal provided in a  form of random superpositions sampled from a  low-dimensional subspace of 
the system’s Hilbert space. The proposed scheme relies on a minimum set of assumptions: the presence of a finite 
number of orthogonal states in the samples and a weak statistical dominance of the targeted ground state. The pro-
vided data is compressed into a two-dimensional feature space and subsequently analyzed to determine the optimal 
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well as in the presence of magnetic frustration.
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1. Introduction

A broad range of numerical simulations in quan-
tum physics are aimed at an approximate deter-
mination of the  ground state of an interacting 
quantum many-body system [1]. In many cases of 
fundamental or practical importance, solutions can 
potentially enhance our understanding of quantum 
phases and phase transitions, and lead towards 
engineering and exploitation [2, 3]. The source of 
the  complexity and ensuing numerical intracta-
bility of the  problem is an enormous dimension 
of the  associated Hilbert space (HS) [4, 5]. Even 
for discretized problems  –  i.e. problems defined 
on a  lattice with a  countable or even finite set of 
sites – the dimension of the HS scales exponentially 
with the number of particles and quickly exceeds 
the available computational resources.

The design of approximate approaches to 
the quantum many-body problem has been dem-
onstrating very dynamic and fruitful activity, pro-

ducing numerous schemes and insights [1, 6–8]. 
The  ideas that have been tried to tackle quantum 
complexity are very diverse and range from rather 
simple-minded  –  such as variational ansatzes [9] 
and truncation of the single particle basis to limit 
the  combinatorics or imaginary-time evolution 
[10] – to quite intricate schemes that rely on rep-
resentations based on the  entanglement structure 
(tensor networks and related approaches [4, 11, 
12]) and artificial neural network (ANN) quantum 
states [5, 13–16].

In our work, we take the view that an approxi-
mate computation of the ground state using one of 
many available schemes can be regarded as a ran-
dom shot at the HS which can be expected to land 
in its low- dimensional subspace spanned by a few, 
a few dozen or even a few hundred (but certainly 
not an exponentially large number) low-energy ex-
cited states in addition to the sought ground state. 
In other words, the  resulting approximate wave 
function is most likely a superposition of a limited 
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number of low-energy states. This is insured by 
a general observation that the ground-state energy 
is obtained with a certain accuracy, and the compu-
tational procedure is optimized to make the residual 
error as small as possible. Therefore, this error de-
fines a window of energies, and only excited states 
characterized by excitation energies commensurate 
with this window can contribute to the superposi-
tion that defines the approximate wave function of 
the ground state.

Let us also stress that there may be two classes 
of the  mentioned randomness. Besides the  ran-
domness (or rather arbitrariness) introduced by 
the  approximation, e.g. truncation of the  basis, 
choice of the ansatz or identification of the relevant 
sector of the  HS to be explored, there is the  ran-
dom sampling built into the algorithm itself. Such 
sampling – guided by weighted rejection of energy-
increasing moves in the configuration space –  in-
sures an efficient exploration of the relevant states 
and lies at the heart of numerous approaches col-
lected under the  umbrella term of Monte-Carlo 
techniques [7, 17].

We thus focus on the following generic problem: 
Assume that one has a certain computational black 
box generating random points from a (relatively) 
low-dimensional subspace representing the  low-
energy sector of the HS of a certain physical system. 
We then ask the question if the obtained results, i.e. 
a sequence of such random samples, can be further 
analyzed and the actual ground state can be filtered 
out with precision superior than that of the  pro-
vided noisy data. The paramount assumption that 
we rely on is that the contribution of the ground 
state in the  random superpositions is dominant. 
More precisely, the weights that describe contribu-
tions of the ground- and various excited states are 
assumed to be random numbers drawn from a dis-
tribution that ensures that the mean of the weight 
corresponding to the ground state is higher than 
the  mean of the  weight corresponding to any of 
the excited states. Analysis of the random data is 
performed using a  feedforward autoencoder [18, 
19] – a basic type of ANN [19] whose task is to copy 
multi-dimensional data from its input to its output 
through a bottleneck layer of just a few (in most of 
our work, just two) nodes. This forces the autoen-
coder to find efficient low-dimensional representa-
tions for the significant features of the data and to 
produce explicit distributions in the feature space 

that aids the  subsequent analysis and selection. 
Our results indicate that the feature space can in-
deed be used to efficiently sample the HS spanned 
by low-energy excitations and – even more ambi-
tiously – to pinpoint the most successful represen-
tation of a true ground state.

2. Motivation

Even though the rest of the paper aims for a general 
treatment and is not tailored to suit any particular 
situation, for the sake of orientation we now pro-
vide a specific practical example drawn from a nu-
merical simulation of a small optical lattice [20] of 
5 × 5 sites pierced by an artificial flux [21] and pop-
ulated by 4 bosonic cold atoms. The lattice is sche-
matically sketched in the inset of Fig. 1. The scaled 
(dimensionless) Hamiltonian reads

i† i 1ˆ ˆ ˆ ˆ ˆ– e ( –1),
2

j

i j i i
ij i

H a a n nγ

〈 〉

= +∑ ∑  (1)

and consists of two parts representing, respective-
ly, the hopping transitions on all directed pairs of 
nearest-neighbour links 〈ij〉 and on-site interac-
tions between particles. Here, â†

i are the  bosonic 
annihilation (creation) operators on site i and 
n̂i  =  â†

i âi are the  on-site occupation numbers. 
The Peierls phases γij are chosen to ensure a uni-
form flux through all plaquettes. Note that we take 
the hopping matrix elements and the  interaction 
strength to be of equal magnitude, which is chosen 
as the energy unit in Eq. (1). Hence, the model is 
parameter free.

Fig. 1. Typical results of the ANN simulation of an 
interacting four-particle system on a  square lattice 
of 5 × 5 sites (shown in the  inset) in the quantum 
Hall regime. Blue (online) lines show the  energies 
of the  nine lowest excited states with respect to 
the  ground state. A  black line shows the  evolution 
of the  estimate of the  ground-state energy versus 
the number of iterations.
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This system supports topological band structures 
[22] and, in the presence of strong particle interac-
tions, is expected to host fractional Chern insulat-
ing states [22] in a clean, experimentally accessible 
and tunable setting. It has been shown [23] that 
even such small systems provide access to charge 
fractionalization that characterizes fractional quan-
tum Hall systems [24]. Previous research shows 
that ANN-inspired algorithms can be quite suc-
cessful in determining the  ground states of model 
systems [5, 13, 14], and following [13] we apply an 
ansatz that encodes quantum states as a feedforward 
ANN and uses the Metropolis sampling algorithm 
to train the network following the approach of Ref. 
[15]. However, a  fractional quantum Hall system 
on a  finite lattice supports numerous low-energy 
edge modes and the absence of an energy gap (more 
precisely, the presence of multiple low-energy exci-
tations) poses a  considerable challenge. In a  typical 
situation of 4 particles on a 5 × 5 lattice with a flux of 
0.175 flux quanta per plaquette, the ANN converges 
to energies close to the first or second excited states. 
In Fig. 1, we show the evolution of the ground-state 
energy estimate (black line) as a function of the num-
ber of iterations. The blue lines on the right edge de-
pict the  9 lowest excited states of energies (known 
from the  exact diagonalization). All energies are 
measured relative to the  exact ground-state energy, 
i.e. differences E–Egs are plotted. In this rather typi-
cal case, the ground-state wave function encoded in 
the trained ANN after 3,000 iterations is a superposi-
tion of the true ground state (with the weight 0.765), 
the first excited state (weight 0.124) and several doz-
en higher-energy excited states. If better accuracy is 
needed, the following step is to filter out the ground 
state by following iterations as a random walk: with 
the  contribution of the  ground state systematically 
present, the excited-state components will behave in 
an erratic fashion.

3. Model

To make our treatment as general as possible and not 
tied to specifics of any particular system, we study 
quantum states |ψ〉 constructed as superpositions

i1/2

1
| e | ,j

N

j
j

jθψ ω
=

〉 = 〉∑  (2)

of normalized orthogonal basis vectors |j〉 that 
span an N-dimensional HS. The weights ωj are real 

and positive random numbers chosen from a dis-
tribution that we describe shortly and the  phas-
es θj are random and uniformly distributed in 
the range [0, 2π].

The distribution of weights ωj (satisfying 
the normalization condition Σ

j
ωj = 1) is modelled by 

a random division of the unit interval [0, 1], a well-
known mathematical model [25]. To achieve this 
goal, a  random number generator with the  prob-
ability density function f(x) ∝ xp with the domain 
[0, 1] is sampled to obtain a set of N–1 point coor-
dinates. These points then divide the unit interval 
into N subintervals of various lengths, and these 
lengths – numbered consecutively with j = 1, ..., N 
from the left to the right – act as the weights ωj of 
the basis vectors |j〉. Note that any positive value of 
p ensures the dominance of the ‘ground’ state |j = 1〉 
and monotonously decaying influences of ‘excited’ 
states with j = 2, 3,  ..., N. We stress that p and N 
are the only tunable parameters introduced in this 
model.

The sets of basis vectors {|j〉} are specific to a par-
ticular problem. It turns out, however, that the pro-
cedure of analyzing the  low-dimensional HS and 
filtering out an improved ground state is insensi-
tive to the system-specific details, and is universally 
applicable. For illustrative purposes in this paper 
we consider relatively small systems where each 
basis vector is defined on the support of typically 
M ≈ 500 sites or configurations, i.e.

( )

1
| | .

M
jj cµ

µ

µ
=

〉 = 〉∑  (3)

The sets of the  complex-valued coefficients 
c ( j)

μ describe the chosen model and, to assert univer-
sality, were generated using four distinctly different 
ways:

1. The vectors c(j) were copied from the ortho-
normal vectors obtained from the  reduced QR 
decomposition of a  random complex matrix A of 
dimensions M × N. The real and imaginary parts 
of each matrix element were generated by uni-
formly sampling a [–1, 1] interval. Here, M = 500 
is the number of coefficients c ( j)

μ and N is the num-
ber of basis vectors. The QR factorization provides 
mutually orthogonal column vectors which are in-
terpreted as the basis vector set not related to any 
particular physical system. This is our choice for 
the data generation below.
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2. Eigenstates of a  two-dimensional square 
23 × 23 (M = 529 sites) lattice system described by 
the scaled tight-binding Hamiltonian Ĥ = Σ〈ij〉 â

†
j âi. 

In this case, the obtained eigenvectors correspond 
to a particular single-particle model and have rath-
er regular shapes; e.g. the ground-state wave func-
tion is well approximated by a product of two sines, 
with the exception of a small number of sites close 
to the boundary.

3. Eigenstates of a  frustrated square 23  ×  23 
(M  =  529 sites) lattice. To introduce frustration, 
the hopping matrix elements of the previously dis-
cussed lattice are multiplied by Peierls phases chosen 
to describe a  uniform magnetic flux of 1/8 of 
the flux quantum through each lattice plaquette. In 
this case, the energy spectrum is fractal and low-
energy wave functions have irregular shapes.

4. Eigenstates of a frustrated many-body system 
described by the Hamiltonian (1). We take a 3 × 3 
square lattice pierced by a  uniform flux as above 
and filled with 4 bosons (this gives M = 495 con- 
figurations).

The autoencoder used for data compression 
and analysis of this work is implemented in Py-
thon using the Keras library [26] and consists of 
nine densely connected layers. The input and out-
put layers are at the edges, the code (bottleneck) 
layer in the middle, plus three encoding and three 
decoding ‘hidden’ layers that connect, respectively, 
the input and output to the code layer. The input 
and output layers have 2M nodes which is twice 
the  number of coefficients (to represent the  real 
and the  imaginary parts). The  encoding and de-
coding parts of the autoencoder decrease in node 
count with each layer while approaching the code 
layer. The  code layer consists of just two nodes, 
and narrows the  information about the  input 
states to two real variables. As the typical number 
of state-vector coefficients is M ≈ 500, the node-
count structure of the hidden layers is taken to be 
100-50-25-2-25-50-100. This choice is sufficient 
to represent the  information about the  samples. 
If the  node count is increased, the  training time 
increases as well because of a larger space of para-
meters to optimize. On the other hand, if the net-
work is too small, it might lose the ability to en-
code the samples efficiently.

All layers use the hyperbolic-tangent activation 
function [19]. This is motivated by the  fact that 
the initial data is a normalized wave vector hence 

its coefficients can never exceed the active range 
of tanh (·). A benefit of this choice is a compactly 
bounded parameter region of the code layer from 
which the relevant part of HS is sampled.

Before the random superpositions (2) are pro-
vided as samples to the  input layer some initial 
data pre-processing is done. Firstly, the  gauge 
(global phase) of |ψ(j)〉 is fixed by setting one of 
its coefficients in the resolution (3) to be real and 
positive. This procedure improves the separability 
of the  feature-space parameter distribution and 
does not reduce generality. Secondly, the  ANN 
used in this work has real-valued weights, there-
fore the sample coefficients are split into the real 
and imaginary parts. These parts are concatenat-
ed into a new vector where all the  real parts are 
followed by the  imaginary parts. In this work, 
for each explored system we provide 1,000 sam-
ples and train the autoencoder for 3,000 updates 
of the  network weights. These weights are opti-
mized using the  AdaMax algorithm [27] guided 
by the mean squared error between the input and 
the output layers.

4. Results

Let us now proceed to numerical simulations of 
the encoding of low-dimensional Hilbert subspac-
es. To set the foundation for the forthcoming study 
of more involved cases, we begin with the simplest 
two-state quantum-mechanical system. Here, one 
can firmly rely on geometrically intuitive visualiza-
tion, the Bloch sphere.

4.1. Sectors of the Bloch sphere

In this subsection, we temporarily step aside 
from the generation of random weights based on 
the division of an interval. Instead, we now gen-
erate uniformly distributed random points within 
the sectors of the Bloch sphere delimited by sharp 
boundaries, as illustrated in the top line of the sub-
plots of Fig.  2. In the  first two cases, we restrict 
the range of the covered polar angles to, respective-
ly, θ ∈ [0, π/4] and θ ∈ [0, π/2] thereby focusing on 
the areas close to the ‘North pole’, i.e. the ground 
state. In these two situations, the contribution of 
the ground state in the resulting superposition is 
dominant. In contrast, in the remaining two cases 
we sample symmetric distributions where both 
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states have statistically equal opportunities to con-
tribute. To illustrate the latter situation, we sample 
either the  whole Bloch sphere, θ  ∈ [0, π], or 
the ‘equatorial’ region, θ ∈ [π/3, 2π/3].

In the  leftmost column of Fig.  2, panels (a) 
and (e), we show the results obtained from sam-
pling the  ‘polar’ region θ ∈ [0, π/4] with 1,000 
uniformly distributed random points. The  two-
dimensional plots show the distribution of the en-
coded states in the feature plane parametrized by 
the values of its two nodes, x and y. The colours 
of the symbols indicate the overlap of each input 
sample with the ground state, 𝒬in = |〈ψ|ψgs〉|2. Due 
to the used geometrical restriction these overlaps 
range from unity to cos2(π/8)  ≈  0.85. Here  –  as 
well as in the remaining columns – we show two 
example distributions obtained with two differ-
ent random seeds. This is a reminder that the ob-
tained feature distributions are statistical samples 
drawn from a  certain ensemble. The  encoding 
of the  pure ground (excited) state is shown by 
a  cyan (magenta) circular marker. The  results 
indicate that the  autoencoder is doing its job of 
relevant-feature extraction well: we deal here with 

intrinsically two-dimensional data (the polar re-
gion of the Bloch sphere) which was provided in 
the  form of vectors living in a  space of superfi-
cial dimensionality of 2M = 1000. As it is evident 
from the elliptical distributions, the autoencoder 
was able to identify the  two intrinsic compo-
nents and reduce the dimensionality of the data. 
The true ground state (cyan marker) is promptly 
positioned in the centre of the elliptical distribu-
tion, while the excited state is placed at a safe dis-
tance on the side. In Fig. 2(b, f), we see that a clear 
separation of the  two Bloch hemispheres is also 
achieved, even though (see panel (f)) the manifold 
corresponding to one of the hemispheres may not 
always be compact. When the whole Bloch sphere 
is sampled, the autoencoder faces a more compli-
cated task: the sampled manifold is no longer top-
ologically equivalent to a disk but covers the entire 
sphere. The results shown in Fig. 2(c, g) again con-
firm the separability of the data: the two poles of 
the Bloch sphere are still systematically mapped to 
two well-separated positions, and the distribution 
of overlaps is resolved as a smooth gradient cover-
ing the whole range 𝒬in ∈ [0, 1]. With this much 

Fig. 2. Feature-space distributions of 1,000 random samples covering the indicated sectors of the Bloch sphere. 
Data is organized in columns, and in each case two samples corresponding to two choices of the  random 
seed are shown. Colours encode the overlap 𝒬in of the sampled vectors with the true ground state. Note that 
the range of covered values is specific to each case, as indicated by the colour bars. Cyan (magenta) marker 
(dark and light in printed version) denotes the ground (excited) state corresponding to the North (South) pole 
of the Bloch sphere.



G. Žlabys et al. / Lith. J. Phys. 61, 205–214 (2021)210

of gained intuition, panels (d) and (h), which cor-
respond to sampling of the  equatorial region, are 
not surprising and clearly follow the same pattern. 
We note, however, that in the last two cases none of 
the two eigenstates is statistically dominant. There-
fore –  if the provided cyan and magenta markers 
were missing – one may be able to infer their po-
sitions from the distributions in the  feature plane 
but, in view of the symmetry, there is no way to tell 
which is which. Proceeding to the analysis of more 
interesting cases, let us stress again that for practi-
cal reasons one is ultimately interested in the de-
termination of the true ground state, and the only 
assumption that is built into the proposed method 
is the weak asymmetry in the data, i.e. some domi-
nance of the ground state with respect to one, sev-
eral or several dozen excited states.

4.2. General few-level systems

We now turn to the general application of the au-
toencoder-aided analysis of randomly sampled 
low-dimensional HS. This is a  good place to re-
capitulate that in order to keep the  exposition 
free from any superfluous assumptions, we have 
only two parameters in the proposed model. One 
is the number of contributing states N, and – as 
discussed in the motivational section – we focus 
on the  regimes where the  number of such states 
ranges from just a  few to fifty. The other param-
eter is the  power-law exponent p. In the  limit 
p = 0, the contributions from all N participating 
eigenstates become uniform, and one is left with 
no information that could help identify the indi-
vidual states. In contrast, for growing values of p 
the contribution of the ground state becomes pro-
gressively stronger.

We summarize the essential numerical results 
in Fig.  3 where the  two columns correspond to 
the two choices of p = 2 and p = 10, and the three 
rows cover the cases of N = 2, N = 5 and N = 50 
states. As above, the two-dimensional plots zoom 
into the relevant portion of the feature space, and 
the  colours of the  symbols represent the  over-
lap 𝒬in of the given sample with the  true ground 
state. Starting with two-state systems, we ob-
serve that Fig.  3(a) retains the  overall similarity 
to those presented in the previous subsection de-
spite the  fact that instead of sampling the  fixed 
regions of the  Bloch sphere we now determine 

the  weights from the  random-interval-division 
model. With p = 2, the weights of the  two states 
can in principle be any from the  interval [0, 1], 
however, their means equal 3/4 and 1/4, respec-
tively, for the  ground and the  excited state. We 
contrast this situation with that shown in panel 
(b): here the exponent of the probability distribu-
tion function ~xp has a much higher value p = 10 
and the mean weights of the ground and the ex-
cited states are, respectively, 0.917 and 0.083. This 
results in a  more compact clustering of samples 
around the true ground state.

The next crucial step is to verify that the scheme 
is still applicable beyond two-level systems. An im-
portant observation is that two-level systems do 
allow a  two-dimensional representation of the  HS 
in the  form of the  Bloch sphere. For richer few-
level systems, a  possible approach could involve 

Fig.  3. Feature-space distributions of 1,000 random 
superpositions of N = 2 (top row, panels (a) and (b)), 
N = 5 (middle row, panels (c) and (d)) and N = 50 
(bottom row, panels (e) and (f)) orthogonal states. 
The weights are generated from the random-interval-
division model with, respectively, p  =  2 and p  =  10 
in the left/right column. Colours encode the overlap 
𝒬in of the sampled vectors with the true ground state. 
Cyan (magenta) marker (dark and light in printed 
version, respectively) denotes the  ground (first ex-
cited) state and intermediate (red online) markers 
denote all remaining excited states.
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a  dimensional enlargement of the  feature space, 
however, we did not find such an approach to be 
particularly promising. Instead, we keep the  di-
mensionality of the  feature space fixed, and pro-
ceed with the analysis of the resulting two-dimen-
sional distributions. As it turns out, it is possible 
to treat systems with a vastly different number of 
states on equal footing thus defining a  universal 
(N-independent) scheme. In addition to the pre-
viously discussed independence of the  nature of 
the states in the superposition, this aspect of uni-
versality is another important asset.

We found that there are no dramatic differ-
ences between few-level systems with different 
numbers of states (3, 4, 5,  ...), and in panels (c) 
and (d) of Fig. 3 we show the representative results 
obtained for N = 5. In panel (c) the power-law ex-
ponent is p = 2 and the weights of all five states are 
still comparable (the mean values of the weights 
range from 0.534 to 0.074) and all of them can ap-
preciably contribute to the typical superpositions. 
The range of overlaps (see the colour bar) is thus 
broad and covers the range [0.05, 0.95]. Neverthe-
less the autoencoder is able to efficiently separate 
the data, and the resulting distribution in the fea-
ture space is broadly similar to those seen for two-
state systems. The presence of three higher excited 
states is illustrated with three intermediate (red 
online) symbols indicating the positions of their 
encodings. We observe that the  algorithm was 
able to clearly distinguish the ground and the first 
excited state (magenta marker in online version). 
The  remaining excited states are quite well sepa-
rated from the  ground and the  first excited state 
but lumped together  –  this is the  consequence of 
their small weights that carry too little useful in-
formation. In panel (d), the simulation is repeated 
with p  =  10. Here, the  dominance of the  ground 
state is much stronger (its mean weight is 0.832); 
this naturally results in an even clearer separation 
of the ground and the first excited state as well as in 
stronger clustering of data around the ground state.

Proceeding to larger HS such as N = 50 shown 
in Fig.  3(e, f), we see that the  two-dimensional 
distributions in the feature space still retain famil-
iar features and overall the autoencoder is able to 
successfully separate the  data. However, the  in-
creasing number of contributing states leads to 
a more problematic identification of the positions 
of the  best encoding of the  true ground state. In 

panel (e) we show the results pertaining to p = 2. 
Here, the dominance of the ground state is rather 
weak as the mean weight of the ground state is just 
0.243. We see that the ground state is clearly sepa-
rated from the excited states but the excited states 
are hard to distinguish. However, due to the lack of 
data with 𝒬in > 0.57, the true ground state is beyond 
the edge of the  cluster. If the position of the  true 
ground state was not indicated and the task was to 
determine it from the  analysis, it would be quite 
hard to infer its position. In panel (f), the situation 
is more favourable; here p = 10 and the mean weight 
of the  ground state is 0.670. However, the  data is 
not well clustered and forms an extended crescent, 
therefore, it is again not easy to pinpoint an optimal 
representation of the ground state on the extended 
outer edge of the cluster. Nevertheless, in the  fol-
lowing subsection we will see that the observed un-
certainty of optimal representation does not pose 
a significant problem.

4.3. Quality of decoding

So far, we concentrated solely on the  encoding 
phase, i.e. the mapping of the input data to the fea-
ture space. This provided answers about the  al-
gorithm’s ability to separate and sort input data 
by distributing input superpositions of different 
quality 𝒬in to different regions of the feature plane. 
Let us now turn to decoding, i.e. the complemen-
tary mapping from the feature plane to the recon-
structed output states |ψout〉. For the sake of quali-
tative discussion, we define two additional metrics 
𝒬out = |〈ψout|ψgs〉|2 and 𝒬 = |〈ψ|ψout〉|2. They describe, 
respectively, the quality of the decoding (mapping 
from the feature space to the output wave function) 
and overall closeness of the  input and the  output 
states.

Figure 4 summarizes the findings. For two-state 
systems (panels (a) and (b)), the result clearly re-
flects the  intrinsically two-dimensional nature of 
the data. The input states are encoded in the feature 
space with one-to-one correspondence, therefore, 
the overall quality 𝒬 shown in panel (a) is very close 
to the unity. For five- and fifty-level systems the in-
put-to-output mapping is lossy. As shown in panel 
(c), in the case of N = 5, many different input states 
are encoded as the same pair of feature-space para-
meters (x, y), and subsequently reconstructed into 
a unique output state. The quality of reconstruction 
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(see panel (d)) covers the  entire range of values 
from 0 to 1, that is, the whole range of output states 
can be generated by sampling the two-dimensional 
feature space. In panel (d), the  blue region close 
to the origin (x, y) = (0, 0) accommodates encod-
ings characterized by the  nearly-zero overlap be-
tween the reconstructed state and the true ground 
state. On the other hand, the (yellow online) cres-
cent situated close to the geometric centre of input 
data points signifies the  region where encodings 
are nearly perfectly, with 𝒬out ≈ 1, reconstructed to 
the true ground state. Quite interestingly, in many-
level systems such as N = 50 depicted in panels (e) 
and (f) the overall situation is similar, but the light 
(yellow online) region of nearly perfect recon-
structions (see panel (f)) is much larger and cov-
ers a significant portion of the  feature space. This 
is fortunate, since the  uncertainty of pinpointing 
the  optimal representation for the  ground state 
turns out to matter very little. Even if the optimal 

location in the feature space is located with a poor 
accuracy, its broad neighbourhood accommodates 
encodings that are nearly as good. This phenome-
non can be understood by realizing that the task of 
separation of the useful signal (the component be-
longing to the ground state) from the noise (contri-
bution from excited states) actually becomes easier 
with the  growing number of excited states: their 
superpositions are drawn from spaces with larger 
dimensionality and consequently are more irregu-
lar and can be clearly identified as noise.

The potential improvements may be even more 
convincing when visualized directly at the  wave-
function level. For the  sake of a  specific example, 
we focus on a single particle moving on a 23 × 23 
square lattice. The  true ground state of this sys-
tem is described by a  product of two sine func-
tions, and the ground-state density distribution is 
shown in Fig.  5(a). We generate 1,000 superposi-
tions of the N = 50 lowest-energy eigenstates whose 
weights are sampled from the random-interval-di-
vision model with p = 2. The density distribution 
of the best – that is, having the largest overlap with 
the true ground state – of the samples is shown in 
panel (b). Having trained the  autoencoder with 
these 1,000 samples for the  usual 3,000 epochs, 
we find the pair of feature space parameters which 
minimize the energy of the system. The density dis-
tribution computed from the resulting wave func-
tion is plotted in Fig. 5(c) and shows a radical im-
provement.

Fig.  5. (a) True ground-state density 〈n̂〉 of a  single 
particle on a  square 23  ×  23 lattice. (b) Density of 
the sample that has the best overlap with the ground 
state. (c) Density of the vector generated by the au-
toencoder which minimizes the energy of the system.

Fig. 4. The quality 𝒬out of mapping from the feature 
space to the  output (or reconstructed) states (right 
column, panels (b), (d) and (f)) and the overall map-
ping 𝒬 from input to output. The rows, top to bottom, 
correspond to, respectively, N = 2, N = 5 and N = 50 
contributing states and the  colours have the  usual 
meaning. The  ’+’-shaped markers indicate the posi-
tion of the optimal representation, i.e. the position in 
the feature that is decoded to the output state that has 
the largest overlap with the true ground state.

CONCLUSIONS

To summarize, we performed a  study of the  po-
tential of autoencoder ANN in denoising infor-
mation of a quantum system’s ground state. Using 
the minimum set of assumptions, such as presence 
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of a  certain number of orthogonal contribut-
ing states and a  slight dominance of the  special 
‘ground’ state, we were able to construct a broadly 
applicable scheme to analyze and systematically 
sample the  minimal (two-dimensional) feature 
space. The  encouraging results motivate fur-
ther studies based on availability of additional 
information, e.g. noisy information of the  state 
energy that is typically available in numerical 
simulations.
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NEDIDELIO MATMENŲ SKAIČIAUS HILBERTO ERDVĖS ANALIZĖ 
PASITELKIANT AUTOENKODERĮ

G. Žlabys, M. Račiūnas, E. Anisimovas

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka
Straipsnyje aprašomas tiesioginio sklidimo auto-

enkoderių pritaikomumo siekiant patikimai nustatyti 
kvantinės sistemos pagrindinę būseną iš triukšmingo 
signalo, kurį sudaro seka atsitiktinių superpozicijų, pa-
imtų iš sistemos Hilberto erdvės nedidelio matmenų 
skaičiaus poerdvio, tyrimas. Siūloma schema remiasi tik 
minimaliomis prielaidomis: (i) laikoma, kad imties ele-
mentus sudaro baigtinio skaičiaus ortogonalių būsenų 
superpozicijos ir (ii) yra silpnas statistinis ieškomos pa-
grindinės būsenos dominavimas. Gaunami atsitiktiniai 

duomenys pasitelkiant autoenkoderį yra suspaudžiami į 
dvimatį požymių sluoksnį ir šis atvaizdavimas yra anali-
zuojamas siekiant nustatyti optimalų tikrosios pagrindi-
nės būsenos artinį. Siūlomas metodas yra universalus ir 
tinka tiek viendalelinėms, tiek daugiadalelinėms kvan-
tinėms sistemoms tirti. Taip pat parodoma, kad jis yra 
pritaikomas ir daugiadalelinėms sistemoms stipriuose 
magnetiniuose laukuose, kai sistemos energijos spektras 
yra fraktalinio pobūdžio, o banginės funkcijos pasižymi 
nereguliaria struktūra.
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