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The radiative QED corrections for the valence electron of the neutral Rg (Z = 111) atom are estimated within the framework
of the post-Dirac–Fock method. In this method the Koopmans’ approximation is proposed for the electron propagator in the
QED diagrams. Such calculation is done for the first time for this super-heavy atom. These results contribute to the discussion
concerning the accuracy of the QED corrections in the super-heavy elements. They also provide the accuracy limit of the
modern relativistic theoretical calculations for the super-heavy elements.
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1. Introduction

Recent experimental success in the super-heavy nu-
clei synthesis strongly indicate the existence of the so-
called “Island of Stability” for neutron-rich nuclei with
nuclear charge numbers in the region Z ∼ 112. Ac-
cording to theoretical predictions, the half-life time for
nuclei with proton number Z = 112 and neutron num-
bers N ∼ 184 could be rather long. These pairs of pro-
ton and neutron numbers are supposed to correspond to
the filled proton and neutron shells.

The element E111 (Roentgenium) from the 11th
group of Mendeleev Periodic Table (MPT) or from the
coinage metal atoms group is very close to the peak of
the stability island. The element has received its ac-
tual name only in 2004 from the International Union of
Pure and Applied Chemistry (IUPAC). Nevertheless, it
looks like that this element is the best candidate for the
exploration of the quantum electrodynamics (QED) ef-
fects in the super-heavy atoms. The QED effects within
the Dirac–Fock (DF) method for valence electrons is the
main topic of our consideration. The electrons of heavy
atoms move in very strong Coulomb field and there-
fore the corresponding calculations should be prefer-
ably done in the complete relativistic framework. For
the valence electron in the super-heavy heavy atoms
relativistic effects become so important that the super-
heavy element chemistry does not simply follow the
regular periodic trend. According to the chemical prop-

erties obtained within the first theoretical studies, the
element 112 (the neighbour of Rg in MPT) should be-
long to the noble gases group (see [1]), but recent cal-
culations contradict this conclusion (see [2, 3]). This
means that more accurate theoretical studies of such el-
ements are very important.

The main objective of the present study is the compu-
tation of the electronic states of the super-heavy coinage
metal Rg atom within the post-Dirac–Fock (PDF) ap-
proach. The algorithm of PDF is described in the fol-
lowing sections. The energy levels both for the inner
and for the valence states have been obtained with the
main QED self-energy correction (SE) as an intermedi-
ate step of the Dirac–Fock procedure. It is shown that
the inner-electron self-consistent DF procedure is quite
important for 7s electron QED correction in Rg. The
other QED correction (the vacuum polarization (VP))
can be taken into account within the same PDF frame-
work.

The numerical evaluation of the binding energy for
the inner and, particularly, for the valence electrons in
super-heavy atoms are of special attention for the last
forty years. The reasonable values can be found, for ex-
ample, in [4]. The modern theoretical evaluations, like
a modification of configuration interaction (CI) method
[2] or coupled cluster (CC) method [5], are more reli-
able for the practical using. But all such calculations do
not take into account the SE corrections in the frame-
work of contemporary QED. It may be quite difficult to

© Lithuanian Academy of Sciences, 2011 ISSN 1648-8504



20 I.A. Goydenko and Yu.Yu. Dmitriev / Lithuanian J. Phys. 51, 19–24 (2011)

incorporate the SE effects in CI or CC methods. Nev-
ertheless, the CI or CC computations can define the
accuracy of all present relativistic calculations without
QED.

Our estimates can stimulate a discussion concerning
the accuracy of the QED corrections in the super-heavy
elements itself. The main difficulties of similar esti-
mates are considered in Ref. [6] for the valence elec-
trons of atoms from the 11th group of MPT and earlier
in Ref. [7] for the element from the first group of MPT.
Both papers have shown that the pure QED corrections
in so-called local-potential approach are not enough to
achieve the necessary accuracy of these calculations.

The present paper is organized as follows. In Sec. 2
the Koopmans’ approximation is introduced for the
one-particle Green’s function in quantum mechanics.
The main consequence of this approximation is the al-
gorithm for the self-consistent solution of the Dyson
equation with truncated mass-operator. This algorithm
is then transferred to QED and here it comprises the
self-consistent DF algorithm with the inherited radia-
tive corrections (PDF).

Section 3 presents the applications of this PDF
method for the SE correction. The numerical results for
the given correction are printed in Sec. 4. Some possi-
ble explanations for the obtained results are discussed
in Sec. 4 as well.

The atomic unit system (e = me = h̄ = 1, where e
is the electron charge, me is the electron mass, andh̄ is
the Planck’s constant) is used throughout the paper.

2. Koopmans’ approximation and one-particle
Green’s function

2.1. Energy of system and Koopmans’ approximation

As follows from the Brillouin’s conditions, in quan-
tum mechanics of electrons the Koopmans’ matrix K̃

K(Adv)
pq = ⟨|

[
Ĥ, a†p

]
aq |⟩ (1)

calculated with an optimal state function has to be Her-
mitean. The density matrix D̃ in atomic orbital (or
molecular orbital) basis set is written as follows:

Dpq = (ρN )pq = ⟨| a†paq |⟩ . (2)

Koopmans’ hole (advanced) equations are∑
r

K(Adv)
pr ψj

r = ε
(i.p.)
j

∑
r

Dprψ
j
r , (3)

where −ε(i.p.)j = I
(i.p.)
j (j = 1, . . .) are ionization po-

tentials. From the Koopmans’ equation the basis set for

simultaneous diagonal decompositions of {Dpq} and
{K(Adv)

pr } are obtained:

Dpq =
∑
jrs

ψj
rDprDsqψ

j
s , (4)

K(Adv)
pq =

∑
jrs

ψj
rDprε

(i.p.)
j Dsqψ

j
s . (5)

A similar equation is also valid for the retarded (par-
ticle) Koopmans’ matrix∑

r

K(Ret)
pr ϕjr =

∑
r

⟨|
[
ap, Ĥ

]
a†r |⟩ϕjr

= ε
(e.a.)
j

∑
r

D(Ret)
pr ϕjr , (6)

where ε(e.a.)j (j = 1, . . .) are the electron affinities.
The advanced one-particle Green’s function in ex-

tended Koopmans’ approximation is

G(Adv)
pq (ε) =

∑
jrs

ψj
rDpr

1

ε− ε
(i.p.)
j − i0

Dsqψ
j
s . (7)

Similar to the electron density and the advanced
Koppmans matrix the complement electron density and
the retarded Koopmans’ matrix are obtained as zero-
and first-order momenta of advanced and retarded one-
particle Green’s function.

After this we can write the one-particle Green’s func-
tion in Koopmans’ approximation:

G(Koopm)
pq (ε) =

∑
j

(
Ψj

p

1

ε− ε
(i.p.)
j − i0

Ψj
q

+Φj
p

1

ε− ε
(e.a.)
j + i0

Φj
q

)
. (8)

From the Eqs. (4), (5), and (7) it is seen that

(D̃)pq = Dpq =
1

2πi

∮
l+

G(Koopm)
pq (ε) dε , (9)

(K̃)pq = Kpq =
1

2πi

∮
l+

εG(Koopm)
pq (ε) dε , (10)

and the energy of the many-particle electron system can
be written as

E =
1

2
Tr

(
K̃ + hD̃

)
. (11)
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2.2. Truncated irreducible mass-operators and
perturbation corrections

Equations (8), (9), (10), and (11) of the many-
particle quantum mechanics (MPQM) can be used for
self-consistent solutions of the Dyson equation for the
one-particle Green’s function

G̃ = G̃o + G̃oM̃
(irr)(G̃)G̃ , (12)

where the irreducible mass operator M̃ (irr)(G̃) is ex-
pressed as a sum of all irreducible Feynman diagrams
with the one-particle Green’s function as the electron
propagator. The Feynman diagram of the lth order is
called here irreducible if it does not contain parts of the
lower orders (< l). From Eq. (11) and from the Dyson
equation for the one-particle Green’s function (12) it
follows that

E =
1

2
Tr

∮
l+

(ε+ ĥ)G̃(ε) dε

=
1

2
Tr

∮
l+

[
M̂ (irr)(G̃(ε)) + 2ĥ

]
G̃(ε) dε . (13)

Iterative solution of the Dyson equation (12) with the
complete irreducible mass-operator obviously results in
the perturbation series in powers of interaction with
the propagators of non-interacting electrons. In prac-
tice only truncated irreducible mass-operators M̃(irr)

are used in (12) instead of M̃ (irr), then the iterations of
the Dyson equation (12) lead to an expansion of a par-
tially dressed one-particle Green’s function, therefore
the solutions of the Dyson equations with the truncated
mass-operator correspond to partial summations in the
initial perturbation series for the Green’s function G̃.
We obtain self-consistent solutions G̃M of the Dyson
equation with the truncated mass-operator M̃(irr) as the
expansion (8) using Koopmans’ SCF procedure [8, 9]
and call it the Koopmans’ approximation. In Koop-
mans’ SCF iterations of the Dyson equation at each step
the Koopmans’ operator is taken from the previous step
according to Eq. (10). The density matrix in this ap-
proximation is written as

D̃ =
1

2

∮
l+

[
(G̃o(ε)M̃

(irr)(G̃(Koopm)(ε))G̃(Koopm)(ε)

+ G̃(Koopm)(ε)M̃(irr)(G̃(Koopm)(ε))G̃o(ε)
]

dε . (14)

If we use for G̃M(ε) the Koopmans’ approximation
G̃(Koopm)(ε), the energy EM is calculated as

EM = Tr
1

2

∮
l+

(ε+ ĥ)G̃(Koopm)(ε) dε

=
1

2
Tr

∮
l+

[
M̂(irr)(G̃(Koopm)(ε))+2ĥ

]
G̃(Koopm)(ε) dε

=
1

2
Tr

∮
l+

[
M̂(irr)(G̃(Koopm)(ε))+2ĥ

]
G̃(Koopm)(ε) dε .

(15)

The main pecularity of this application of Koop-
mans’ SCF procedure is that the Koopmans’ matrix cal-
culated as Eq. (10) is non-Hermitean and therefore in
Koopmans’ SCF iterations the singular value decom-
position is applied. When in MPQM the mass-operator
is truncated to the irreducible terms of the first order,
then the Koopmans’ SCF solution of the Dyson equa-
tion corresponds to the Hartree–Fock approximation of
the one-electron Green’s function.

3. Post-Dirac–Fock estimates of radiative
self-energy correction

The Koopmans’ SCF algorithm to obtain a self-
consistent solution of the Dyson equation for the one-
particle Green’s function in quantum mechanics can
be extended to QED. In QED the truncated mass-
operators have to be renormalized. The ultraviolet di-
vergent terms are isolated by the expansion in powers
of the external field potential. Then the divergent terms
are combined with the corresponding counter-terms.
The direct use of the external potential expansion for
the mass-operator renormalization has become practi-
cal due to recent developments of the numerical meth-
ods (B-spline technique) and the space discretization.
The infrared divergences cancel in the sum of zero- and
one-potential terms. The Koopmans’ SCF solution of
the Dyson equation with renormalized mass-operator
we call post-Dirac–Fock method (PDF).

In this section we use a simplified version of this
algorithm for the Dyson equation in QED to calculate
the lowest order radiative QED corrections for valence
electron of the neutral Roentgenium (Rg). The lowest-
order valence electron radiative corrections have been
estimated in the paper [6]. As shown in [6], the conven-
tional DF method is not enough for adequate estimates
of the self-energy (SE) terms.

Here we use PDF Eq. (15) and the corresponding
expression for the DF energy to calculate the radiative
correction as the difference of the PDF and DF ener-
gies. The ε-plane singularities of the integrands orig-
inate from the singularities of the electron and photon
propagators. The contour l+ of the integrals in Eqs. (9)–
(15) runs in the complex energy plane around the iso-
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Fig. 1. Expansion of the electron mass-operator M̃ graph in powers of the effective interaction with the external field Veff. The double
solid line denotes the electron propagator in the external field, the ordinary solid line denotes the free electron propagator, and the wavy line

denotes the photon propagator. The dashed line with the cross at the end denotes the interaction with the field Veff.

lated poles of the integrands and around the poles of
M̂(irr)(G̃(Koopm)(ε)). This factor in the integrands has
poles on the boundaries of the branch cuts. Practically,
we will use the loop around the pole within energy level
of the valence electron as it is following from the per-
turbation theory.

We start the calculation of the PDF energy with the
renormalization, which is done via the potential expan-
sion of the mass-operator. The Feynman graphs repre-
senting the expansion of M̃ in the vicinity of the bound
electron energy in the state a are shown in Fig. 1. The
ultraviolet divergences appear respectively in the first
two terms, called “zero-potential” (z), M̃(z)

a , and “one-
potential” (o), M̃(o)

a , terms. The third term, so-called
“many-potential” (m) term M̃

(m)
a , is finite but it is most

complicated one for numerical evaluations. The eval-
uation of this term together with renormalization may
be achieved according to the scheme presented in [10].
The renormalized radiative energy shift (SE) of the one-
electron energy level a in the energy (15) appears as

∆ESE(ren)
a = ∆Eren(z)

a +∆Eren(o)
a +∆Eren(m)

a , (16)

where this quantity includes the occupation number of
this one-electron level.

In order to calculate the potential expansion in our
simplified PDF procedure we use the local effective po-
tential Veff calculated via the DF wave functions:

Veff(r) =

(
d
dr

− κ

r

)
FDF(r) + εGDF(r)

GDF(r)
, (17)

where GDF and FDF are the large and the small radial
components of Dirac wave function, ε = Enκ − c2.
At each step of conventional DF procedure the Veff,i(r)
is calculated for every orbital χi state function as done
in [6].

χ̃i = χi + δχi

with

δχi =
∑
n ̸=i

⟨χn|∆M̃SE(ren)|χi⟩
ϵi − ϵn

χn , (18)

Fig. 2. The integration over the frequency of the virtual photon ω
in many-potential term. The contour of integration is a solid line.

where MSE(ren) ≡ ∆E
SE(ren)
a only and the summation

is done over all one-electron orbitals of atom. To some
extent it is a redefinition of the Fock operator

f̃ = h̃+
∑
j

[
J̃j − K̃j

]
in PDF: at each step of DF procedure for each electron
the new term ∆M̃SE(ren) is added. However, this is a
simplification of PDF method, where fractional occu-
pation numbers appear and this feature of PDF is seen
from the one-electron density (14).

In comparison with of the conventional DF method,
Eq. (15) reveals additional pole terms in ∆M̂SE(ren) ×
(G̃(Koopm)(ε)). It follows from the definition of Green’s
function and from Eq. (15). During the calculation of
the so-called “many-potential term” by the method from
Ref. [10], the contour of integration over the virtual
photon frequency ω will run around the “pole” Ea−ω,
as shown in Fig. 2.

Finally, taking into account poles of the “many-
potential term”, we can write their complete contribu-
tion to the radiation correction for one-electron energy
as follows:

lim
ω→0

∫
dx1 dx2 dx3 dx4Ψa(x1) γ

µGo(x1, x2)
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Table 1. The binding energy and radiative
correction for the valence electron in Rg

(in a. u.).

Rg (7s)

δϵ
(3)PT
ns 3.26·10−3 from [6]

δϵ
(3)DF
ns 3.75·10−3 from [6]

ϵ
(1)
ns 0.42852
δϵ

(3)PDF
ns 0.03·10−3

× Veff(x2)
∑
n

Ψn(x3)Ψn(x2)

EA − ω − En − i0
Go(x3, x4)

× Veff(x3) γν Ψa(x4)D
ν
µ(x1 − x4, ω) , (19)

whereΨn(x) denotes the Dirac state functionn,D(x1−
x4, ω) is the photon propagator, and the sum∑

n

Ψn(x3)Ψn(x2)

EA − ω − En − i0

is the Koopmans’ expansion for the advanced one-
electron propagator. This term should be added to the
pure DF value of SE correction.

4. Numerical result and summary

In Table 1 we present the estimates of the radiative
corrections for the valence electron of the neutral Rg.
Some estimates are taken from [6] and they are com-
plemented with the new data obtained within simpli-
fied approach to our PDF method. The first two values
with the SE correction (16) are obtained within different
modifications of the DF procedure. The values δϵ(3)PT

ns

were obtained first in [11], and later they were verified
several times (see for example in [12]). The next line in
Table 1 is the binding energy for the 7s valence electron
in the DF approach with the Fermi nuclear charge dis-
tribution. This line was included in Table 1 to demon-
strate that the QED effects are not at all negligible in the
studies of the valence states in such systems. The result
which presents an estimate of the Eq. (15) is shown on
the last line.

The Green’s function method provides a straightfor-
ward instrumentation for one-particle description of in-
teracting particles (density matrix, self-energy, correla-
tion interaction) within QED. The electrons of atoms
or molecules in QED are in mixed state and therefore

the pure states of the quantum mechanics have the sta-
tistical interpretation. In this work we have outlined
an approach which relates to the variational approach
to the MCSCF treatment of correlation and which is
based on the extended Koopmans’ theorem. We have
shown that the Koopmans’ approximation makes it pos-
sible to obtain the self-consistent approximations for
one-particle Green’s functions and to extend this algo-
rithm to QED. In this way some basic properties of the
MCSCF Green’s function are preserved and it can be
used in many applications.
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KVANTINĖS ELEKTRODINAMIKOS PATAISOS SUNKIŲ IR YPAČ SUNKIŲ ATOMŲ
VALENTINIAM ELEKTRONUI

I.A. Goydenko, Yu.Yu. Dmitriev
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Santrauka
Radiacinės kvantinės elektrodinamikos (KED) pataisos neutra-

laus Rg (Z = 111) atomo valentiniam elektronui įvertintos �vė-
lesnio nei Dirako ir Foko� metodo požiūriu. Šiame metode elekt-
rono propagatorių KED diagramose pasiūlyta aproksimuoti pagal

Koopmansą. Šiam ypač sunkiam atomui toks skaičiavimas atliktas
pirmą kartą. Rezultatai papildo diskusiją apie KED pataisų ypač
sunkiems atomams tikslumą. Jie taip pat rodo šiuolaikinių teorinių
skaičiavimų ypač sunkiems atomams tikslumo ribą.


