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SPIN PROPERTIES OF ELECTRONS IN A QUANTUM TUBE
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Spin properties of electrons, the wave function of which is confined by cylindrical potential of a hollow semiconducting
cylinder (quantum tube), and which simultaneously propagate along the cylinder axis are analysed. The spin–orbit interaction
is included via Rashba and Dresselhaus Hamiltonians. The electron spin surface, which describes all possible spin eigen-
and superposition states, is shown to reduce to the Bloch sphere, independent of the electron energy and semiconductor band
parameters. The electron dispersion can be tuned to a regime that is favourable for the operation of the spin-FET by trimming
the diameter of the quantum tube.
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1. Introduction

Nonplanar 2D electronic systems, where the elec-
tron moves on a curved surface, recently have attracted
the attention of the experimentalists and theorists. A
single-wall carbon nanotube probably is the best-known
system of this kind (see, for example, books [1, 2] and
review articles [3–5] on recent achievements in electri-
cal, thermal, and spin properties of carbon nanotubes).
The self-rolling of thin strained semiconductor bilayer
systems, as proposed by Prinz et al. [6–8], is another
example. The latter nanotubes support the electron mo-
tion on a curved surface in both elementary and com-
pound semiconductors. A typical silicon–germanium
nanotube may have a 230 nm diameter and be as long as
12 mm. The nanotubes can be formed from thin solid
films of almost any material deposited on a substrate,
once one edge of the film is released from the substrate
by a selective etching procedure. The geometric prop-
erties of such nanotubes are determined by mechanical
strain in the layer and the etching time.

Of a general interest is how the global topology of
a nanostructure affects the quantum-mechanical wave
function, electron motion trajectories, and spin prop-
erties. The confinement topology of the quantum tube
(QT) is different from that of a planar quantum well or
quantum wire (rod). In the QT the electron is confined
to tube wall and thus its ground state is characterized by
zero or close to zero probability of being at the centre of

the tube, Fig. 1. Here we shall be interested in the effect
of spin–orbit (SO) interaction on electron spin proper-
ties in the semiconducting QTs. Ballistic transport and
SO interaction of 2D electrons confined to cylindrical
surface were considered theoretically in Refs. [9, 10],
where it was shown that the transport in QTs, in con-
trast to planar 2D systems, depends on the sign of SO
interaction constant. In [11] the k · p theory was de-
veloped for 2D holes in cylindrical quantum systems.
In the present paper, general properties of electron spin
in QT are analysed using a notion of the spin surface
and a vectorial model for spin precession. In Sec. 2
the needed Hamiltonian is constructed and in Sec. 3 the
electron spin properties are investigated. The properties
of spin surfaces in planar quantumwells were discussed
earlier in Refs. [12–15].

2. The Hamiltonian

Figure 1(a) shows the cross-section of the QT and its
natural reference system, cylindrical coordinate system
(r, φ, z), where r is the radius, φ is the azimuthal angle,
and the coordinate z runs along the QT axis. We shall
assume that the wall of the QT is thin enough and thus
the QT can be characterized by an average radius R.
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Fig. 1. (a) Cross-section of the cylindrical QT with the coordinate
system used. (b) Profile of the potential energy in the direction per-

pendicular to QT axis and the ground state wave function.

The wave vector in the cylindrical coordinate system
then reads

k = (kr, kφ, kz) =

(∣∣∣√k2x + k2y

∣∣∣ ,− i
R

∂

∂φ
, kz

)
,

(1)
where kx, ky, kz are Cartesianwave vector components.
In the following, the electron spin will be described by
the vector of Pauli matrices σ, which in the cylindrical
coordinate system has the following components:

σr =

(
0 e−iφ

eiφ 0

)
, (2)

σφ =

(
0 −ie−iφ

ieiφ 0

)
, (3)

σz =

(
1 0
0−1

)
. (4)

These matrices satisfy the standard commutation rela-
tions.

In the stationary state the electron has the energy E
and propagates along the tube with the wave vector kz .
It can be described by a two-component spinor

Ψ = ψ(r, φ)eikzz e−iEt/h̄ , (5)

whereψ(r, φ) ≡ ψ takes into account the electron spin.
In the following the coordinate r will be suppressed,
keeping in mind that only the fundamental radial mode
has been selected. The other notations are standard.
The confining potentialV (r) is assumed to have a cylin-
drical symmetry with potential minimum at r ≈ R > 0.
Figure 1(b) shows a possible potential profile which is
equal zero everywhere, V (r) = 0, except in a cylindri-
cal shell, where it is constant: V (r) = const < 0. In

the limiting case of an infinite confinement the electron
wave functions will be bound to the cylindrical shell.
It can be shown that in the latter case all radial modes
will propagate with the same velocity proportional to
kz . For an arbitrary potential distribution there may
be a dispersion between the different radial modes. In
the following we shall assume that the confinement is
strong enough and, therefore, the energy of the funda-
mental mode is well separated from the higher order
modes. A typical probability distribution of the funda-
mental mode is shown in Fig. 1(b).

Under the above assumptions and with the SO in-
teraction included, the eigenvalue equation for the two-
component spinor ψ assumes the form

−∂
2ψ

∂φ2
+ k2ψ +HSOψ = εψ , (6)

where the Hamiltonian HSO takes into account the SO
interaction. It contains nondiagonal matrix elements
which mix up the spin-up and spin-down states of ψ.
Two kinds of SO interaction [16] that are characteris-
tic of semiconducting nanostructures will be included.
The Rashba interaction, which is proportional to the
constant α, comes from the structural asymmetry. In
the case of QT, the latter comes from the fact that the
inner and outer surfaces of the confining shell are not
equivalent, for example, their curvature is different, or
the lattice strains in the inner and outer surfaces of the
wall are not equal, etc. The Dresselhaus SO interaction,
which is proportional to the constant β, comes from the
absence of the inversion symmetry in the lattice of the
constituent material. Due to large strains in nanotubes,
the inversion asymmetry may be induced in otherwise
centrosymmetric materials such as silicon. In the fol-
lowing the dimensionless energy, wave vector, Rashba
and Dresselhaus constants will be used:

ε =
2m∗R2E

h̄2
, k = Rkz , (7)

α̃ =
2αm∗R

h̄2
, β̃ =

2βm∗R

h̄2
, (8)

wherem∗ is the effective mass.
The spinor should satisfy the periodic boundary con-

dition on a circumference of the QT, ψ(φ) = ψ(φ +
2π). Since the projection of the total angular momen-
tum is equal to sum of orbital and spin components,
Lz + sz = Lz ± 1

2 ≡ j, the eigenspinors should satisfy
the following periodic boundary conditions:

ψ(φ) =

(
ei(j−

1
2
)φψf

0

)
or
(

0

ei(j+
1
2
)φψf

)
, (9)
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where the projection j assumes the values j = ±1
2 ,±

3
2 ,

±5
2 , . . . andψf is independent of the azimuthal angleφ.
The total Hamiltonian of the Eq. (6) consists of ki-

netic, Rashba, and Dresselhaus contributions,

H = Hk +HR +HD . (10)

The kinetic Hamiltonian in the basis (9) is diagonal. In
the normalized form it assumes the form

Hk =

(
k2 + (j − 1

2)
2 0

0 k2 + (j + 1
2)

2

)
. (11)

It includes the electron motion along and around the
cylinder of radius R.

In coordinate independent notation the Rashba
Hamiltonian is given by [16]

HR = α(σ×k) · n , (12)

where n is the normal to the interface, in our case to the
QT surface. In the cylindrical coordinates, using the
matrices (2)–(4) one finds

HR = α (σφkz − σzkφ) = α

(
−kφ −ie−iφkz

ieiφkz kφ

)
.

(13)
The angular wave vector kφ is given by Eq. (1). InHR,
in addition, we have taken into account a possible rota-
tion of the coordinate system around the z axis by in-
cluding the exponent eiφ. As we shall see, the eigenen-
ergies are invariant to such rotation. With the exponents
included, some of the intermediate calculations appear
to be simpler.

In coordinate independent representation the Dres-
selhaus Hamiltonian

HD = γ σ·κ (14)

is proportional to the third power of the wave vector
components. In the Cartesian coordinate system the
components of the vector κ are κx = kx(k

2
y − k2z),

κy = ky(k
2
z −k2x), κz = kz(k

2
x−k2y). In the case of 2D

planar quantumwell the HamiltonianHD can be simpli-
fied if one neglects the anisotropy in SO splitting [17].
The simplified Hamiltonian, which is frequently used
in the analysis, becomes proportional to the first rather
than third power of wave vector components. We shall
use the simplified form of the Hamiltonian. When the
heterostructure interface is perpendicular to the z axis
the Hamiltonian (14) simplifies to

HD ≈ β(σxkx − σyky) . (15)

Note that in the 2D case a different SO interaction con-
stant has appeared. When the z axis coincides with the

Fig. 2. Dispersion (normalized energy versus normalized wave vec-
tor) calculated with formula (18) at SO parameter values α̃ = β̃ =
0.05 and j = 1

2
, 3

2
, and 5

2
. The solid and dashed lines correspond

to up and down eigenstates. The larger the angular momentum j is,
the higher is the energy of the corresponding curve.

QT symmetry axis, the simplified Dresselhaus Hamil-
tonian (15) in the cylindrical coordinate system reads

HD = β({σφ, kφ} − σzkz) , (16)

where the curly brackets indicate the symmetrized prod-
uct of the operators, {σφ, kφ} = (σφkφ + kφσφ) /
2. Then, in the basis (9) the normalized Dresselhaus
Hamiltonian assumes the following form:

HD = β̃

(
−k −ije−iφ

ijeiφ k

)
. (17)

Similarly as in the Rashba Hamiltonian (13), here we
have included the exponents in the off-diagonal terms.

The spectrum of the total Hamiltonian H = Hk +
HR +HD is

ε= j2 + k2 +
1− 2α̃

4
(18)

±
√
j(j − 2jα̃+ 2kβ̃) + (j2 + k2)(α̃2 + β̃2) ,

where the plus and minus signs before the square root,
as we shall see, correspond to two spin eigenstates1.
Figure 2 shows the character of the spectrum for three
subbands that correspond to the lowest values of the to-
tal angular momentum: j = 1

2 ,
3
2 , and

5
2 . For negative

1 In the Ref. [10] an additional cross term −4jkα̃β̃ under the root
of the spectrum is present. This term reappears if the Dresselhaus
Hamiltonian HD is replaced by its complex conjugate. However
in this case the Rashba (13) and Dresselhaus (17) Hamiltonians
are in different coordinate systems, mutually rotated around the z
axis by the angle π.



94 A. Dargys / Lithuanian J. Phys. 48, 91–97 (2008)

j’s (rotation in the opposite direction around the cir-
cumference of the QT) the dispersions are mirror im-
ages with respect to the vertical axis. The parameters
used in the calculation correspond to realistic values:
α = β = 2.3·10−10 eV cm,m∗/m0 = 0.066, and R =
50 nm. For these parameter values the energy normal-
ization unit is 9.1 meV.

3. Spin surfaces and spin trajectories

In the formulation of the problem it has been tac-
itly assumed that the quantization axis is parallel to QT
axis, i. e., of the three Pauli matrices only σz is diago-
nal. However, as we shall see, in the presence of SO
interaction the direction of the natural quantization axis
is different. The spin surface represents all possible di-
rections and magnitudes of the average spin in the spin
space [12, 15, 18, 19]. In the simplest case when the
SO interaction is unimportant it reduces to the Bloch
sphere [18]. There is one-to-one correspondence be-
tween the points on the spin surface and all possible
superpositions in the Hilbert space. The straight line
that connects “north” and “south” poles (see Fig. 3) on
the spin surface corresponds to the natural quantization
axis. By this reason the evolution of a spin state in the
Hilbert space under the control field is fully reflected on
the spin surface in a three-dimensional spin space. The
latter is more transparent and intuitively more accept-
able [15]. Furthermore, the points on the spin surface
are directly related to the magnetization of the spin sys-
tem.

To obtain the spin surface the two-dimensional spinor
was parametrized in the energy representation,

ψε = (eiϕ/2 cosϑ, e−iϕ/2 sinϑ) , (19)

which then was transformed to the initial representa-
tion, where the quantization axis is parallel to z axis,
by an appropriate unitary matrix. The latter was con-
structed from the eigenvectors of the total Hamilto-
nian (10). The spin surface can be drawn in the spin
space by visualizing the average spin

⟨σ(ϑ, ϕ)⟩ = ⟨ψ(ϑ, ϕ)|σ|ψ(ϑ, ϕ)⟩ , (20)

where the free parameters ϑ and ϕ are varied in an ap-
propriate range. When both the Rashba and Dressel-
haus Hamiltonians are included, the spin surface after
somewhat lengthy calculations can be expressed in the
cylindrical coordinate system by the components

⟨σr⟩=− sinϕ sin 2ϑ , (21)

⟨σφ⟩=−d−1
[
(j − jα̃+ kβ̃) cosϕ sin 2ϑ

+(kα̃+ jβ̃) cos 2ϑ
]
, (22)

⟨σz⟩= d−1
[
(j − jα̃+ kβ̃) cos 2ϑ

−(kα̃+ jβ̃) cosϕ sin 2ϑ)
]
, (23)

where d =
√
j(j−2jα̃+2kβ̃)+(j2+k2)(α̃2+β̃2) .

The spin surface depends on the wave vector magni-
tude, Rashba and Dresselhaus constants. However, the
important property is that the square of the average spin
vector, or the radius of the spin surface, appears to be in-
dependent of all parameters and exactly equals to unity:

⟨σ⟩2 = 1 . (24)

From this result a very important conclusion follows:
after the Rashba and Dresselhaus SO interactions have
been included, the spin surface remains spherical and
thus in all cases the electron spin state can be repre-
sented on the Bloch sphere. It should be remembered
that in the presence of SO interaction the spin is not
a good quantum number and therefore, in general, the
spin surface should not necessarily reduce to spherical.
Examples of nonspherical spin surfaces in the cases of
planar quantum wells can be found in Refs. [13–15].
Figure 3 shows the spin surface, where the parallels
correspond to ϕ = const and meridians to ϑ = const.
The straight line that connects the poles represents the
natural or true quantization axis of the problem. The
precession of the average spin, or macroscopic magne-
tization vector, takes place around this axis. Although
the spin surface appears to be spherical, a concrete di-
rection of the quantization axis depends on band param-
eters, electron wave vector, and QT diameter. Below,
the required dependence will be found.

The equation of motion for the spin operator σ can
be expressed through the commutator

dσ
dt

=
i
h̄
[σ,H] , (25)

where H is the Hamiltonian. The measured spin ⟨S⟩
is related to the averaged Pauli matrices via the rela-
tion ⟨S⟩ = h̄⟨σ⟩/2. If the Hamiltonian (10) and the
parametrizedwave function (19) transformed to the rep-
resentation σz are used, then it appears that the equation
of motion depends only on the products of the following
trigonometric functions entering the Eqs. (21)–(23):

sinϕ sin 2ϑ=−⟨σr⟩ , (26)
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Fig. 3. Spin surface represented by parallels and meridians, and
precession trajectories (thick line) that run near the equator for the
Hamiltonian with Rashba and Dresselhaus contributions included:
α̃ = β̃ = 0.5. The wave vector for various trajectories is in the
range k = 0.7–1.5 and j = 1/2. The spin surface was drawn for

k = 1.

cosϕ sin 2ϑ=− 2

Ω

[
(j − jα̃+ kβ̃)⟨σφ⟩

+ (kα̃+ jβ̃)⟨σz⟩
]
, (27)

cos 2ϑ=
2

Ω

[
(j − jα̃+ kβ̃)⟨σz⟩

− (kα̃+ jβ̃)⟨σφ⟩
]
, (28)

whereΩ, as we shall see, can be identified with the pre-
cession frequency

Ω = |Ω| = (29)

2

√
j2(1− 2α̃) + (j2 + k2)(α̃2 + β̃2) + 2jkβ̃ .

One can construct the system of differential equations
that does not contain the parameters ϑ and ϕ by, at
first, calculating the quantummechanical average of the
equation of motion (25) and then replacing the products
of trigonometric functions by right-hand sides of (26)–
(28). Since this system of equations describes the pre-
cession of the tip of spin or magnetization vector on the
Bloch sphere, it can be cast into a form of a vectorial
differential equation, similar to the spinning top equa-
tion,

d⟨S⟩
dt

= −Ω× ⟨S⟩ , (30)

where ⟨S⟩ = h̄⟨σ⟩/2 = h̄ (⟨σr⟩, ⟨σφ⟩, ⟨σz⟩) /2 and
where the averages are given by Eqs. (21)–(23), and the

precession vector Ω = (Ωr,Ωϕ,Ωz) in the cylindrical
coordinate system is given by

Ω = 2


(kα̃+ jβ̃) sinφ

(kα̃+ jβ̃) cosφ

j(1− α̃) + kβ̃

 . (31)

The module of the vector Ω gives the spin splitting en-
ergy (29), which coincides with the square root in the
dispersion relation (18). It is seen that the variation of
the polar angle φ rotates the natural quantization axis
around the QT axis. Since the spin splitting energy
does not depend on φ, the appearance of φ in (31) is
a reflection of the cylindrical symmetry of the problem.
Thus, a concrete direction of the quantization axis on
the cone still remains undefined. Without losing gen-
erality it can be assumed that φ = 0. In the latter case
the quantization axis, as follows from (31), lies in (φ, z)
plane. Thus, using the precession vector (31) the sys-
tem of differential equations can be rewritten in a form
of the vectorial equation for a spinning top. If needed
the obtained spin precession equation (30) can be sup-
plemented by a driving torque, or spin relaxation terms.
The spherical symmetry of the spin surface assures that
all imaginable trajectories of the magnetization vector
end will lie on the Bloch sphere. The solid line on the
equator in Fig. 3 shows the spin trajectories calculated
with Eqs. (30) and (31) at wave vector values in the
range k = 0.7–1.5, and j = 1

2 , α̃ = β̃ = 0.5. The inte-
gration of the precession equation was performed with
the initial condition Ω0 = (0, 1, 1)/

√
2, which corre-

sponds to ϑ = π/4 and ϕ = 0 in the parameter space.
At employed parameter values, it is seen that the scatter
of the trajectories is rather small.

Some of spin properties of the QT immediately fol-
low from the precession equations (30), (31). Firstly,
if k ≈ 0, the precession frequency Ω is not symmetric
with respect to sign of the Rashba constant. We shall re-
mind that in a case of the planar quantum well only the
absolute value of the Rashba coefficient appears. Thus,
in the QT the sign of the SO interaction can be deter-
mined experimentally. Secondly, when the Rashba in-
teraction dominates (α̃ ≫ β̃), the expression (31) for
Ω shows that the natural quantization axis in this case
does not depend on material parameters if, in addition,
α̃ = 1. The quantization axis in this case is perpendic-
ular to QT axis. Since α̃ = 2αR/h̄2, this regime can be
realized by trimming the radius of the QT. When α̃ = 1
and β̃ = 0, the precession frequency is proportional to
k. This property is important for a proper operation of
the spin-FET [14, 20], since in this case the trajectories
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of all electrons, independent of their energy, lie on the
same spatial helix, in other words the precession length
does not dependent on the energy of the injected elec-
tron. However, at present it appears difficult to satisfy
the condition α̃ = 1 at experimentally available values
of the Rashba constant [21].

In this paper we have considered only single elec-
tron excitations. In one spatial dimension at high par-
ticle densities the Luttinger liquid is formed which has
altogether different properties from three-dimensional
Fermi liquid. The latter is stable with respect to
electron–hole excitations above and below the Fermi
sea, whereas the Luttinger liquid is unstable in this re-
spect and can support only collective excitations. The
remarkable feature of the Luttinger liquid is the separa-
tion between collective spin and charge oscillations at
finite temperatures, what is altogether different from the
single electron or hole excitations where the spin and
charge are tied together. Since the spin-collective exci-
tations have lower excitation energy, the so-called spin-
incoherent Luttinger liquid may be formed, where the
collective charge excitations are near the ground state
while spin excitations are highly excited, and thus are
incoherent. This subject was recently discussed in the
review article [22].

4. Conclusion

The main conclusion that follows from this study is
that the spin surface is spherical, independent of SO in-
teraction type, strength, and magnitude of the electron
velocity along the QT. This indicates that, in princi-
ple, it is possible to inject the spin into the QT with an
arbitrary direction of the spin. Of course, only those
directions which coincide with the natural quantiza-
tion or precession axis will be stationary. However,
for spintronics devices the most interesting are the su-
perpositions states. The deduced precession equations
(30)–(31) allow one to model the evolution of such spin
states. If the Rashba interaction predominates in the QT
then by tuning the QT diameter it is possible to reach the
regime favourable for spin-FET operation.
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ELEKTRONŲ SUKINIO SAVYBĖS KVANTINIAME VAMZDELYJE

A. Dargys

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Išnagrinėtos elektrono sukinio savybės, kai elektrono banginė

funkcija lokalizuota puslaidininkio cilindriniame potenciale (kvan-
tinio vamzdelio sienelėje) ir kai elektronas gali judėti išilgai vamz-
delio. Sąveika tarp elektrono sukinio ir jo orbitinio judėjimo įskai-
tyta per Rašbos ir Dreselhauso hamiltonianus. Gauta, kad elektrono

sukinio paviršius – pastarasis nusako visas galimas savąsias ir su-
perpozicines elektrono sukinio būsenas – transformuojasi į Blocho
sferą, nepriklausomai nuo puslaidininkį nusakančių parametrų bei
elektrono energijos. Parodyta, kad, parinkus kvantinio vamzdelio
diametrą, galima pasiekti režimą, kuris yra palankus sukinio tran-
zistoriaus darbui.


