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We derive general equations for angular coefficients needed to carry out atomic structure computations using symbolic state
expansions. In this new approach the energy is expressed, not in terms of kinetic energy and Slater integrals, but in terms of
two-electron matrix elements, with coefficients that are independent of the one-electron quantum numbers involved in these
matrix elements. Specific results are given for the matrix elements of a symmetric scalar two-body operator involving single-
replacement and double-replacement symbolic states. The derivations use jj coupling, coefficients of fractional parentage for
nonequivalent electrons, and diagrammatic angular momentum algebra.
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1. Introduction

Large scale atomic structure computations require
the repeated evaluation of many interaction matrix ele-
ments, each of which is the product of a radial and an
angular integral. The results of the angular integrations
do not change as the radial functions are adjusted during
the course of a calculation, so they are typically com-
puted at the beginning and stored. However the quan-
tity of this angular data grows rapidly with the size of
the computation. In the effort to develop computer pro-
grams capable of producing accurate atomic data, the
storage and retrieval of angular data is becoming a se-
rious issue. One method for addressing this problem is
the symbolic state expansion, proposed by Froese Fis-
cher [1]. In this approach, a symbolic state is defined as
a configuration state in which the quantum numbers of
the electron orbitals are not fully specified. The number
of basis states used can then be increased systematically
during the course of a calculation without changing the
number of symbolic states. The angular parts of the
integrations for the required matrix elements between
symbolic states can be worked out at the beginning and
saved. Then the size of the calculation can be increased
without recalculating this angular data.

In this paper we derive the angular coefficients
needed for the matrix elements of a two-body operator
in this new scheme. Because of the number of angular
momenta which must be recoupled and the complica-
tions of anti-symmetry, the derivations depend on two
concepts in addition to standard angular-momentum al-
gebra: the diagrammatic method of Jucys [2] and the
coefficients of fractional parentage for nonequivalent
electrons (MCFP) of Meshkov [3] and Armstrong [4, 5].
There are a number of different graphical methods of
performing angular integrals [6–9], most growing from
the original work of Jucys [10]. In this paper we specif-
ically use the scheme presented by Jucys and Bandzaitis
[2]; following Rudzikas [11] we refer to these as JB
graphs. All the results of this paper have been checked
in detail by the use of ordinary angular-momentum al-
gebra, following Rotenberg et al. [12]. Because of
the pressing need for relativistic calculations in heavy
atoms and ions, we do the derivations in jj coupling.
The corresponding results for LS coupling have been
worked out in a similar way [13] and are given in refer-
ence [1].
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2. The symbolic expansion

Let us consider an atom or ion with N electrons; the
multiconfiguration expansion of a general atomic state
can be written in terms of symbolic states:

|Ψatom⟩ =
∑
ref

cref |Ψref⟩+
∑
d

cd |Ψd⟩+
∑
s

cs |Ψs⟩ .

(1)
Here, |Ψref⟩ is a configuration state function belonging
to the reference set. The ket |Ψd⟩ represents a sym-
bolic state formed by a two-electron replacement from
the reference set – a double-replacement symbolic state,
and |Ψs⟩ is a single-replacement symbolic state ob-
tained in a similar way:

|Ψd⟩= | {(Ψsub)Jsub, (n1l1j1, n2l2j2)Jv} Jtot⟩ , (2)

|Ψs⟩= | {(Ψsub)Jsub, (nvlvjv)} Jtot⟩ . (3)

In the double-replacement symbolic state, Ψsub rep-
resents a subconfiguration: that is, a coupled anti-
symmmetric state of N − 2 electrons, formed by re-
moving two orbitals from a reference state. Like-
wise (n1l1j1, n2l2j2)Jv is a coupled antisymmetric
2-electron state formed from a pair of correlation or-
bitals. Here we assume that all these correlation orbitals
are individually orthogonal to all orbitals used in the
reference set. Finally the (N−2)-electron subconfigu-
ration and the 2-electron coupled pair are coupled to-
gether to form the fully antisymmetric N -electron state
function |Ψd⟩. Having thus defined |Ψd⟩, the structure
of |Ψs⟩ is self-explanatory. The crucial point is that,
whereas the reference set is given, and Ψsub, Jv, Jtot
are specified, the nlj quantum numbers of the correla-
tion orbitals remain unspecified.

One way to generate an expansion such as (1) is to ex-
pand one or more of the reference functions by “pulling
out” one or two electrons in all possible ways:

|Ψref(1, . . . , N)Jtot⟩ =∑
(Ψsub)Jsub,
(ψp)Jv

(Ψref |}Ψsub, ψp) (4)

| {Ψsub(1, . . . , N−2)Jsub, ψp(N−1, N)Jv} Jtot ⟩ .

Here, (Ψref |}Ψsub, ψp) is a coefficient of fractional
parentage for nonequivalent electrons (MCFP). Note
that while Ψref, Ψsub, and ψp are fully antisymmetric,
the newly formed N-electron states are not individually
antisymmetric, just as in the usual fractional parentage
expansion. Now each term in (4) can be used to form a

symbolic state |Ψd⟩ by first replacing both the orbitals
in the “pullout” state function ψp(N−1, N) by corre-
lation orbitals that are unoccupied in all the reference
state functions, and then summing over electron label
permutations to form a fully antisymmetric N -electron
state function |Ψd⟩. Obviously |Ψs⟩ can be formed
analogously.

Using the standard basis of configuration state func-
tions, a general matrix element is expressed as a product
of an angular factor and a radial factor. By contrast, in
the symbolic state method there will be a sum of prod-
ucts of three factors: (1) an angular factor independent
of the correlation orbitals, (2) an angular factor depend-
ing on the quantum numbers of the correlation orbitals,
(3) a two-electron matrix element, containing both an-
gular and radial factors [1]. It is our purpose in the
present work to derive explicit expressions for these an-
gular factors in the case of a two-body operator, which
will be needed in the construction of Hamiltonian ma-
trix elements.

3. Two-electron matrix elements

We consider a symmetric scalar two-body operator
G =

∑
Gij , whereGij = Gji acts on electrons i, j and

commutes with the total angular momentum operator,
and the sum is over all electron pairs, 1 ≤ i < j ≤ N .
The general form of such an operator is

Gij =
∑
g

(
G(g)(i) ·G(g)(j)

)
Rg(i, j) , (5)

where G(g) is a one-electron spherical tensor operator
of rank g and Rg is a scalar. We want to express a
matrix element of G between the described N -electron
states in terms of matrix elements between coupled an-
tisymmetric two-electron states:

⟨Ψ′ |G |Ψ⟩=
∑
α,β

Kαβ(Ψ
′,Ψ)

× ⟨ψ′
α(1, 2) |G12 |ψβ(1, 2)⟩ . (6)

Here |ψα(1, 2)⟩ is an antisymmetric coupled state of
electrons 1 and 2, and we label all such states by the in-
dices α, β. This expansion is symbolic, since the quan-
tum numbers of the correlation orbitals are not speci-
fied. We want to determine which two-electron states
ψ′
α, ψβ occur in this expansion, and to study the depen-

dence of the coefficients Kαβ on the quantum numbers
of the correlation orbitals.
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In a calculation based on (1) we will need matrix el-
ements of form ⟨Ψ′

atom |G |Ψatom⟩, where G is the two-
electron part of the hamiltonian operator. Matrix ele-
ments of type ⟨Ψ′

ref |G |Ψref⟩ can be expanded in terms
of two-electron matrix elements by use of a standard
textbook approach [14]. In the sections that follow, we
focus on the five distinct types of matrix elements in-
volving symbolic states:

⟨Ψd |G |Ψref⟩ , ⟨Ψs |G |Ψref⟩ , ⟨Ψ′
d |G |Ψd⟩ ,

⟨Ψ′
s |G |Ψs⟩ , ⟨Ψ′

s |G |Ψd⟩ . (7)

Here the state of each electron is described by a 4-component
Dirac spinor, the number of electrons is arbitrary, and
the states in the reference set contain any number of
closed and open shells. Graphical methods of angu-
lar momentum calculation offer a convenient way to
tackle the coupling details of the problem in all gener-
ality. However, many-electron states are not only cou-
pled, but also antisymmetric under interchange on any
two electron coordinates. To take advantage of graph-
ical angular momentum techniques, we have to attack
antisymmetrization complexities first.

4. Antisymmetrization issues

We find that antisymmetrization details simplify significantly if the required matrix elements are expressed in
terms of coupled but not fully antisymmetrized functions in which the correlation orbitals and the subconfigura-
tion are separately antisymmetric. To disentangle the correlation orbitals from the subconfiguration in the double-
replacement symbolic states, we make the following definitions:

|Φd⟩ ≡ | {Ψsub(1, 2 · · ·N−2)Jsub, ψv(N−1, N)Jv} Jtot⟩ , (8)

|ΦXd ⟩ ≡ | {Ψsub(1, 2 · · ·N−3, N−1)Jsub, ψv(N−2, N)Jv} Jtot⟩ . (9)

Here, ψv(N − 1, N) is a normalized, coupled, and antisymmetric state of the correlation pair with electron la-
bels N−1, N , and Ψsub(1, 2 · · ·N−2) is a normalized, coupled, and antisymmetric subconfiguration of electrons
1, 2, . . . , N−2. The state |ΦXd ⟩ is obtained from |Φd⟩ by interchanging electron labels N−2 and N−1. The states
|Φd⟩ and |ΦXd ⟩ are obviously not fully antisymmetric.

The corresponding definitions for single-replacement symbolic states are

|Φs⟩ ≡ | {Ψsub(1, 2 · · ·N−1)Jsub, ψv(N)jv} Jtot⟩ , (10)

|ΦXs ⟩ ≡ | {Ψsub(1, 2 · · ·N−2, N)Jsub, ψv(N−1)jv} Jtot⟩ . (11)

The fully antisymmetric states |Ψd⟩, |Ψs⟩ can be expressed in terms of partially antisymmetrized states like |Φd⟩,
|Φs⟩ by summing over permutations of electron labels. Since ψv and Ψsub are already antisymmetric individually,
we include only those permutations by which electron labels are moved from ψv to Ψsub and vice versa. Within both
ψv and Ψsub the label ordering remains standard, with increasing numerical value of the electron labels.

Let us first consider a double-replacement symbolic state. We specify a permutation by an interchange of electron
labelsN−1, N with an arbitrary pair of Ψsub electron labels a, b. Then, by counting the number of label interchanges
required to get back to the original ordering, Ψsub(1, 2 · · ·N−2)ψv(N−1, N), we can show that the sign of this
permutation is (−1)a+b−1. To preserve the normalization, we note that the number of such permutations is equal to
the number of different label pairs; i. e.,N(N−1)/2. Thus the normalized, fully antisymmetric double-replacement
symbolic state can be written as

|Ψd⟩ =

√
2

N(N−1)

∑
a<b

(−1)a+b−1 | {Ψsub(1, 2 · · · a · · · b · · ·N)Jsub, ψv(a, b)Jv} Jtot⟩ . (12)

Here, a, b show that the label ordering does not include a, b. Similarly we can write

|Ψs⟩ =
√

1

N

∑
a

(−1)N−a | {Ψsub(1, 2 · · · a · · ·N)Jsub, ψv(a)jv} Jtot⟩ . (13)



38 R. Matulionienė et al. / Lithuanian J. Phys. 48, 35–48 (2008)

By summing over all allowed permutations, taking
advantage of (12) and (13), and using the fact that the
correlation orbitals are orthogonal to all the reference
and subconfiguration orbitals, we find that we need the
following five different types of matrix elements of the
operator G. In the next section we will consider each of
these matrix elements in detail.

⟨Ψref |G |Ψd⟩ =
√
N(N−1)

2
⟨Ψref |GN−1,N |Φd⟩ ,

(14)

⟨Ψref |G |Ψs⟩ =
√
N(N−1)

2
(15)

×
[
⟨Ψref |GN−1,N |Φs⟩ − ⟨Ψref |GN−1,N |ΦXs ⟩

]
,

⟨Ψ′
d |G |Ψd⟩ = 2(N−2)×

×
[
⟨Φ′

d |GN−2,N−1 |Φd⟩ − ⟨Φ′
d |GN−2,N−1 |ΦXd ⟩

]
+

(N−3)(N−2)

2
⟨Φ′

d |GN−3,N−2 |Φd⟩

+ ⟨Φ′
d |GN−1,N |Φd⟩ , (16)

⟨Ψ′
s |G |Ψs⟩ = (N−1)

×
[
⟨Φ′

s |GN−1,N |Φs⟩ − ⟨Φ′
s |GN−1,N |ΦXs ⟩

]
,

+
(N−1)(N−2)

2
⟨Φ′

s |GN−2,N−1 |Φs⟩ , (17)

⟨Ψ′
s |G |Ψd⟩ =

√
2(N−1)

×
[
(N−2)⟨Φ′

s |GN−2,N−1|Φd⟩+ ⟨Φ′
s |GN−1,N |Φd⟩

]
.

(18)

5. Matrix elements of form ⟨Ψref |G |Ψd⟩

We start with the two-electron MCFP expansion of the reference state:

|Ψref(1, 2 · · ·N)Jtot⟩ =
∑

(Ψref
sub)J

ref
sub,

(ψref
2 )J ref

2

(
Ψref |}Ψref

sub, ψ
ref
2

)
(19)

× |
{
Ψref

sub(1 · · ·N−2)J ref
sub, ψ

ref
2 (N − 1, N)J ref

2

}
Jtot⟩ .

The sum here extends over all possible subconfigurations
(
Ψref

sub
)
J ref

sub and pullout states
(
ψref
2

)
J ref
2 . The subscript

“2” here indicates that the pullout state is a two-electron state. Substituting (19) and (2) into (14), we obtain

⟨Ψref |G |Ψd⟩ =
√
N(N − 1)

2

∑
(Ψref

sub)J
ref
sub,

(ψref
2 )J ref

2

(
Ψref |}

(
Ψref

sub
)
J ref

sub,
(
ψref
2

)
J ref
2

)

× ⟨
{
(Ψref

sub)J
ref
sub, (ψ

ref
2 )J ref

2

}
Jtot |GN−1,N | {(Ψsub)Jsub, (ψv)Jv} Jtot⟩ . (20)

It is important to keep in mind that the operator GN−1,N acts only on the two-electron states (ψref
2 )J ref

2 and (ψv)Jv.
To isolate the two-electron matrix element, we uncouple the subconfiguration from the two-electron pair on both

sides. Orthonormality selects a single term (Ψsub)Jsub in the sum over (Ψref
sub)J

ref
sub. We can simplify the sum over the

pullout states by noting that the selected subconfiguration specifies the pullout orbitals uniquely. The total angular
momentum of the pullout pair is fixed to Jv by the scalar nature of the operator. Thus the sum over the pullout states
(ψref

2 )J ref
2 reduces to a single term as well. Applying the orthogonality relation for vector-coupling coefficients we

get

⟨Ψref |G |Ψd⟩ =
√
N(N − 1)

2

(
Ψref |} (Ψsub) Jsub,

(
ψref
2

)
Jv

) 〈(
ψref
2

)
Jv |G | (ψv) Jv

〉
. (21)
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Note that the MCFP appearing here is closely related to an N-electron overlap

⟨Ψd |Ψref⟩=
√
N(N − 1)

2

(
Ψref |} (Ψsub) Jsub,

(
ψref
2

)
Jv

)
, (22)

|Ψd⟩=AN |
{
(Ψsub) Jsub,

(
ψref
2

)
Jv

}
Jtot⟩ . (23)

Here AN is the N -electron antisymmetrization operator; |Ψd⟩ is the same as |Ψd⟩, but with (ψv) Jv replaced by(
ψref
2

)
Jv, a two-electron state formed from the orbitals present in |Ψref⟩ and absent in |Ψd⟩. Equation (23) is easily

derived using (12) and the definition of the MCFP.

6. Matrix elements of form ⟨Ψref |G |Ψs⟩

We begin with Equation (16), and isolate the parts of the matrix element on which the operator GN−1,N acts,
by doing two MCFP expansions: a two-electron expansion (19) of the reference state, and a one-electron expansion
for the subconfiguration of the symbolic state

|Ψsub(1 · · ·N − 1)Jsub⟩ = (24)∑
(Ψsub

1 )J sub
1 ,

(ψsub
1 )js

(
Ψsub

1 , ψsub
1 |}Ψsub

)
|
{
Ψsub

1 (1 · · ·N−2)J sub
1 , ψsub

1 (N − 1)js
}
Jsub⟩ .

We recouple |Φs⟩, |ΦXs ⟩ to form a state of two electrons with labels N − 1, N , by use of∣∣ {(J sub
1 js

)
Jsub, jv

}
Jtot

〉
=∑

JG

〈{
J sub
1 , (jsjv) JG

}
Jtot

∣∣ {(J sub
1 js

)
Jsub, jv

}
Jtot

〉 ∣∣ {J sub
1 , (jsjv) JG

}
Jtot

〉
= (25)

∑
JG

(−1)js+jv+J
sub
1 +Jtot [Jsub, JG]

1/2

{
J sub
1 js Jsub
jv Jtot JG

} ∣∣ {J sub
1 , (jsjv) JG

}
Jtot

〉
.

Here the recoupling coefficient has been written in terms of a 6j-symbol and we use the common notation [ a, b, · · · ]
to stand for (2a+ 1)(2b+ 1) · · ·. Next we combine the contributions from |Φs⟩ and |ΦXs ⟩ into an antisymmetric
two-electron state

| (ψsv) JG⟩ =

√
1

2

[ ∣∣ {ψsub
1 (N−1)js, ψv(N)jv

}
JG

〉
−

∣∣ {ψsub
1 (N)js, ψv(N−1)jv

}
JG

〉 ]
. (26)

Now we can follow reasoning similar to that which led to (21). The result is

⟨Ψref |G |Ψs⟩ =
√
N(N−1)√

2

∑
(Ψsub

1 )J sub
1 ,

js,JG

(−1)js+jv+J
sub
1 +Jtot [Jsub, JG]

1/2

{
J sub
1 js Jsub
jv Jtot JG

}

×
〈(
ψref
2

)
JG |G | (ψsv) JG

〉 (
Ψref { |

(
Ψsub

1

)
J sub
1 ,

(
ψref
2

)
JG

) ((
Ψsub

1

)
J sub
1 ,

(
ψsub
1

)
js |}Ψsub

)
. (27)

Here, js runs over all the orbitals of the (N−1)-electron symbolic-state subconfiguration Ψsub. Orthogonality of
the subconfigurations eliminates the sum over Ψref

sub. The two-electron state ψref
2 contains orbitals present in Ψref,

but absent from Ψsub
1 .

Alternatively we can rewrite this result by replacing the MCFP coefficients with overlaps between antisymmetric
states. Using〈{

(Ψsub
1 )J sub

1 ,
(
ψsub
1

)
js
}
Jsub | (Ψsub) Jsub

〉
=

√
N−1

((
Ψsub

1

)
J sub
1 ,

(
ψsub
1

)
js |}Ψsub

)
(28)
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and a relation similar to (22), we obtain

⟨Ψref |G |Ψs⟩ =
∑

(Ψsub
1 )J sub

1 ,
js,JG

(−1)js+jv+J
sub
1 +Jtot [Jsub, JG]

1/2

{
J sub
1 js Jsub
jv Jtot JG

} 〈
(ψref

2 )JG |G | (ψsv)JG
〉

×
〈
(Ψref) Jtot

∣∣ {(Ψsub
1 )J sub

1 , (ψref
2 )JG

}
Jtot

〉 〈{
(Ψsub

1 )J sub
1 ,

(
ψsub
1

)
js
}
Jsub | (Ψsub) Jsub

〉
. (29)

7. Matrix elements of form ⟨Ψ′
d |G |Ψd⟩

For matrix elements connecting double-replacement symbolic states we start with (16):

⟨Ψ′
d |G |Ψd⟩ = Mvv +Mss +Msv , (30)

Mvv = ⟨Φ′
d |GN−1,N |Φd⟩ , (31)

Mss=
(N−3)(N−2)

2
⟨Φ′

d |GN−3,N−2 |Φd⟩ , (32)

Msv =2(N−2)
[
⟨Φ′

d |GN−2,N−1 |Φd⟩ − ⟨Φ′
d |GN−2,N−1 |ΦXd ⟩

]
. (33)

Here, Mss, Mvv represent interactions within subconfigurations and correlation pairs, respectively, and Msv de-
scribes the interaction between a subconfiguration and a correlation pair. The first two terms, Mss and Mvv, are
almost trivial. We uncouple the subconfigurations from the pairs, and then take into account the orthogonality of the
functions on which the operator G does not act and of the vector-coupling coefficients that appear upon uncoupling
the subconfigurations from the pairs. The results are

Mvv = ⟨(Ψ′
sub)J

′
sub | (Ψsub)Jsub⟩ ⟨(ψ′

v)J
′
v |G | (ψv)Jv⟩ , (34)

Mss= ⟨(Ψ′
sub)J

′
sub |G | (Ψsub)Jsub⟩ ⟨(ψ′

v)J
′
v | (ψv)Jv⟩ . (35)

Dealing with Msv requires more effort. We use the tensor expansion (5) for the scalar operator G =
∑
Gij . We

represent the nature of angular momentum coupling in the Msv term by the use of JB graphs [2]. We focus on the
part of the N -electron matrix element that depends upon the correlation orbitals and the operator:

Msv= 2 (N−2)AN−3A′
N−3

∑
js,j′s

∑
fp,
(fp)′

(cfp)(cfp)′
∑

jv={j1,j2},
j′v={j′1,j′2}

(
jv, jv |}(j1j2)Jv

) (
j′v, j

′
v |}(j′1j′2)J ′

v

)∑
g

(−1)g[g]1/2 ×

(36)

×δjv ,j′v



(N-3)-electron
overlap

J ′
sub Jsub

Jtot

J ′
v Jv

jv

j′v jv

g

js
j′s

+

+

− −

−

− ⊗
direct
matrix

element
−

(N−3)-electron
overlap

J ′
sub Jsub

Jtot

J ′
v Jv

jv

j′v jv

g

j′s js

+

+

− −

−

− ⊗
exchange

matrix
element



.
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Here, js, j′s are subconfiguration orbitals; js and j′s
run over all the subconfiguration subshells. Coeffi-
cients of fractional parentage occurring upon separat-
ing one js or j′s electron from its subshell are denoted
as (cfp), (cfp)′, and the fractional parents are labeled
fp, fp′. Operators AN−3,A′

N−3 complete the antisym-
metrization of the subconfigurations by taking into ac-
count allowed permutations of electron labels, with the
last label kept in the js, j′s subshell. The sums over the
correlation orbitals are indexed by jv, j′v, and there are
at most two values for each of these orbitals, namely,
j1, j2 or j′1, j′2. Noninteracting electrons in correlation
orbitals are labeled jv, j′v; that is, if jv = j1, then
jv = j2, and so forth. The MCFP for the correlation
pair is represented by (jv, jv | }(j1j2)Jv). This coef-
ficient preserves the coupling order in the correlation
pair: for both permutations of electron labels (N−1, N),
the noninteracting electron is coupled second.

Direct and exchange matrix element boxes contain
radial integrals and reduced matrix elements of one-
electron tensor operators:

direct
matrix

element
=

1

[j′v, js, g]
1/2

× ⟨j′v |G(g) | jv⟩ ⟨j′s |G(g) | js⟩ Rdirect
g , (37)

exchange
matrix

element
=

1

[j′s, js, g]
1/2

× ⟨j′v |G(g) | js⟩ ⟨j′s |G(g) | jv⟩ Rexchange
g . (38)

Here, Rdirect
g , R

exchange
g are scalar two-electron func-

tions (radial integrals), and the standard reduced matrix
elements have been defined as in Cowan [14]. To de-
rive explicit dependence of Msv on the quantum num-
bers of correlation orbitals, we proceed in three steps:
first, we extract the two-electron matrix element; next,
we isolate the subconfiguration contribution; and last,
we compute the remaining purely angular factors.

Two-electron matrix element. Each JB graph in (37)
can be cut on four lines j′v, jv, j′s, js to separate the
operator-dependent part. We notice that the matrix ele-
ment of G between coupled, antisymmetric, and non-
equivalent two-electron states has the diagrammatic
form

⟨(j′s, j′v)JG |G | (js, jv)JG⟩ =
∑
g

(−1)g[g]1/2
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JG

g

j′s jv

− −

− −

⊗
direct
matrix

element

− j′v jv

JG

g

j′s js

− +

− −

⊗
exchange

matrix
element

 . (39)

Thus we can factor out the tensor expansion and so
reduce (37) to

Msv = 2(N−2)AN−3A′
N−3

∑
js,j′s

∑
fp,
(fp)′

(cfp)(cfp)′

×
∑
jv ,j′v

(jv, jv | }(j1j2)Jv)(j′v, j′v | }(j′1j′2)J ′
v)

∑
JG

δjv ,j′v

× (−1)2jv
[JG, Jv]

1/2

[js, jv]1/2
⟨(j′s, j′v)JG |G | (js, jv)JG⟩ ×

×

(N−3)-electron
overlap

J ′
sub Jsub

Jtot

J ′
v Jv

jv

j′v jv

JG

jsj′s

+

+

+ −

−

− . (40)

The new sum is over the possible two-electron quantum
numbers JG that result as the orbitals js, jv and j′s, j′v
are coupled in pairs.

Contribution of subconfigurations. To isolate the sub-
configurations, we cut the diagram of (40) on four lines
J ′

sub, j
′
s, js, Jsub. This yields

Msv = 2
∑
js,j′s

∑
k

Γk(Ψ
′
sub, j

′
s; Ψsub, js)

×
∑
jv ,j′v

(jv, jv | }(j1j2)Jv) (j′v, j′v | }(j′1j′2)J ′
v)

×
∑
JG

(−1)2j
′
v+2js+2jv [k, JG]

1/2

[Jsub, j′v]
1/2

× ⟨(j′s, j′v)JG |G | (js, jv)JG⟩δjv ,j′v

×

J ′
sub Jsub

Jtot

J ′
v Jv

jv

j′v jv
JG

j′s js

k

−

−

−

+

+

−

+

+

. (41)

The values of k in this sum are limited by a triangle
relation (j′skjs). The quantity Γk(Ψ

′
sub, j

′
s; Ψsub, js) in

(41) depends on all the internal couplings required to
specify the two subconfigurations, and does not depend
on the quantum numbers of correlation orbitals:

Γk(Ψ
′
sub, j

′
s; Ψsub, js) = (N−2)

[J ′
sub]

1/2

[j′s]
1/2

AN−3

×A′
N−3

∑
fp,
(fp)′

(cfp)(cfp)′

(N−3)-electron
overlap

J ′
sub Jsub

j′s js

k
−

+

. (42)

The quantity Γk can also be seen in another context.
Consider the matrix element of a one-body operator of
rank k,

W (k)
q =

Nsub∑
i=1

w(k)
q (i) (43)

between two subconfigurations | (Ψsub)Jsub⟩ and
| (Ψ′

sub)J
′
sub⟩ of Nsub electrons. The graphical analysis

now yields a formula which can be used to compute Γk
as needed,

⟨
(
Ψ′

sub
)
J ′

sub |W (k) | (Ψsub) Jsub⟩ =∑
j′s,js

Γk(Ψ
′
sub, j

′
s; Ψsub, js) ⟨j′s |w(k) | js⟩ . (44)
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Remaining angular factors. We still have to work out
an algebraic expression for the diagram of (41). By
straightforward application of the reduction rules for JB
graphs, we get

J ′
sub Jsub

Jtot

J ′
v Jv

jv

j′v jv
JG

j′s js

k

−

+

+

−

+

+

−

−

= (−1)k+Jtot+J ′
v+Jsub

×(−1)jv+Jv+js−JG [k, JG, j
′
v, Jv, J

′
v, Jsub]

1/2

×
{
Jv k J ′

v

J ′
sub Jtot Jsub

} {
Jv k J

′
v

j′v jv jv

} {
js k j′s
j′v JG jv

}
.(45)

Final results. Now we are ready to write the final ex-
pression:

Msv =
∑
js,j′s

∑
jv ,j′v

∑
JG

Csym ⟨(j′s, j′v)JG |G |(js, jv)JG⟩ ,

(46)
where

Csym = 2δjv ,j′v

(
jv, jv|}(j1j2)Jv

)(
j′v, j

′
v|}(j′1j′2)J ′

v

)
×
∑
k

Γk(Ψ
′
sub, j

′
s; Ψsub, js) [JG, k] [Jv, J

′
v]
1/2

× (−1)k+Jtot+J ′
v+Jsub+jv+Jv−js−JG

×
{
Jv k J ′

v

J ′
sub Jtot Jsub

} {
Jv k J

′
v

j′v jv jv

} {
js k j′s
j′v JG jv

}
. (47)

The expression is rather complicated in appearance, but
it is completely general and convenient to use in a com-
puter program.

In summary, by expanding an N -electron matrix el-
ement in terms of two-electron matrix elements, we
obtained explicit dependence of the matrix element
⟨Ψ′

d |G |Ψd⟩ on the quantum numbers of the correla-
tion orbitals.

8. Matrix elements connecting single-replacement
symbolic states

Next we consider the matrix elements connecting
single-replacement symbolic states. To derive the de-
pendence of the matrix element (17) on the correlation
orbitals, we retrace our steps taken in the treatment of
the interaction between double-replacement symbolic
states. Without repeating the details, we state the final
result

⟨Ψ′
s |G |Ψs⟩ = Mss +Msv , (48)

where

Mss = ⟨(Ψ′
sub)J

′
sub |G | (Ψsub)Jsub⟩

× ⟨
(
ψ′
v

)
j′v | (ψv) jv⟩ , (49)

Msv =
∑
js,j′s
k,JG

(−1)Jtot+Jsub−JG−js [JG, k]

×
{
Jsub k J ′

sub
j′v Jtot jv

}{
jv k j′v
j′s JG js

}
Γk(Ψ

′
sub, j

′
s; Ψsub, js)

×⟨(j′s, j′v)JG |G | (js, jv)JG⟩ . (50)

Again, the possible values of JG are limited by trian-
gle relations (jsjvJG) and (j′sj

′
vJG), the values of k are

defined by (jskj
′
s), and js, j′s run over all orbitals of

their corresponding subconfigurations. The definition
of Γk(Ψ′

sub, j
′
s; Ψsub, js) is given in (44).

9. Matrix elements connecting the two types of
symbolic states

To complete our discussion on the dependence of
the matrix elements (14) – (18) upon correlation or-
bitals, we examine the matrix element ⟨Ψ′

s |G |Ψd⟩
between a single-replacement symbolic state and a
double-replacement symbolic state. We start with (18)

⟨Ψ′
s |G |Ψd⟩ = Msvvv +Mvsss , (51)

where

Msvvv =
√
2(N−1)⟨Φ′

s |GN−1,N |Φd⟩ , (52)

Mvsss= (N−2)
√
2(N−1)⟨Φ′

s |GN−2,N−1|Φd⟩ . (53)

The Msvvv term connects three correlation orbitals and
one subconfiguration orbital, whereas Mvsss connects
three subconfiguration orbitals and one correlation or-
bital.
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The Msvvv term can be handled in a manner similar
to that which we used in Section 6 to study the matrix el-
ement between a single-replacement symbolic state and
a reference state. We transform |Φ′

s⟩ using (24) and
(25), and isolate an electron pair on which the operator
acts. We also observe that〈(

ψ′
sv

)
Jv |G| (ψv) Jv

〉
= (54)

√
2
〈{
ψ′
1

sub
(N−1)j′s, ψ

′
v(N)j′v

}
Jv |G| (ψv) Jv

〉
,

where (ψ′
sv) is an antisymmetric two-electron state de-

fined as in (26). With this in mind, we obtain

Msvvv =

√
N−1

((
Ψ′

sub
)
J ′

sub { | (Ψsub) Jsub,
(
ψ′
1

sub
)
j′s

)

×
〈{
Jsub,

(
j′sj

′
v

)
Jv

}
Jtot

∣∣ {(Jsubj
′
s

)
J ′

sub, j
′
v

}
Jtot

〉
×
〈(
ψ′
sv

)
Jv |G | (ψv) Jv

〉
. (55)

Here, all primed quantities pertain to the single-replace-
ment symbolic state, and unprimed quantities belong
to the double-replacement symbolic state. The orbital(
ψ′
1

sub
)
j′s is present in Ψ′

sub, but absent from Ψsub.
Next we turn our attention to the Mvsss term. Just as

we did before, we isolate the electron pair on which the
operator acts; in this case, the pair with electron labels
N−2, N−1. To accomplish this, we do three MCFP
expansions: one for each subconfiguration, and one for
the correlation pair of the double-replacement symbolic
state. Although similar expansions have been

used in previous sections, we repeat the equations for clarity of notation. In particular, the subconfiguration of the
single-replacement symbolic state is expressed as

|Ψ′
sub(1 · · ·N−1)J ′

sub⟩=
∑

(Ψ′
N−3)J

′
N−3,

(ψ′
2

sub)J ′
s

((
Ψ′
N−3

)
J ′
N−3,

(
ψ′
2

sub
)
J ′
s |}

(
Ψ′

sub
)
J ′

sub

)

×|
{
Ψ′
N−3(1 · · ·N−3)J ′

N−3, ψ
′
2

sub
(N−2, N−1)J ′

s

}
J ′

sub⟩ , (56)

where
(
ψ′
2

sub
)
J ′
s is a coupled and antisymmetric pair of subconfiguration electrons.

The subconfiguration of the double-replacement symbolic state becomes

|Ψsub(1 · · ·N−2)Jsub⟩=
∑

(ΨN−3)JN−3,

(ψsub
1 )js

(
(ΨN−3) JN−3,

(
ψsub
1

)
js |} (Ψsub) Jsub

)

×|
{
ΨN−3(1 · · ·N−3)JN−3, ψ

sub
1 (N−2)js

}
Jsub⟩ , (57)

where
(
ψsub
1

)
js is a selected orbital from the subconfiguration of the double-replacement symbolic state.

The third MCFP expansion, for the correlation pair, is

|ψv(N−1, N)Jv⟩ =
∑

jv={j1,j2}

(
jv, jv | }(j1j2)Jv

)
| {ψv(N−1)jv, ψv(N)jv}Jv⟩ . (58)

Here, jv runs over the two orbitals of | (ψv) Jv⟩, and jv is defined as the other correlation orbital: if jv = j1,
then jv = j2, and vice versa. The relation (58) ensures that the electron labeled N−1 is the first in the coupling
order of the correlation pair.

Having separated electrons with labels N−2, N−1 from their subconfigurations, we still need to couple the
active electrons together on the right-hand side of the matrix element. This is conveniently accomplished by use of
the recoupling relation∣∣ {(JN−3 js) Jsub,

(
jv, jv

)
Jv

}
Jtot

〉
=

∑
JG,Jint

∣∣ {[JN−3, (jsjv) JG] Jint, jv
}
Jtot

〉
×

〈{
[JN−3, (jsjv) JG] Jint, jv

}
Jtot

∣∣ {(JN−3 js) Jsub,
(
jv, jv

)
Jv

}
Jtot

〉
. (59)
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Notice that this step yields the desired electron pair (js(N−2)jv(N−1)) JG, which is coupled, but not antisym-
metric.

Substituting (56) – (59) into (53) and keeping in mind (55), we get

Mvsss = (N−2)
√
N−1

∑
(ΨN−3)JN−3,

(ψ′
2

sub)JG

∑
jv={j1,j2}

(
jv, jv | }(j1j2)Jv

) 〈(
ψ′
v

)
j′v

∣∣ (ψv) jv〉

×
((

Ψ′
sub

)
J ′

sub { | (ΨN−3) JN−3,
(
ψ′
2

sub
)
JG

) (
(ΨN−3) JN−3,

(
ψsub
1

)
js |} (Ψsub) Jsub

)
×

〈{
[JN−3, (jsjv) JG] J

′
sub, jv

}
Jtot

∣∣ {(JN−3 js) Jsub,
(
jv, jv

)
Jv

}
Jtot

〉 〈(
ψ′
2

sub
)
JG |G | (ψsv) JG

〉
. (60)

Here, (ψsv) JG is a coupled and antisymmetric two-electron state as in (26), the orthogonality of Dirac orbitals
requires that the two (N−3)-electron states on both sides of the matrix element be the same, and the scalar nature
of the operator sets J ′

s = JG and Jint = J ′
sub. Also notice that for the Msv term to have a nonzero value, the two

correlation orbitals on which the operator does not act have to be the same.
The recoupling coefficient is easily evaluated using JB graphs:

〈{
[JN−3, (jsjv) JG] J

′
sub, jv

}
Jtot

∣∣ {(JN−3 js) Jsub,
(
jvjv

)
Jv

}
Jtot

〉
=

JG js
JN−3

J ′
sub Jsub

Jtot

jv Jv

jv

−

+

+

+

−

−

=

JG Jsub

js

J ′
sub

jv JN
−3

− −

+ +
⊗

J ′
sub Jv

Jsub

jv

jv Jtot

− −

+ +

=

(−1)JN−3+js+2jv+J ′
sub+Jsub+jv+Jtot [Jsub, JG, J

′
sub, Jv]

1/2

{
JN−3 js Jsub
jv J ′

sub JG

} {
Jsub jv J

′
sub

jv Jtot Jv

}
. (61)

Expressing the MCFP coefficients in terms of overlaps
between antisymmetric states, we can write the final re-
sults for the interaction between a single-replacement
and a double-replacement symbolic state as

Msvvv = (−1)Jsub+j
′
s+j

′
v+Jtot [J ′

sub, Jv]
1/2

×
{
Jsub j′s J

′
sub

j′v Jtot Jv

}
⟨(ψ′

sv)Jv |G | (ψv)Jv⟩

× ⟨
{
(Ψsub)Jsub, j

′
s

}
J ′

sub |
(
Ψ′

sub
)
J ′

sub⟩ , (62)

Mvsss =
√
2

×
∑

(ΨN−3)JN−3,
(ψ′

2)JG

⟨
{
(ΨN−3)JN−3,

(
ψ′
2

)
JG

}
J ′

sub |
(
Ψ′

sub
)
J ′

sub⟩

× ⟨
{
(ΨN−3)JN−3,

(
ψsub
1

)
js
}
Jsub | (Ψsub) Jsub⟩

×
∑

jv={j1,j2}

〈(
ψ′
v

)
j′v

∣∣ (ψv) jv〉 ⟨jv, jv |}(j1j2)Jv⟩
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× (−1)JN−3+js+2jv+J ′
sub+Jsub+j

′
v+Jtot

× [Jsub, JG, J
′
sub, Jv]

1/2

{
JN−3 js Jsub
jv J ′

sub JG

}

×
{
Jsub jv J

′
sub

j′v Jtot Jv

}
⟨(ψ′

2)JG |G | (ψsv)JG⟩ . (63)

10. Example: Coulomb interaction between
double-replacement configurations

Finally we consider in slightly more detail the case
of the interaction of two double-replacement symbolic
states (30):

⟨Ψ′
d |G |Ψd⟩ = Mvv +Mss +Msv .

The factorization of quantities independent of the
virtual orbitals is seen clearly in the equations (34), (35)
for Mvv and Mss, but the situation for Msv given by
equations (46), (47) is more complicated. To see this
explicitly write (46)

Msv =
∑
js,j′s

∑
jv ,j′v

∑
JG

Csym ⟨(j′s, j′v)JG |G |(js, jv)JG⟩ ,

with

Csym =
∑
k

Dk Ek , (64)

Dk = 2[k] [Jv, J
′
v]
1/2 Γk(Ψ

′
sub, j

′
s; Ψsub, js)× (65)

× (−1)k+Jtot+Jv+J ′
v+Jsub−js+1/2

{
Jv k J ′

v

J ′
subJtotJsub

}
,

Ek = δjv ,j′v
(jv, jv | }(j1j2)Jv) (j′v, j′v | }(j′1j′2)J ′

v)

× [JG] (−1)jv−1/2−JG
{
JvkJ

′
v

j′vjvjv

}{
js k j

′
s

j′vJGjv

}
. (66)

Now we see that the set of coefficients Ek must
be computed in conjunction with the “radial” portion
of the calculation for each choice of virtual orbitals
j1, j2, j

′
1, j

′
2. But the set of coefficients Dk can be com-

puted at the beginning as part of the “angular” seg-
ment of the problem. Especially note that the details
of the (N-2)-body subconfigurations affect only the fac-
tors Γk(Ψ′

sub, j
′
s; Ψsub, js) which are independent of the

quantum numbers of the virtual orbitals, and can be
computed and stored at the beginning.

To illustrate the use of these results, we consider the
Coulomb interaction between selected double-replacement

states in a simple symbolic expansion based on the
ground configuration of neutral fluorine. If we begin
by using a four-electron closed core 1s2 2s2, we have
the five-electron J = 3/2 reference state

|Ψref⟩ = | {(2p−2)0, (2p3)3/2}3/2⟩ , (67)

where we indicate the j = l− 1/2 Dirac orbitals by the
subscripted minus sign.

Now for a simple illustrative symbolic expansion we
can define five subconfigurations:

Ψ0 =
[
(2p−

2)0, (2p)3/2
]
3/2 ,

Ψ1 =
[
(2p−)1/2, (2p

2)0
]
1/2 ,

Ψ2 =
[
(2p−)1/2, (2p

2)2
]
3/2 , (68)

Ψ3 =
[
(2p−)1/2, (2p

2)2
]
5/2 ,

Ψ4 = (2p3) 3/2 .

These produce a total of 18 double-replacement sym-
bolic states of form

|Ψd⟩ = | {(Ψsub) Jsub, (n1l1j1, n2l2j2)Jv} 3/2⟩ ,
(69)

namely

Ψ0 : Jsub= 3/2 , Jv= 0, 1, 2, 3, 4 symbolic states,
Ψ1 : Jsub= 1/2 , Jv= 1, 2, 2 symbolic states,
Ψ2 : Jsub= 3/2 , Jv= 0, 1, 2, 3, 4 symbolic states,
Ψ3 : Jsub= 5/2 , Jv= 1, 2, 3, 4, 4 symbolic states,
Ψ4 : Jsub= 3/2 , Jv= 0, 1, 2, 3, 4 symbolic states.

The matrix of the Coulomb interaction G =
∑
i<j

1

rij

is divided into 18×18 blocks, each block connecting a
pair of symbolic states. For each of these blocks, we
can calculate the coefficients Dk at the beginning of the
project.

For example for the particular block

⟨Ψ′
d |G |Ψd⟩ = (70)

⟨
{
(Ψ2)3/2, (j

′
1j

′
2)2

}
3/2|G| {(Ψ3)5/2, (j1j2)2} 3/2⟩ ,

consider the matrix element of form Msv (30). We find
from (44) the results

Γk(Ψ2, 2p− ; Ψ3, 2p−) = −
√
8/5 δk1 ,

Γk(Ψ2, 2p− ; Ψ3, 2p ) = 0 , (71)

Γk(Ψ2, 2p ; Ψ3, 2p−) = 0 ,

Γk(Ψ2, 2p ; Ψ3, 2p ) = (2/5) δk1 − (2
√
6/5) δk3 .
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Now we use (66) to get the required values of Dk:

Case (Ψ2, 2p−; Ψ3, 2p−) : Dk = 2
√
21/5δk1 , (72)

Case (Ψ2, 2p; Ψ3, 2p) : Dk =
√
42/5 (δk1 − 4δk3) .

Note that these Dk factors are independent of the
(n, l, j) quantum numbers of all four virtual orbitals.
Thus for this block we have

Msv =2

√
21

5

∑
v′,v,JG

E1(j′s = js = 2p−)

× ⟨
(
2p−, v

′) JG |G | (2p−, v) JG ⟩

+
1

5

√
42

∑
v′,v,JG

E1(j′s = js = 2p)

× ⟨
(
2p, v′

)
JG |G | (2p, v) JG ⟩

− 4

5

√
42

∑
v′,v,JG

E3(j′s = js = 2p)

× ⟨
(
2p, v′

)
JG |G | (2p, v) JG ⟩ . (73)

In these summations the label v takes on just 2 val-
ues: the two orbitals (n1, l1, j1) and (n2, l2, j2); simi-
larly for v′. The quantum number JG takes on all values
allowed by the angular momentum coupling of an elec-
tron from the subconfiguration with an electron in one
of the virtual orbitals. The coefficients Ek in (73) do
depend on the virtual orbitals, but are given explicitly
by equation (66). Note that the 2-body MCFP factors
in that equation are simply 0 or 1 if the electrons are
equivalent, and ±

√
1/2 if they are inequivalent.

11. Summary

Within the framework of the symbolic expansion,
matrix elements of two-body operators can be ex-
pressed as a sum of terms, where each term is a product
of three factors:

• An angular quantity independent of the virtual or-
bitals.

• An angular quantity dependent on the virtual or-
bitals.

• A two-electron matrix element.

Note that the first two quantities involve no radial func-
tions; the third includes both angular and radial in-
tegrals, but is readily computed by standard methods
since it involves only two electrons.

We have considered a symbolic expansion contain-
ing three types of state functions: reference states,
single-replacement states, and double-replacement
states. Thus there are six types of matrix elements for
a two-body operator, and we have derived equations for
the angular integrals for each type separately. These
equations (21, 27, 30, 34, 35, 46–51, 62, 63) constitute
our principal results. In each case the separation into
the three factors listed above is shown explicitly.

These results have been derived [13] under the as-
sumption that the virtual (or correlation) orbitals were
distinct from the occupied orbitals. Otherwise the an-
gular quantum numbers of the virtual orbitals were not
specified. The extent to which this separation of occu-
pied and virtual orbitals is necessary requires further in-
vestigation. Clearly the subconfigurations consist only
of occupied orbitals.
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SIMBOLINIŲ BŪSENŲ SĄVEIKA ATOMINĖS SANDAROS SKAIČIAVIMUOSE

R. Matulionienė a, D. Ellis a, C. Froese Fischer b

a Toledo universitetas, Toledas, Ohajas, JAV
b Vanderbilto universitetas, Nešvilis, Tenesis, JAV

Santrauka
Išvestos bendros lygtys kampiniams koeficientams, kurie reika-

lingi atliekant atominės sandaros skaičiavimus, panaudojant sklei-
dinius simbolinėmis būsenomis. Šiuo naujuoju būdu energija iš-
reiškiama ne kinetinės energijos ir Sleterio integralais, bet dvi-
elektroniais matriciniais elementais, kurių koeficientai nepriklauso

nuo vienelektronių kvantinių skaičių, esančių tuose matriciniuose
elementuose. Pateikti konkretūs rezultatai simetrinio skaliarinio
dvidalelio operatoriaus su viengubo ir dvigubo keitimo simboli-
nėmis būsenomis matriciniams elementams. Išvedimui naudotas
jj ryšys, nelygiaverčių elektronų kilminiai koeficientai ir judėjimo
kiekio momento diagraminė algebra.


