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1. Introduction

Invented more than 30 years ago, the MIT bag model
[1–3] still serves as an useful method which yields rea-
sonable predictions for a variety of hadronic properties
(at least for the ground states). Various aspects of the
bag model are discussed in a number of review papers
[4–6]. Originally the model was designed for the ul-
trarelativistic case of the light quarks and was rather
successful in describing the low-lying hadron spectrum.
Although the first straightforward application of the
model to calculate the spectrum of the hadrons contain-
ing heavy quarks was of very limited success because of
evident disagreement between calculated and observed
data, later on the bag model was adjusted to incorpo-
rate the heavy quarks. It was recognized that the rec-
onciliation between the bag model and the heavy quark
physics could be achieved by taking into account the so-
called c.m.m. (centre of mass motion) correction. For
the hadrons containing only one heavy quark there ex-
ists an approximate solution of the c.m.m. problem –
one can simply associate the centre of mass with the
heavy quark and fix it [7, 8]. For the baryons contain-
ing two heavy quarks one can proceed in a similar way
assuming the heavy quarks to form the doubly-heavy
diquark and then put this object at the centre of the bag
[9]. The advantage of such approach is the simple and
clear physical picture, but the price for this simplicity
is three more ore less related bag models: one for the
hadrons consisting of light quarks (in this case the role
of c.m.m. correction is partly played by the so-called

zero-point energy), one for hadrons containing single
heavy quark, and one for the baryons containing two
heavy quarks. Moreover, there remains the case of the
baryons consisting of three heavy quarks which needs
special treatment. Another rather popular method to
deal with c.m.m. problem is to employ a wave-packet
ansatz [10]. Both approaches give only approximate so-
lutions to the problem. However, the second seems to
be more universal and could be preferable in the case
one tries to obtain the unified description of the light
and heavy hadrons. The c.m.m. corrections is not all
the story, and in order to have plausible unified descrip-
tion of light and heavy hadrons (mesons and baryons)
in the framework of the bag model some other QCD in-
spired improvements such as running coupling constant
and running quark masses are necessary [11].

When the number of quark flavours increases we are
confronted with additional problem which needs some
clarification. For the spin-1/2 baryons containing three
quarks of different flavours there exist two states with
the same spin and parity. We can construct the set of
orthogonal wave functions by assuming the first two
quarks to be in the relative spin-0 or spin-1 state, re-
spectively. In general case the physical states would be
the linear combinations of these mathematical states

|B⟩=C1 |(q1q2)0q3⟩+ C2 |(q1q2)1q3⟩ ,

|B⟩′ =C2 |(q1q2)0q3⟩ − C1 |(q1q2)1q3⟩ . (1)

The mixing mechanism depends on the model and
approximation used. In the MIT bag it would be the
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hyperfine colour-magnetic interaction. The same is true
in the ordinary constituent quark model as well as in al-
most all variants of the potential model. Some estimate
of the state mixing is also possible in the heavy quark
effective theory [12].

Because of the ambiguity in how the quarks are to be
ordered in themathematical wave functions |(q1q2)Sq3⟩
the expansion in Eqs. (1) is not unique. If one does not
want to bother about the quark ordering, one can sim-
ply diagonalize the 2nd order interaction energy ma-
trix [13]. Since such a procedure has not become a
common practice, the very natural question arises, how
some authors have managed to avoid this state mixing
problem. The answer was given a long time ago in
the Ref. [14]. The authors of that paper have shown
that for the interaction energies with quark mass depen-
dence ∼1/(mamb) an optimal quark ordering scheme
could be found. The prescription is to pick the clos-
est in mass quarks as the first two in the wave function
|(q1q2)Sq3⟩. Then the mixing of the states with dif-
ferent S values is small, and the effect of this mixing
on baryon masses is negligible. Strictly speaking, such
mixing exists even in the light baryon sector between
the wave functions from which the physical states Σ0

and Λ0 are constructed. Because of the approximate
isotopic symmetry this mixing is small, and if we are
interested only in the calculation of baryon masses, we
can safely ignore this effect. The explicit calculations
with the isospin-symmetry violating terms taken into
account show that the mixing is indeed small [15], as
expected. In the sector of charmed baryons there are
also rather strong indications that the mixing between
Ξc and Ξ′

c baryons is small, with negligible shifts in the
masses of these hadrons again [16].

And what could be said about the wave function mix-
ing in the framework of the bag model? Of course, we
expect that all reliable models of hadron structure yield
similar results. However, we cannot apply the results
of Ref. [14] directly because the dependence of the in-
teraction energy on quark masses in the bag model is
somewhat more complicated. For example, the values
of light quark masses in the bag model could be set to
zero, while in the nonrelativistic models these values
approach one-third of the nucleon mass. A simple way
tomake the things clear is to perform direct calculations
in the bag model taking the mixing interaction into ac-
count. This means that in the calculations of baryon
energy the off-diagonal matrix elements of the colour-
magnetic interaction should be included.

In this paper we are going to examine the mixing of
the ground state baryon wave functions in the frame-

work of the modified MIT bag model. In the next sec-
tion we give a short description of the model we are
dealing with. The concluding section contains the re-
sults of our investigation accompanied by the discus-
sion and some additional remarks on the validity of ap-
proaches with and without mixing.

2. The model

The ground state energy of the hadron defined in the
static spherical cavity approximation is given by

E =
4π

3
BR3 +

∑
i

niεi +∆E , (2)

where B is the bag constant, R is the bag radius,
εi is eigenenergy of the ith quark in the cavity, and
∆E stands for the interaction energy. ∆E consists of
colour-electric and colour-magnetic parts as described,
for example, in Ref. [11] in detail. For our purpose
the most important is the contribution of the colour-
magnetic interaction, which in the case of the baryons
containing three distinct quarks can be written as

∆Em = αc(R)
∑
j>i

aijMij(mi,mj , R) . (3)

Here αc(R) is the running strong coupling constant.
The functionMij(mi,mj , R) depends on quark masses
and hadron bag radius and it can be calculated explic-
itly. Parameters aij specify the spin dependence of the
interaction energy between quarks qi and qj . They are
proportional to the matrix elements ⟨(q1q2)S1q3|(σi ·
σj)|(q1q2)S2q3⟩, where σi are appropriate spin gener-
ators. These coefficients can be calculated straightfor-
wardly using algebraic technique, as described in the
Ref. [17], and the transformation of the basis [18]

|(q1q2)J12q3⟩J =
∑
J13

(−1)j2+j3+J12+J13

×
√
(2J12 + 1) (2J13 + 1) (4)

×
{
j2 j1 J12
j3 J J13

}
|(q1q3)J13q2⟩J ,

where necessary. The results are presented in Ta-
ble 1, where for simplicity the abbreviations |J12⟩ =
|(q1q2)J12q3⟩ are used.

The relation between the calculated bag-model en-
ergy E and the hadron massM is given by

E =

∫
d3sΦ2

P (s)
√
M2 + s2 , (5)
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Table 1. Parameters which specify the colour-magnetic interaction
energy of baryons consisting of three distinct quarks.

a12 a13 a23

⟨0|aij |0⟩ −3
⟨1|aij |1⟩ 1 −2 −2

⟨0|aij |1⟩
√
3 −

√
3

where ΦP (s) is a Gauss profile

ΦP (s) =

(
3

2πP 2

)3/4

exp
(
− 3s2

4P 2

)
. (6)

The effective momentum P specifies the momentum
distribution and is defined as

P 2 = γ
∑
i

nip
2
i . (7)

Here pi are the momenta of the quarks. The c.m.m. pa-
rameter γ is to be determined in the fitting procedure.
For the baryons containing b-quarks the relation (5)
gives practically the same results as the familiar Ein-
stein relation [19]

M2 = E2 − P 2 . (8)

In the presence of b-quarks we prefer to use this simple
relation instead of rather cumbersome procedure based
on Eq. (5). For the running coupling constant αc(R)
and running quark mass mf (R) we use the following
expressions:

αc(R) =
2π

9 ln(A+R0/R)
, (9)

mf (R) = m̃f + αc(R) · δf , (10)

whereR0 is the scale parameter analogous to QCD con-
stant Λ. Parameter A helps us to avoid divergences
when R → R0. For each quark flavour we have two
free parameters m̃f and δf to be adjusted.

Let us summarize our zoo of model parameters.
These are the bag constant B, the c.m.m. parameter
γ which determines the strength of the c.m.m. cor-
rections, two parameters (A and R0) from the running
coupling constant parametrization, and finally six pa-
rameters (m̃s, δs, m̃c, δc, m̃b, δb) necessary to define
the running quark mass functions mf (R). The light
(up and down) quarks are taken to be massless. To fix
the parameters B, γ, A, and R0 the experimentally ob-
served masses of the light hadrons (N , ∆, π, and the
average mass of the ω − ρ system) were chosen. To
fix the mass function parameters m̃f , δf for each quark
flavour we have employed the masses of correspond-
ing lightest vector mesons (ϕ, J/ψ, Υ) and the mass

values of the lightest baryons Λf containing the quark
qf of the corresponding flavour. We employ the same
fitting procedure as in our previous work [11], and the
values of the parameters to be used as the input in the
bag model calculations are: B = 7.597 · 10−4 GeV4,
R0 = 2.543 GeV−1, A = 1.070, γ = 1.958, m̃s =
0.161 GeV, δs = 0.156 GeV, m̃c = 1.458 GeV,
δc = 0.112 GeV, m̃b = 4.793 GeV, δb = 0.061 GeV.
The parameters B, R0, A, γ, m̃s, δs are the same as
in Ref. [11]. The numerical values of the remaining
four parameters (m̃c, δc, m̃b, δb) differ slightly from the
corresponding values presented in [11] because in the
present work we have used newmore accurate values of
Λc (2.286 GeV) [20] and Λb (5.620 GeV) [21] masses.

3. Results and discussion

Let us proceed to the discussion of our main point of
concern – the wave function mixing of heavy baryons in
the bag model calculations. The ground state baryons
we are interested in areΞc, Ξ′

c, Ξ∗
c ; Ξb, Ξ′

b, Ξ
∗
b ; Ξbc, Ξ′

bc,
Ξ∗
bc; and Ωbc, Ω′

bc, Ω
∗
bc. The mixing is possible only be-

tween the spin-1/2 states (Ξc and Ξ′
c, for example). In

order to calculate the masses of all these baryons we use
the bagmodel parameters listed at the end of the preced-
ing section. For the spin-3/2 states denoted as | . . .⟩∗
the calculation procedure is exactly the same as adopted
in the paper [11]. We minimize the energyEB∗ of each
such baryon as a function of the bag radius R and then
apply Eq. (5) (for Ξ∗

c) or Eq. (8) (for Ξ∗
b , Ξ

∗
bc, and Ω∗

bc)
to determine the corresponding baryon masses. For the
spin-1/2 states | . . .⟩ and | . . .⟩′ the procedure differs
only in the choice of the energy function to be mini-
mized. In this case we use the trace of the energymatrix
EB +EB′ which remains invariant under state mixing.
Then we calculate the diagonal and off-diagonal matrix
elements of the interaction energy, diagonalize the en-
ergy matrix, and use Eq. (5) or (8) again to determine
the masses of the physical baryons. To gain some in-
sight how the things look like we present some inter-
mediate results of calculations in the Tables 2, 3. In the
first two rows of these tables we give the c.m.m. uncor-
rected energy values E(1) and E(0) corresponding to
the mathematical wave functions in which the first two
quarks in the spin coupling scheme (q1q2)Sq3 are in the
spin-1 and spin-0 states. The last two rows contain the
squared wave function expansion coefficients obtained
after matrix diagonalization. The symbols b, c, s denote
the bottom, charmed, and strange quarks, respectively,
and for the sake of simplicity the symbol u is used for
both light (up or down) quarks.
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Table 2. Dependence of the c.m.m. uncorrected energies (in GeV)
before the matrix diagonalization on the arangement of quarks for
the Ξc, Ξ′

c (columns 2–4) and Ξb, Ξ′
b (columns 5–7) baryons. The

last two rows contain the squared expansion coefficients C2
1 , C2

2 of
the wave functions obtained after matrix diagonalization.

(q1q2)q3 (us)c (uc)s (sc)u (us)b (ub)s (sb)u

E(1) 2.886 2.840 2.831 6.086 6.013 6.010
E(0) 2.818 2.865 2.874 5.987 6.059 6.062
C2

1 0.9950 0.3139 0.1912 0.9997 0.2656 0.2347
C2

2 0.0050 0.6861 0.8088 0.0003 0.7344 0.7653

Table 3. Dependence of the c.m.m. uncorrected energies (in GeV)
before the matrix diagonalization on the arangement of quarks for
the Ξbc, Ξ′

bc (columns 2–4) and Ωbc, Ω′
bc (columns 5–7) baryons.

The last two rows contain the squared expansion coefficients C2
1 ,

C2
2 of the wave functions obtained after matrix diagonalization.

(q1q2)q3 (uc)b (ub)c (cb)u (sc)b (sb)c (cb)s

E(1) 7.078 7.050 7.041 7.247 7.224 7.217
E(0) 7.035 7.062 7.072 7.212 7.235 7.241
C2

1 0.9833 0.3693 0.1474 0.9872 0.3538 0.1591
C2

2 0.0167 0.6307 0.8526 0.0128 0.6462 0.8409

The inspection of results in Tables 2 and 3 shows a
striking dependence of the calculated energies on the
quark ordering. As one can see, the wave function
with two first quarks in the relative spin-0 state has the
lowermost energy only when the heaviest quark (e. g.,
b-quark) is picked up as the third in the corresponding
spin coupling scheme (q1q2)Sq3. This is the only case
when the traditional prescription

| . . .⟩ = |(q1q2)0q3⟩ , | . . .⟩′ = |(q1q2)1q3⟩ (11)

could be maintained, because the energy matrix diago-
nalization leads to negligible changes of the initial en-
ergy values. The direct calculations show that even in
the most problematic case of the Ξbc − Ξ′

bc system the
difference between energy values before and after di-
agonalization does not exceed 1 MeV and is obviously
much smaller than the systematic uncertainties of the
model. So, if one is interested only in the baryon mass
spectra, one can adopt the prescription (11), construct
the optimal basis by arranging the quarks in increasing
order of their masses, and never bother about the diag-
onalization of the energy matrix anymore. At this point
a remark is necessary. One must be very cautious when
dealing with other baryon parameters (such as magnetic
moments, for example). As it was shown in Ref. [14],
the wave function mixing may change the values of the
calculated magnetic moments substantially even when
the optimal basis is used. Although this problem is be-
yond the scope of the present paper, it is worth attention,
and we are going to return to this question in the future.

Table 4. Masses of Ξc, Ξ′
c, Ξ∗

c and Ξb, Ξ′
b, Ξ∗

b baryons (in GeV).
The row denoted as Bag contains the results obtained in our work.
The row Exp contains averaged over the isodoublet experimental

energy values.

Particle Ξc Ξ′
c Ξ∗

c Ξb Ξ′
b Ξ∗

b

Bag 2.468 2.546 2.638 5.809 5.911 5.944
[23] 2.481 2.578 2.654 5.812 5.937 5.963
[25] 2.474 2.578 2.655 5.808 5.946 5.975
[26, 27] 2.468 2.582 2.651 5.810 5.955 5.984
Exp 2.469 2.577 2.646 – – –

Table 5. Masses of Ξbc, Ξ′
bc, Ξ∗

bc and Ωbc, Ω′
bc, Ω∗

bc baryons (in
GeV). The row denoted as Bag contains the results obtained in our

work.

Particle Ξbc Ξ′
bc Ξ∗

bc Ωbc Ω′
bc Ω∗

bc

Bag 6.846 6.891 6.919 6.999 7.036 7.063
[22] 6.82 6.85 6.90 6.93 6.97 7.00
[24] 6.933 6.963 6.980 7.088 7.116 7.130
[26] 7.029 7.053 7.083 7.126 7.148 7.165
[9] 6.838 7.028 6.989 6.941 7.116 7.077

Before going to the concluding remarks we want to
compare the masses of baryons calculated in our work
with the results obtained in other models and experi-
mental data where available. We have chosen for the
sake of comparison the baryon mass estimates in non-
relativistic [22] and relativistic [23, 24] potential mod-
els obtained in the quark–diquark approximation, the
estimates obtained in the quark–diquark approximation
of the bag model [9], the calculations in the simplified
variational approach [25], and predictions provided us-
ing various sum rules based partially on the heavy quark
symmetry considerations [26, 27]. The experimental
values are taken from the Particle Data Tables [28]. The
data for the baryons of ΞQ type are presented in Table 4
and for the ΞQ1Q2 , ΩQ1Q2 type baryons in Table 5.

From Table 4 it is seen that for the baryons contain-
ing one heavy quark all approaches give rather similar
qualitative picture. Inspection of the ΞQ − Ξ∗

Q hy-
perfine mass splitting indicates that in our version of
the bag model the interaction energies for these baryons
could be slightly underestimated. Comparison with ex-
periment also shows that all approaches give reason-
able results. One could even insist that owing to the
approximate nature of the models the agreement with
experiment (though not excellent) is surprisingly good.
Such success gives us some confidence that we are on
the right path in understanding the properties of heavy
baryons.

For the baryons with two heavy quarks the situation
is somewhat different. As seen from Table 5, all but
one approaches give similar qualitative pictures of the
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baryon spectra again. A striking exception is the re-
sults obtained in the paper [9] (the reversed order of the
Ξ′
bc, Ξ

∗
bc and Ω′

bc, Ω
∗
bc states). The bag model results

for the ground state baryon masses calculated in our
work are laid out somewhat above the estimates [22]
obtained in the nonrelativistic potential model based
on the quark–diquark approximation. Relativistic ap-
proach [24] gives similar mass spectrum as ours but
shifted approximately 70 MeV upwards. The predic-
tions based on the sum rules [26] are higher than our
estimates by approximately 170 MeV and 110 MeV for
the Ξbc and Ωbc families respectively. The difference
between the baryon spectrum obtained in the paper [9]
and the others is of qualitative character. It could look
strange, but it is the direct consequence of the attempts
to incorporate the mixing effects for the ground state
baryons in the quark–diquark approximation to the bag
model. We already know that in the ordinary approach
the wave function mixing can play an important role in
the calculations of the baryon mass spectra. However,
in general, we cannot draw a direct link between the
quark ordering in the spin coupling scheme and the cor-
responding diquark structure. Nevertheless, some cor-
respondence between the two pictures is expected. For
example, in the quark–diquark approximation to the po-
tential model the physical Ξ′

bc and Ω′
bc states are those

with scalar cb diquark [24], as could be expected from
the analogy with the ordinary approach (see the 4th and
7th columns of Table 3). In the usual approach the in-
teraction of the system consisting of two quarks with
the third one is provided by the interaction of its indi-
vidual constituents. The mixing of the wave functions
is possible only when the interaction between the first
and the third quarks is of different strength as compared
with the interaction between the second and the third (as
the quark becomes heavier its hyperfine interaction with
other quarks decreases). When the mixing is present
the correct mass splitting is achieved only after the di-
agonalization of the energy matrix. On the other hand,
in the quark–diquark approximation some information
about the initial structure of the diquark is lost, and, as a
rule, the mixing of the ground state functions is absent
[23]. Maybe some remnant of the mixing interaction of
the ground states could exist, but practically it seems to
be unnecessary. Since the baryon masses predicted in
the paper [9] differ radically from the predictions ob-
tained in the bag model with the state mixing effects
taken into account (this work) and from the results ob-
tained in the quark–diquark approximations to the po-
tential model, it seems that the mixing effects in the
work [9] have been heavily overestimated. Of course,

in the calculation of energies of the excited baryons one
is confronted with the mixing of various states, and in
consistent calculations [22, 24] these mixing effects are
taken into account.

As regards the results obtained in our work, first of
all, we conclude that, as expected, the bag model shares
many features of ordinary quark model. The main aim
of this paper was to examine the heavy baryon ground
state wave function mixing due to the colour-magnetic
interaction in the framework of the modified bagmodel.
We have found that the main features of the mixing in-
teraction in the bag model are the same as in the or-
dinary nonrelativistic quark model. So, we can con-
clude that fully relativistic treatment of the light quarks
in the bag has only minor influence on the state mixing
properties. For the baryons consisting of three quarks
of different flavour we cannot in general ignore the
wave function mixing induced by the hyperfine colour-
magnetic interaction. It can even cause sizable changes
of the calculated hadronic properties. On the other
hand, the widely accepted optimal basis can be built
up by simply choosing the heaviest quark as the third
one in the corresponding spin coupling scheme. The
matrix of the interaction energy in this basis is approxi-
mately diagonal, and therefore the mixing effects in the
baryon mass (energy) calculations can be neglected. If
for any reason other than optimal basis is used, even in
the baryon mass calculations the mixing effects must be
taken into account.
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SUNKIŲJŲ BARIONŲ MAIŠYMASIS MAIŠŲ (BAG) MODELIO SKAIČIAVIMUOSE

A. Bernotas, V. Šimonis

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka
Barionų, sudarytų iš trijų skirtingų aromatų kvarkų, pagrindi-

nių būsenų papildomai klasifikacijai gali būti naudojami tarpiniai
kvarkų poros sukiniai, tačiau dėl sukinio-sukinio tipo stipriosios są-
veikos šie tarpiniai sukininiai momentai ne visada yra „geri“ kvan-
tiniai skaičiai. „Fizikinės“ tokių dalelių (pavyzdžiui, Ξc ir Ξ′

c)
banginės funkcijos bendru atveju yra pradinių „matematinių“ funk-
cijų, charakterizuojamų tarpiniais sukiniais, superpozicija. Skai-
čiuojant tokių dalelių energiją, reikia atsižvelgti ir į nediagona-
liųjų matricinių elementų įtaką. Yra žinoma, kad kai kuriais atve-
jais, sudarant barionų bangines funkcijas nereliatyvistiniame, po-
tencialiniame modelyje, galima taip parinkti kvarkų sukinių suri-
šimo schemą (pradžioje surišant lengvesnių kvarkų sukinius, o po to

prie jų pridedant trečiojo, paties sunkiausio kvarko sukinį), kad tar-
piniai sukiniai išliktų santykinai „gerais“ kvantiniais skaičiais. Sie-
kiant išsiaiškinti, ar ir MIT maišų modelyje galioja panašūs dėsnin-
gumai, buvo atlikti nuodugnūs skaičiavimai, parenkant visas įma-
nomas kvarkų sukinių surišimo schemas ir atsižvelgiant į nediago-
nalius matricinius elementus. Paaiškėjo, kad čia taip pat egzistuoja
optimali sukinių surišimo banginėje funkcijoje schema (tokia pat
kaip ir potencialiniame modelyje), o kitose schemose pastebimas
stiprus pradinių banginių funkcijų susimaišymas. Neblogas turimų
eksperimentinių duomenų sutapimas su modelio rezultatais rodo,
kad maišų modelis, įskaičius jame hipersmulkiąją spalvinę magne-
tinę sąveiką, gali būti naudojamas barionų nežinomų masių įver-
čiams.


