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The bound state extension of Skyrme’s topological soliton model for the heavy baryons is quantized canonically in arbitrary
irreducible representations of the SU(3) flavour group. The canonical quantization leads to an additional negative mass term,
which stabilizes the quantized soliton solution. The heavy flavour meson in the field of the soliton is treated with semiclassical
quantization. The representation dependence of the calculated mass spectra for the strange, charm, and bottom baryons is
explored and compared to the existent empirical spectra.
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1. Introduction

Skyrme’s topological soliton model for the baryons
[1] is a chiral symmetric mesonic representation of
QCD in the limit of large colour number Nc. In this
limit baryons are constructed as topological soliton so-
lutions to the effective chiral meson Lagrangian. The
baryon number is the second Chern number of the me-
son field [2]. In the semiclassical version of the model
the mass of the pion, which is the Goldstone boson
of the spontaneously broken chiral symmetry, is in-
troduced through adding a complementary symmetry
breaking term to the Skyrme Lagrangian.

The model yields a qualitative description of the
lower energy part of the spectra of the nucleons and
delta resonances, but its direct extension to describe
strange, or heavier, baryons fails phenomenologically
because of the badly broken SU(3) symmetry [3]. In
the chiral limit all quarks are massless, which implies a
model with unbroken SU(3) and higher flavour symme-
try groups. The reason is that the flavour quantum num-
bers are associated with rotations of collective coordi-
nates, although the collective coordinates approach is
associated with unbroken flavour symmetry. When the
symmetry is badly broken, the rigid rotator treatment
fails, with poor phenomenology as a consequence [4].
A phenomenologically more successful alternative ap-
proach of treating hyperons as bound states of Skyrme
solitons and non-topological fields of K mesons was

introduced by Callan and Klebanov [5, 6]. In this ap-
proach the hyperons with strange and heavier flavour
number appear as bound states of mesons with the ap-
propriate quantum number and the soliton. In the har-
monic approximation the meson–soliton system is de-
scribed by a linear wave equation.

When the meson field is expanded perturbatively the
model Lagrangian splits into two parts corresponding to
soliton and meson field, which interacts with the soliton
field. We show that canonical quantization of the soli-
ton, which respects the non-commutativity of quantum
variables, leads to quantum stabilizing term that low-
ers the soliton mass. The dependence of the meson–
soliton interaction on the representation of the heavy
flavour SU(3) is analysed here in detail, with emphasis
on the Wess–Zumino and the symmetry breaking terms.
It is found that new bound states with higher excitation
number can appear in higher representations of SU(3)
group, which are absent in the fundamental represen-
tation. In general the ordering of the calculated spectra
of the heavy flavour baryons agree with the existent em-
pirical values.

The model Lagrangian and the traditional treatment
of the kaon fields that represent heavier meson fields in
bound state approach is reviewed in Sec. 2. The gener-
alization of the bound state Skyrme model to represen-
tations of arbitrary dimension is also presented in this
section. In Sec. 3 the soliton is quantized canonically
ab initio in the collective coordinates framework and
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embedded into the bound-state model Lagrangian. Sec-
tion 4 contains the wave equation for the meson field in
arbitrary representations and the diagonalization of the
Hamiltonian density in terms of creation-annihilation
operators to derive the final model Hamiltonian. Sec-
tion 5 contains physical interpretation of the hyperon
states that arise in the model, along with comparison
of calculated spectra to the experimental data. Sec-
tion 6 contains a summarizing discussion. The nota-
tion employed for the SU(3) group algebra is given in
Appendix.

2. Model Lagrangian

2.1. The bound state model

The action of Skyrme model extension to the hyper-
ons is

S =

∫
d4x (LSk + LSB) + SWZ . (1)

Here LSk is Lagrangian density of the original Skyrme
model [1],

LSk =−f2
π

4
Tr

{
(∂µU)U†(∂µU)U†

}
+

1

32e2
Tr

{[
(∂µU)U†, (∂νU)U†

]2}
, (2)

where fπ is pion decay constant, e is model parameter,
andLSB andSWZ are the actions for the chiral symmetry
breaking and the Wess–Zumino terms respectively.

In the limit of unbroken SU(3) symmetry the meson
field U takes values in the SU(3) group algebra. When
SU(3) symmetry is badly broken due to a large meson
mass term, the physically relevant field configurations
will be small fluctuations into heavy flavour directions
around the pionic soliton.

Here we employ the chiral symmetric field ansatz [5]

U =
√

UπUK

√
Uπ (3)

to construct bound states, where√
Uπ = exp

(
i
1

fπ

(
Ĵ
(1,1)
(0,1,m)x̂

(m)
)
F (r)

)
, (4)

UK = exp
(

i
1

fK
Ĵ
(1,1)
(z,1/2,m)K̂(z,1/2,m)

)
. (5)

Here fK is kaon decay constant and the parameters
(z, j,m) are used for the basis state notation for the
canonical chain SU(2) ⊂ SU(3) [5]. To a first approx-
imation it suffices to expand the fields only up to the

second order. The contribution of higher order terms,
which describe self-interactions in the meson field, has
been found to be small [7].

The kaon (the generalization to the D and B mesons
is given in Refs. [8, 9]) field has the conventional
isodoublet structure:

K† =
(
K− K̃0

)
, K =

(
K+

K0

)
. (6)

The meson state is a field that takes values in the adjoint
representation of the SU(3) algebra:

K− = K̂( 1
2
, 1
2
,− 1

2
), K+ = K̂(− 1

2
, 1
2
, 1
2
) ,

K̃0 = −K̂( 1
2
, 1
2
, 1
2
), K0 = K̂(− 1

2
, 1
2
,− 1

2
) .

(7)

The invariance of the soliton under combined spatial
and isospin rotations implies the following condition for
the eigenmode expansion of the meson field:

K (r, t) = k (r, t) Yu l u0 (ϑ, φ) . (8)

Here l and u represent orbital and total angular momen-
tum of the meson field respectively.

The radial part k (r, t) of the meson field can be ex-
pressed in terms of energy eigenvalues as follows:

k (r, t) =
∑
n>0

[
k−n (r) eiω−ntb†n + kn (r) e−iωntan

]
.

(9)
Here an is the annihilation operator for state with
strangeness S = −1 and b†n is the creation operator for
state with strangeness S = 1.

2.2. Generalization to arbitrary representations

The pionic field may be expressed in any irreducible
SU(3) group representation as direct sum of irreducible
SU(2) group representations [10]:

√
Uπ =

(λ,µ)∑
z,j

⊕Dj (α) . (10)

Using the Maurer–Cartan form notation the explicit
form of right chiral current of pionic field can be ex-
pressed as(
∇k

√
Uπ

)√
Uπ

†
=

{
i
(
F ′− 1

r
sinF

)
(−1)mx̂−mx̂k

+ i
1

r
sinF δm,k −

2
√
2

r
sin2

F

2

[
1 1 1

−mk n

]
(−1)mx̂n

}

×
〈∣∣∣Ĵ (1,1)

(0,1,m)

∣∣∣〉 . (11)
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After substitution of the bound state ansatz (3) into
(2) and using (11) for the pion field and (5) for the me-
son field the Skyrme Lagrangian for the meson field in
a u = 1

2 state takes the form below after division by the
factor

N =
1

4
dim(λ, µ)C2(λ, µ) : (12)

LSk =
1

4f2
K

fπ
e

∫
dr̃ r̃2

(
f
˙̃
k2 − h k̃′2 + Veff k̃

2
)

−Mcl . (13)

Here Mcl is the classical soliton mass:

Mcl = 4π
fπ
e

∫
r̃2dr̃

1

2
[d+ 2s+ s(2d+ s)] . (14)

The coefficients in this expression are:

h = 1 +
1

4
2s,

f = 1 +
1

4
(d+ 2s) ,

Veff = −1

4
(d+ 2s)− 1

4
2s(2d+ s)

+
1

r̃2

[
1 +

1

4
(d+ s)

][
2c2 + (1− 4c)l(l + 1)

]
+

1

4

6

r̃2

{
s

[
c2 − (2c− 1)l(l + 1)

]

+
d
dr̃

[(
c− l(l + 1)

)
F̃ ′ sin F̃

]}
. (15)

Here the standard notations employed are: s =
(1/r̃2) sin2F̃ , d = F̃ ′2, c = sin2(F̃/2). The dimen-
sionless parameters are: r̃ = efπr, F̃ ≡ F (r̃), and
k̃ ≡ k(r̃, t).

2.3. The Wess–Zumino term

The Wess–Zumino term plays crucial role in bound-
state model. It involves the meson field only with one
time derivative. This term splits the energies of states
with strangeness S = −1 and S = 1 one from another.
The Wess–Zumino action is

SWZ = − iNc

240π2

∫
d5x ϵµναβγ Tr {RµRνRαRβRγ} .

(16)

For the field ansatz (3) it may be reduced to the remark-
ably elegant expression:

SWZ =
iNc

2π2

∫
d4x

1

4!
Tr

{(
p + p′

)3 k
}
. (17)

Here we have used differential 1-form notations:

p=
(

d
√

Uπ

)√
Uπ

†
,

p′ =
√

Uπ
† (

d
√

Uπ

)
,

k= (dUK)U†
K . (18)

Explicit evaluation of (17) upon division by the normal-
ization factor (12) yields

LWZ =−i
C3(λ, µ)

C2(λ, µ)

3Nc

80f2
K

1

2π2

×
∫

F ′ sin2 F ·
(
k†k̇ − k̇†k

)
dr . (19)

In the case of the fundamental SU(3) group representa-
tion (1, 0) this result agrees with that in Ref. [6] up to
the overall factor 1/16, which derives from the different
notation of fK and the present choice of SU(3) group
generators.

2.4. The symmetry breaking term

The SU(3) chiral symmetry breaking term of La-
grangian density is defined as [10]

LSB =
f2
π

4

[
m2

0 Tr
{

U + U† − 2 · 1
}

− 2m2
8 Tr

{
Ĵ
(1,1)
(0,0,0)

(
U + U†

)}]
. (20)

Here (with the exception of the case of the self-adjoint
representation) model parameters

m2
0 =

1

3

(
m2

π + 2
f2
K

f2
π

m2
K

)
, (21)

m2
8 =

10

3
√
3

C2(λ, µ)

C3(λ, µ)

(
m2

π −
f2
K

f2
π

m2
K

)
(22)

are related to pion and kaon massesmπ andmK respec-
tively.

For the self-adjoint representations λ = µ the sym-
metry breaking term is proportional only to m2

0 because
the trace of the second term is equal to zero.

Substitution of the ansatz (3) into (20) leads to
the symmetry breaking term for any irreducible SU(3)
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group rep. The explicit form of the general symmetry
breaking term is

LSB(λ,µ) =−MSB(λ,µ) =

f2
π

2

(
m2

0Q
λ,µ
11 − 2√

3
m2

8Q
λ,µ
12

)

− f2
π

4f2
K

(
m2

0Q
λ,µ
21 − 2√

3
m2

8Q
λ,µ
22

)
K

†
K . (23)

Here the notation is

Qλ,µ
11 =

λ,µ∑
z,j,m

cos[2mF (r)]− dim(λ, µ) ,

Qλ,µ
12 =

λ,µ∑
z,j

{
[(λ− µ) + 3z]

j∑
m=−j

cos[2mF (r)]

}
,

Qλ,µ
21 =

λ,µ∑
z,j,m

{
Aλ,µ

z,j,m cos[2mF (r)]

}
,

Qλ,µ
22 =

λ,µ∑
z,j,m

{
[(λ− µ) + 3z]Aλ,µ

z,j,m cos[2mF (r)]

}
,

(24)

and

Aλ,µ
z,j,m = − 1

2j(j + 1)

×
{
2j3 + j4 −mz (1+z+λ) (z−µ−1)

−j
[
λ− 3z2 − 2zλ+m(3z+λ−µ) + µ+ 2zµ

+λµ
]
− j2

[
λ− 3z2 − 2zλ− 1 +m(3z+λ+µ)

+µ+ 2zµ+ λµ
]}

. (25)

For the fundamental SU(3) representation (1, 0) the
symmetry breaking term reduces to the simple form:

LSB(1,0) = −8π

∫
r2f2

πm
2
π sin2

F

2
dr (26)

− 1

4f2
K

∫
r2

(
f2
Km2

K − f2
πm

2
π sin2

F

2

)
k†k dr .

For higher representations the weight of symmetry
breaking grows, especially the heavy meson mass part.
This term is crucial for phenomenologically realistic
spectra of the heavy flavour hyperons.

3. Canonical quantization of the soliton

For the quantization of the Skyrme soliton for arbi-
trary reducible SU(3) group representations (λ, µ) the
quantum operators and soliton field may be separated in
the usual way as

U (r,q (t)) = A (q (t))Uπ (r)A† (q (t)) . (27)

The operator A may be expressed as a direct sum of
Wigner D matrices:

A (q (t)) =

(λ,µ)∑
z,j

⊕Dj (q) . (28)

The three real time dependent parameters q (t) =
{q1 (t) , q2 (t) , q3 (t)} are quantum variables, which
represent Euler angles of rotation of the soliton. Con-
sidering the Skyrme Lagrangian quantum mechanically
ab initio, the generalized coordinates q (t) and veloci-
ties _q (t) have to satisfy the commutation relations [11]:[

q̇a, qb
]
= −fab (q) . (29)

Here the tensor fab (q) is a function of generalized co-
ordinates q only. It is symmetric as a consequence of
the commutation relation

[
qa, qb

]
= 0.

The explicit form of fab (q) can be determined only
after imposition of the quantization conditions. Using
Weyl ordering of the operators, the commutation rela-
tion between a generalized velocity component q̇a and
an arbitrary function G (q) is given by

[q̇a, G (q)] = −ifab (q)
∂

∂qb
G (q) . (30)

After substituting (27) into Skyrme soliton Lagrangian
(2), the dependence on generalized velocities can be ex-
pressed as

L (q, _q,F ) =
1

2
a(F )q̇agab (q) q̇b +O

(_q0
)
. (31)

The function gab is interpreted as a metric tensor which
can be expressed as a product of functions C ′(0,1,m)

a (q)
[11]:

gab (q) =−1

4
dim(λ, µ)C2(λ, µ) (−1)m

× C ′(0,1,m)
a (q) C ′(0,1,−m)

b (q) . (32)

Here the soliton moment of inertia a(F ) is defined as

a(F ) =
8π

3e3fπ

∫
r̃2 sin2F̃

(
1+F̃ ′2+

1

r̃2
sin2F̃

)
dr̃ .
(33)
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The canonical momentum pa conjugate to the general-
ized coordinate qa is

pa =
1

2
a(F )

{
q̇b, gba (q)

}
. (34)

Employment of the canonical commutation relations
leads to the explicit form of the tensor fab (q):

fab (q) = [a(F )gab (q)]−1. (35)

Following [11] we define the angular momentum oper-
ator

Ia =−i
{
pb, C

′(0,1,a)
−b (q)

}
= (−1)a

ia(F )

2

{
q̇b, C

′(0,1,a)
−b (q)

}
, (36)

which may be recognized as iso-rotation operator of the
soliton.

The explicit form of canonically quantized soliton af-
ter division by the factor (12) becomes

L̂ = −Mcl(F )−∆M(λ,µ)(F ) +
Î2

2a(F )
+ LSB(λ,µ) .

(37)
Here ∆M(λ,µ)(F ) is quantum mass correction to the
classical soliton mass:

∆M(λ,µ)(F ) = − 2π

5a2(F )

1

e3fπ

×
∫
r̃2
{
5−11F̃ ′2−sin2F̃

(
16−16F̃ ′2+

3

2r̃2

)

+ 3C2(λ, µ)

[
4 sin F̃

(
1−F̃ ′2

)
+ 4F̃ ′2

+
1

r̃2
sin2F̃

]}
sin2F̃ dr̃ . (38)

The corresponding Hamilton operator for the quantum
soliton finally is

Ĥ(λ,µ)(F ) =Mcl(F ) + ∆M(λ,µ)(F ) +
Î2

2a(F )

+MSB(λ,µ)(F ) . (39)

The energy of the canonically quantized soliton dif-
fers from the semiclassically quantized soliton by the
appearance of the mass correction ∆M(λ,µ), which de-
pends on representation. This mass correction is nega-
tive and lowers energy of quantum soliton. It shows that
quantum soliton is only approximately “rigid body”.

Minimization of the energy of quantum soliton leads
to an integro-differential equation for the quantum chi-
ral angle F (r̃). The boundary conditions are the same
as for classical chiral angle: F (0) = π, F (∞) = 0. At
large distances (r̃ → ∞), quantum chiral angle equa-
tion takes the asymptotic form:

r̃2F̃ ′′ + 2r̃F̃ ′ − (2 + m̃2
effr̃

2)F̃ = 0 , (40)

here the quantity m̃2
eff is defined as

m̃2
eff = m̃2

π − e4

3ã(F )

(
8∆M(λ,µ) +

2i(i+ 1) + 3

ã(F )

)
.

(41)
Here we have used the notation m̃ = (efπ)

−1m and
i(i+1) is the eigenvalue of the operator Î2. The solution
of the asymptotic equation is

F (r̃) = C

(
m̃2

eff
r̃

+
1

r̃2

)
exp(−m̃2

effr̃) , (42)

where C is an arbitrary constant determined numeri-
cally by tuning the asymptotic solution to the numerical
solution.

The requirement for the quantum soliton to be sta-
ble with finite mass sets the restriction m̃2

eff > 0. The
stability of the quantum soliton is ensured by the term
(38). Its absence in the semiclassical approach leads to
the instability of the solution [13]. Furthermore, the ap-
pearance of the quantum mass part breaks the scale in-
variance of the equation of motion, which is the symme-
try of the classical Lagrangian. This shows that Skyrme
Lagrangian has an anomaly. Therefore, the positive pa-
rameter meff = efπ m̃eff can be interpreted as an effec-
tive pion mass.

3.1. Semiclassical approach to the heavy flavour
meson field

In the semiclassical approach the heavy flavour me-
son field is described in the “rest frame” of the back-
ground soliton. In this slowly corotating meson–soliton
system the meson effectively becomes an object with
isospin zero and spin effectively equal to the quantum
number u [5]. Thus a kaon bound in the u = 1

2 wave can
be effectively treated as a strange quark. The same treat-
ment is approximately valid for bound charm and bot-
tom mesons and leads to bound states describing charm
and bottom baryons.
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The semiclassical part of the bound state Lagrangian
after substituting (3) into (2) for the u = 1

2 wave meson
and after dividing by the normalization factor (12) is

δL= − 1

4f2
K

1

2
δa(F, k)α̇2

+
1

4f2
K

α̇0t0

∫
r̃2dr̃

[
iχ

(
k̃†

˙̃
k − ˙̃

k†k̃
)]

. (43)

Here

α̇m = i
1

2

{
q̇α, C

′(0,1,m)
α (q)

}
,

δa(F, k) =
2

e3fπ

×
∫ {[(

1

4
− 1

3
sin2F̃

)
+

1

16

(
F̃ ′2 +

2

r̃2
sin2F̃

)]
k̃2

− sin2 F
(
3

8
F̃ ′2 sin2F̃ +

1

3r̃2
sin2F̃

)
k̃2

− 1

8

d
dr̃

(
F̃ ′ sin 2F̃

)
k̃2 +

1

6
sin2F̃

×
(
k̃′2 +

2l(l + 1)

r̃2
k̃2
)
)

}
r̃2dr̃ ,

χ =
1

e2

[
1

4

(−1)l

2l + 1

(
F̃ ′2 cos F̃ +

2

r̃2
sin2F̃

)

− 1

4r̃2

(
3(−1)l

2l + 1
− 1

)
d
dr̃

(
r̃2F̃ ′ sin F̃

)
+

1

6
F̃ ′2 sin2

F̃

2
− l(l + 1)

3r̃2
sin2F̃

+
2

3
sin2

F̃

2
+

(−1)l

2l + 1
cos F̃

]
. (44)

Here δa(F, k) is a small positive parameter, which can
be interpreted as an additional contribution to the soli-
ton moment of inertia. This shows that the background
field rotating together with quantum soliton slows it
down somewhat. The operators multiplied with χ(r̃)
are responsible for the spin–spin interaction of soliton
and the bound meson. These operators allow discrimi-
nating between states with different total spin.

On the semiclassical level the Wess–Zumino action

SWZ =− iNc

2π2

∫
M

1

4!
Tr

{
w3

(
α′ +W †α′W

)}
(45)

contributes to the spin–spin interaction between the
soliton and the heavy flavour meson. Here w = dUU †

and α′ = α′†dα′ are 1-forms. The semiclassical part of
Wess–Zumino Lagrangian can be written in the com-
pact form

δLWZ = α̇0t0
1

4f2
K

∫
r̃2dr̃ χWZ (r̃, λ, µ) k̃

2 , (46)

where

χWZ (r̃, λ, µ) =
C3(λ, µ)

C2(λ, µ)

1

10π2

F̃ ′

r̃2

{
sin2

F̃

2

×
[
3 + 5 cos F̃ + 4 cos 2F̃ − 2

(
cos F̃ − 2 cos 2F̃

)]
− l(l + 1)

[
2
(

cos F̃ + cos 2F̃
)
− cos 3F̃ − 4

]
+ l(l + 1)

1

2

(
cos F̃ + 4 cos 2F̃ − 3 cos 3F̃

)}
. (47)

3.2. The bound state mechanics

The final expression of the semiclassical Lagrangian
is

L=−Mcl −∆M(λ,µ) +
1

2
[a(F ) + δa(F, k)]α̇2

+
fπ
e

∫
r̃2dr̃

[
f
˙̃
k2 + iΛ (r̃, λ, µ)

(
k̃†

˙̃
k − ˙̃

k†k̃
)

− h k̃′2−
(
M2

K (r̃, λ, µ)+Veff
)
k̃2
]
−MSB(λ,µ)

+ α̇0u0

∫
r̃2dr̃

[
iχ
(
k̃†

˙̃
k − ˙̃

k†k̃
)
+ χWZ(r̃, λ, µ)k̃

2
]
.

(48)

Here the coefficients coming from the Wess–Zumino
and symmetry breaking terms depend on the chosen
representation:

Λ (r̃, λ, µ) = −e2

4

3

5

C3(λ, µ)

C2(λ, µ)

Nc

2π2r̃2
F̃ ′ sin2F̃ , (49)

M2
π(r̃, λ, µ) = −1

2
m̃2

0Q
λ,µ
11 +

1√
3
m̃2

8Q
λ,µ
12 , (50)

M2
K(r̃, λ, µ) = m̃2

0Q
λ,µ
21 − 2√

3
m̃2

8Q
λ,µ
22 . (51)
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In the case of the fundamental SU(3) group representa-
tion these take the simple forms

Λ (r̃, 1, 0) = − e2Nc

8π2r̃2
sin2F̃ · F̃ ′ ,

M2
π (r̃, 1, 0) = 2m̃2

π sin2
F̃

2
,

M2
K (r̃, 1, 0) = −m̃2

π sin2
F̃

2
+

f2
K

f2
π

m̃2
K .

The equation of motion for the meson field corre-
sponding to Lagrangian (48) is

0 = −f
¨̃
k + 2i

[
Λ (r̃, λ, µ) +

e

fπ
α̇0u0χ

]
˙̃
k

−
[
Veff+M2

K (r̃, λ, µ)− e

fπ
α̇0u0χWZ (r̃, λ, µ)

]
k̃

+
1

r̃2
(
r̃2 h k̃′

)′
. (52)

Here a term δa(F, k) has been dropped, as it is of order
N−2

c , which is not relevant here.
After substitution of (9) we get two independent

equations that represent states with strangenessS = −1

and S = 1 respectively:

[
ω̃2
nf + 2ω̃n

(
Λ +

e

fπ
α̇0u0χ

)
− Veff −M2

K

+
e

fπ
α̇0u0χWZ

]
k̃n +

1

r̃2
(
r̃2 h k̃′n

)′
= 0 , (53)

[
ω̃2
−nf − 2ω̃−n

(
Λ +

e

fπ
α̇0u0χ

)
− Veff −M2

K

+
e

fπ
α̇0u0χWZ

]
k̃−n +

1

r̃2
(
r̃2 h k̃′−n

)′
= 0 . (54)

Here ω̃ = (efπ)
−1ω.

Upon diagonalization of the Hamiltonian we find that
the canonical momentum conjugate to k̃ is

π̃m = f
˙̃
k

†
m + i

(
Λ +

e

fπ
α̇0u0χ

)
k̃

†
m . (55)

The canonical commutation relations lead to the follow-
ing orthogonality relations:

1

4f2
K

∫
dr̃ r̃2k̃nk̃m

[
(ω̃n + ω̃m)f

+ 2

(
Λ +

e

fπ
α̇0u0χ

)]
= δnm , (56)

1

4f2
K

∫
dr̃ r̃2k̃−nk̃−m

[
(ω̃−n + ω̃−m)f

− 2

(
Λ +

e

fπ
α̇0u0χ

)]
= δnm . (57)

In terms of creation and annihilation operators which
obey the usual algebra[

an, a
†
m

]
= δnm ,

[
bn, b

†
m

]
= δnm , (58)

the diagonalized Hamilton operator for kaon fields be-
comes

Ĥ = ω̃na
†
nan + ω̃−nb

†
−nb−n . (59)

The momentum canonically conjugate to the quan-
tum degrees of freedom is

p′α =−a′(F, k)
1

2

{
q̇β, gβα (q)

}
+ iC ′(0,1,0)

α (q)u0χ′(F, k, λ, µ) , (60)

where

a′(F, k) = a(F ) + δa(F, k) , (61)

χ′(F, k, λ, µ) =∫
r̃2dr̃

[
iχ
(
k̃†

˙̃
k − ˙̃

k†k̃
)
+ χWZ (r̃, λ, µ) k̃

2
]
. (62)

This differs from (34) because of the influence of the
bound meson field. Now we can write the final expres-
sion of the angular momentum operator of soliton ro-
tating with the bound field:

I ′a = (−1)aa′(F, k)α̇a + δa,0 t0 χ
′(F, k, λ, µ) . (63)

It differs from (36) by additional part which arises be-
cause of the interaction with bound field. Using the
canonical Legendre transformation

H =
1

2
{q̇α, pα}+

∫
r̃2dr̃

(
π̃
˙̃
k +

˙̃
k†π̃†

)
− L , (64)
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Table 1. Hyperon mass spectra with l = 1, MeV.

Λ (1116) Σ (1193) Σ∗ (1385)

irrep. \ mπ 0 71.6 137 0 71.6 137 0 71.6 137

(1, 0) 1049 1029 990 – 1235 1201 – 1355 1374
(2, 0) 1015 1067 1036 1221 1205 1178 1330 1320 1305
(2, 1) 1082 1196 1159 1330 1310 1272 1425 1411 1383

the following Hamiltonian is obtained:

Ĥ =Mcl +∆M(λ,µ) +MSB(λ,µ) + ω

+
1

2a′(F, k)

[
Î′2 − u20χ

′2(F, k, λ, µ)
]
. (65)

4. Interpretation of physical states and numerical
results

Quantum states of soliton are identified as isospin
states. Total angular momentum j of soliton is equal
to its isospin, (i, j) = (i, i). Lowest energy state
of bound field has l = 1 [5]. The spin–spin inter-
action terms let one to distinguish states with differ-
ent total spin. Thus we recognize the final state with
(0, 1/2) = (0, 0) + (0, 1/2) to be Λ (P01), state with
(1, 1/2) = (1, 1) + (0, 1/2) to be Σ(P11), and state
with (1, 3/2) = (1, 1) + (0, 1/2) to be Σ∗ (P13).

Bound state model has 5 independent parameters –
model parameter e, pion decay constant fπ, pion mass
mπ, kaon decay constant fK , and kaon mass mK for
calculating properties of hyperons. For calculations of
properties of charmed or bottom baryons correspond-
ingly we have to use decay constant fD or fB and meson
mass mD or mB . All these parameters are measured
experimentally except the model parameter e, the value
of which can be calculated by setting quantum soliton

with isospin i = 1
2 mass equal to the experimentally

measured mass of the nucleon,

MN =
fπ
e
Mcl(F̃ ) + e3fπ

[
∆M(λ,µ)(F̃ ) +

3

8a(F̃ )

]
+ f2

πMSB(λ,µ)(F̃ ) . (66)

We have calculated hyperon mass spectra for wave l =
1 using three different values of pion mass parameter
mπ in the symmetry breaking term (20). We have cho-
sen input parameters to be MN = 939 MeV, fπ =
65.35 MeV, fK/fπ = 1.22, mK = 495 MeV and three
different choices of the pion mass parameter in the sym-
metry breaking term: mπ = 0 MeV, mπ = 71.6 MeV,
and mπ = 137 MeV. The results for irreps (1, 0), (2, 0),
and (2, 1) are presented in Table 1 (the dash means that
we have found no stable solutions). The value mπ = 0
means that pions at classical level are treated as pure
Goldstone bosons but they acquire mass at quantum
level. The value mπ = 137 MeV represents the clas-
sical mass of the pion in the symmetry breaking term.
Although, by setting mπ = 0, from (41) we get meff =
108 MeV and by setting mπ = 137 we get meff =
193 MeV. By fitting calculations to the nucleon proper-
ties we have found the value of the symmetry breaking
parameter to be mπ = 71.6 MeV, which leads to the
correct effective mass of the pion meff = 137 MeV.
Consequent calculation results for charmed and bottom
baryons for irrep (1, 0) are given in Tables 2 and 3. The
input parameters for charmed baryons are fD/fπ = 1.7,
mK = 1867 MeV and for bottom baryons fB/fπ = 2,
mK = 5279 MeV.

Table 2. Charmed baryons spectra for irrep. (1, 0) with l = 1, MeV.

Λc (2287) Σc (2455) Σ∗
c (2520)

mπ 0 71.6 137 0 71.6 137 0 71.6 137

2198 2155 2068 – 2492 2355 – 2658 2606

Table 3. Bottom baryons spectra for irrep. (1, 0) with l = 1, MeV.

Λb (5620) Σb (5810) Σ∗
b (5830)

mπ 0 71.6 137 0 71.6 137 0 71.6 137

5584 5485 5284 – 6236 5865 – 6325 6177
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Table 4. Calculated fπ , MeV.

irrep. \ mπ 0 116 137

(1, 0) 58 54.4 53
(2, 0) 60 57.6 56.8
(2, 1) 61.8 60 58.5

It was shown in Ref. [13] that there is an alternative
way to do the calculations. One has to choose isoscalar
part of nucleon electric mean square radius〈

r2E,I=0

〉
= − 2

π

1

(efπ)2

∫
r̃2dr̃ F̃ ′ sin2F̃ (67)

as input parameter instead of pion decay constant. Now
fπ and e are model parameters and can be calculated
from equations (66) and (67), however, the ratio fK/fπ
(fD/fπ or fB/fπ) is kept fixed as previously. We
choose input parameter to be

〈
r2E,I=0

〉
= 0.604 fm2.

By fitting calculations to the nucleon properties we find
the value of the symmetry breaking parameter to be
mπ = 116 MeV. Calculated values of parameter fπ for
some irreps and mπ values are given in Table 4. Hy-
peron calculation results for wave l = 1 are given in
Table 5 and results for wave l = 0 are given in Table 6.
Calculations of charmed and bottom baryons are given
in Tables 7 and 8.

5. Discussion

In this paper, we have discussed the bound state
model describing heavy baryons containing a single
heavy quark. We have constructed a bound state out of
canonically quantized soliton and heavy meson. Soliton
was quantized canonically in the framework of the col-
lective coordinates formalism for arbitrary irreducible
SU(3) representation. We have treated soliton field

quantum mechanically ab initio. The canonical quan-
tization of the soliton respecting noncommutativity of
quantum variables – collective coordinates, which are
the Euler angles of the soliton rotation – leads to quan-
tum soliton stabilizing term. This term depends on the
representation (λ, µ) and lowers soliton mass. Bound
meson field was treated semiclassically. The symmetry
breaking and Wess–Zumino terms play a crucial role for
the bound field and also depend on the representation.
For self adjoint representation λ = µ the Wess–Zumino
term vanishes and symmetry breaking term is restricted
to SU(2) symmetry breaking term. The bound state
approach was done precisely respecting canonical La-
grangian and Hamiltonian formalism.

We found a semiclassical Hamiltonian describing
bound states in the background of the quantum soliton.
The representation (λ, µ) influences the explicit expres-
sion of Hamiltonian and tunes effective Yukawa poten-
tial. Consequently, the dependence on representation
can be interpreted as a new discrete phenomenological
parameter of the model. However, the explicit physi-
cal meaning of the dependence on representation is not
completely understood.

The calculations were done for the spectra of the
strange, charm, and bottom baryons, where they were
treated as bound states of a quantum soliton and an ap-
propriate flavour meson. The predicted mass values
for the non-excited hyperons are very close to the ex-
perimental ones. Although, the canonical approach in
not very successful in describing excited states. The
same remarks are valid for charm and bottom flavoured
baryons. However, we were able to investigate charmed
and bottom baryons only in the fundamental SU(3) rep.
Also we put a lower bound on the ratio fB/fπ ≥ 2.
The energies of calculations for higher reps are far too
high because of rapidly growing influence of symmetry
breaking term. Nevertheless, the results could drasti-

Table 5. Hyperon mass spectra with l = 1, MeV.

Λ (1116) Σ (1193) Σ∗ (1385)

irrep. \ mπ 0 116 137 0 116 137 0 116 137
(1, 0) 1128 1098 1086 – 1202 1190 – 1324 1318
(2, 0) 1118 1089 1078 1231 1191 1180 1319 1287 1278
(2, 1) 1223 1186 1174 1327 1280 1266 1414 1375 1364

Table 6. Hyperon mass spectra with l = 0, MeV.

Λ (1405) Σ (1660) Σ∗ (1670)

irrep. \ mπ 0 116 137 0 116 137 0 116 137
(1, 0) – 1288 1278 – 1479 – – 1418 –
(2, 0) 1249 – – – – – – – –
(2, 1) 1307 – – – 1446 – – 1355 –
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Table 7. Charmed baryons spectra for rep. (1, 0), MeV.

Λc (2287) Σc (2455) Σ∗
c (2520)

l \ mπ 0 116 137 0 116 137 0 116 137
l = 1 2343 2251 2219 – 2374 2328 – 2563 2531

Λc (2593) Σc (2800)

l = 0 – 2468 2435 – – –

Table 8. Bottom baryons spectra for rep. (1, 0), MeV.

Λb (5620) Σb (5810) Σ∗
b (5830)

l \ mπ 0 116 137 0 116 137 0 116 137
l = 1 5824 5533 5436 – 5797 5659 – 6020 5900

Λb (?)

l = 0 – 5770 5673

cally change if different mass term were employed. The
mass term is very important because the heavy meson
is treated semiclassicaly. Therefore, right mass term
could lead to a complete set of states of charmed and
bottom baryons.

Appendix

Elements of SU(3) group algebra

The SU(3) group generators are defined as compo-
nents of irreducible (1, 1) tensors. Their relation to the
Gell-Mann generators Λk are:

J
(1,1)
(0,0,0) =−1

2Λ8 ,

J
(1,1)
(0,1,0) = 1

2Λ3 ,

J
(1,1)
(0,1,1) =− 1

2
√
2
(Λ1 + iΛ2) ,

J
(1,1)
(0,1,−1) = 1

2
√
2
(Λ1 − iΛ2) ,

J
(1,1)

(− 1
2
, 1
2
, 1
2
)

= 1
2
√
2
(Λ4 + iΛ5) ,

J
(1,1)

( 1
2
, 1
2
,− 1

2
)

= 1
2
√
2
(Λ4 − iΛ5) ,

J
(1,1)

(− 1
2
, 1
2
,− 1

2
)
= 1

2
√
2
(Λ6 + iΛ7) ,

J
(1,1)

( 1
2
, 1
2
, 1
2
)

=− 1
2
√
2
(Λ6 − iΛ7) .

(A1)

In the case of the fundamental representation Λk the
matrices reduce to the standard Gell-Mann matrices λk.

The generators J
(1,1)
(Z,I,M) obey the hermitean conju-

gation relation:(
J
(1,1)
(Z,I,M)

)†
= (−1)Z+MJ

(1,1)
(−Z,I,−M) . (A2)

The action of the operators J (1,1)
(Z,I,M) on the basis states

and the commutation relations are given in [10]. The di-
mension of an arbitrary representation (λ, µ) is denoted
by

dim(λ, µ) =
1

2
(λ+ 1) (µ+ 1) (λ+ µ+ 2) . (A3)

The explicit expressions for the quadratic and cubic
Casimir operators are, respectively,

C2(λ, µ) =
1
3

(
λ2 + µ2 + λµ+ 3λ+ 3µ

)
,

C3(λ, µ) =
1

162 (λ− µ) (λ+ 2µ+ 3) (2λ+ µ+ 3) .
(A4)
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SUNKIEJI BARIONAI KAIP KANONIŠKAI KVANTUOTI SKYRME’OS MODELIO SOLITONAI
SURIŠTŲJŲ BŪSENŲ ARTINYJE

V. Regelskis, E. Norvaišas

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka
Sunkieji barionai, turintys vieną keistąjį, žavingajį ar gelminį

kvarką, tirti Callano ir Klebanovo pasiūlytame Skyrme’os mode-
lio surištųjų būsenų artinyje. Topologinis solitonas yra kanoniš-
kai kvantuojamas bet kuriame SU(3) grupės įvaizdyje, o kvantuo-
jant atsiradęs neigiamas masės dėmuo stabilizuoja kvantinį soli-
toną. Šiame artinyje sunkiųjų aromatų mezonai solitono lauke trak-
tuojami pusiauklasiškai, todėl tiems laisvės laipsniams užrašoma ir

išsprendžiama surištųjų būsenų lygtis. Wesso ir Zumino narys yra
labai svarbus modelio lagranžiane. Be jo surištosios būsenos ne-
egzistuoja, o hiperonų masių spektre šis narys išskiria teigiamo ir
neigiamo keistumo būsenas. Apskaičiuotas keistųjų, žavingųjų ir
gelminių sunkiųjų barionų masių spektras ir nustatyta jo priklau-
somybė nuo grupės įvaizdžio. Skaičiavimų rezultatai palyginti su
eksperimentiniais duomenimis.


