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PARAMETRIC AMPLIFICATION OF RANDOM OPTICAL FIELDS
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We demonstrate that the initiated by quantum noise parametric downconversion of pump beam can be described in classical
approach as a parametric amplification of orthogonal coaxial vortex modes with random amplitudes and of various topological
charges n. It is shown that in the field of Gaussian pump beam the parametric gain is largest for the fundamental mode (n = 0).
The evolution of correlation in the radial spectrum of different modes under parametric amplification is analysed.
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1. Introduction

Starting from quantum noise optical parametric am-
plifier (OPA) emits a broadband spectrum of both tem-
poral and spatial frequencies. Usually the coherence,
which appears in this spectrum under parametric am-
plification by plane pump wave, is analysed by expan-
sion of the random optical field in a large set of plane
waves with random amplitudes and phases [1, 2]. The
finite diameter of pump beam leads to a coupling (cor-
relation) of interacting plane waves [1, 3]. An appear-
ance of Bessel-like vortex beams from quantum noise in
OPA with ring-shaped gain profile pumped by narrow
Gaussian beam was demonstrated in Ref. [4]. The prob-
ability of a J0-like beam increased with the decrease of
pump beam diameter. X-shaped spatiotemporal coher-
ence can be observed in the random optical field ampli-
fied in OPA due to interplay of chromatic dispersion and
diffraction [2, 5–7]. The topological phase-defects are
spontaneously generated from noise fluctuations in the
degenerate OPA [8]. In the case of classical fields vari-
ous phenomena of vortex amplification in OPA as well
as parametric downconversion of optical vortices were
investigated, see, e. g., [9–11]. The model of phase sin-
gularities (vortices) was also used to describe statistical
properties of random fields (especially speckle) in lin-
ear optics, see [12–16].

In what follows, we show that the expansion of ran-
dom optical field into a proper set of vortex modes with
random amplitudes essentially simplifies the analysis of
evolution of correlation in the optical field under prop-

agation in OPA. We demonstrate that only two vortex
modes with opposite topological charges are coupled in
OPA. For this reason a large set of coupled differential
equations describing the interaction of plane waves can
be transferred into a rather small set of independent sys-
tems of two equations for each mode pair.

2. Theoretical background

Throughout the paper we consider a type I degener-
ate OPA in which a pump beam (frequency 2ω) is down-
converted to a signal field (frequency ω). For simplic-
ity, our model is restricted to interaction of monochro-
matic waves, it neglects pump diffraction and depletion,
and includes a classical description of the noise that ini-
tiates the process. In this case the equation of nonlinear
optics for parametric amplification of diffracting ran-
dom signal wave is
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where A(x, y, z) is the complex amplitude of a random
signal wave, Ap(x, y) is the pump envelope, x, y are
transverse coordinates, z is the direction of propagation,
ks is the wave vector of signal wave, and σ is the cou-
pling coefficient in quadratic medium.

In cylindrical coordinates (x = r cosψ, y = r sinψ)
from Eq. (1) we have
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×A(r, ψ, z) + iσAp(r)A
∗(r, ψ, z) , (2)

and it was assumed that the pump beam is axially sym-
metric. The signal fieldA(r, ψ, z) can be represented as
a superposition of components of an angular spectrum
S(β, θ, z):

A(r, ψ, z) =
1

4π2

×
∞∫
0

2π∫
0

βS(β, θ, z) exp [−iβr cos(θ − ψ)] dβ dθ , (3)

where β is radial frequency. By use of Jacobi–Anger
expansion

exp[−iβr cos(θ − ψ)] =

∞∑
n=−∞

(−i)nJn(βr) exp[in(θ − ψ)] (4)

we obtain

A(r, φ, z) =
1

2π

×
∞∑

n=−∞
exp(−inφ)

∞∫
0

βSn(β, z)Jn(βr) dβ , (5)

where

Sn(β, z) =
1

2π

2π∫
0

S(β, θ, z) exp(inθ) dθ (6)

is the nth azimuthal harmonic of angular spectrum
S(β, θ, z), φ = ψ + π/2, and Jn(βr) is the nth-order
Bessel function of the first kind. As a result, the com-
plex amplitude of the signal field (Eq. (5)) has the form

A(r, φ, z) =
∞∑
−∞

An(r, φ, z) ,

An(r, φ, z) =Fn(r, z) exp(−inφ) , (7)

where

Fn(r, z) =
1

2π

∞∫
0

βSn(β, z)Jn(βr) dβ (8)

and Fn(0, z) = 0 if n ̸= 0. We note that integral∫ ∞

0

∫ 2π

0
rAnA

∗
m drdφ is zero for m ̸= n. So, the sig-

nal field A(r, φ, z) is represented as a superposition of

orthogonal vortex modes An(r, φ, z) with random am-
plitudes Fn(r, z) and of various topological charges n.
In Eq. (8) the quantity Sn(β, z) is a radial spectrum
of the nth mode. Further we suppose that at the input
of OPA (z = 0) the components of angular spectrum
S(β, θ) of the random field correspond to a Gaussian
δ-correlated noise such that

⟨S(β, θ)⟩ = 0 , ⟨S(β1, θ1)S(β2, θ2)⟩ = 0 ,

⟨S(β1, θ1)S∗(β2, θ2)⟩ = Dδ(β1 − β2)δ(θ1 − θ2) , (9)

where parameter D scales the noise level. In this case
the components of the radial spectrum Sn(β) at z = 0
also correspond to a δ-correlated noise,

⟨Sn(β)⟩ = 0 , ⟨Sn(β1)Sn(β2)⟩ = 0 ,

⟨Sn(β1)S∗
n(β2)⟩ =

D

2π
δ(β1 − β2) , (10)

see Eq. (6), but the radial components of different
vortex modes m and n are uncorrelated. Further
we assume that the pump beam is Gaussian, Ap =
ap exp(−r2/d2), substitute Eq. (7) into Eq. (2), and, as
a result, for the nth mode we obtain
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where Γ = σap. We take into account that(
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(12)
and rewrite Eq. (11) in the following form:
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An expansion of Fn into a radial spectrum Sn, see Eq.
(8), gives
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where In is a modified Bessel function ofnth order. The
obtained Eq. (14) describes an evolution of the radial
spectrum of nth signal vortex mode amplified in OPA,
which is pumped by a Gaussian beam with a beamwidth
d.

Further we include into consideration the normalized
variables ξ = z/l (0 ≤ ξ ≤ 1), p = β/β0, q = γ/β0,
where l is the length of OPA crystal, β20 = kp

√
2Γ/l,

and kp ≈ 2ks is a wave vector of the pump beam. Then
Eq. (14) can be written as

∂Sn(p, ξ)

∂ξ
= i

√
Gp2Sn(p, ξ) + i(−1)nG

×
∞∫
0

qHn(p, q)S
∗
−n(q, ξ) dq , (15)

where G = 2Γl is a parametric gain parameter,

Hn(p, q) = α exp[−(p2 + q2)α] In(2αpq) , (16)

here α = Ld

√
G/(2l), and Ld = kpd

2/2 is a Rayleigh
length of the pump beam. The correlations appearing in
the radial spectrum Sn under parametric amplification
are caused by coupling function Hn(p, q) which peaks
at p = q. The dependence Hn(p, p) on p for two sig-
nal modes and two values of parameter α are shown in
Fig. 1. The width of function Hn(p, p) (dotted lines at
0.5 level forH0(p, p)) as well as degree of correlation in
the radial spectrum increase with a decrease of param-
eter α ∝ d2, but parametric gain in this case is smaller
because the power of the pump beam is proportional to
d2. We note that the coupling of radial components of
signal vortex modes is rather weak in comparison with
a fundamental mode (n = 0), Fig. 1.

3. Correlation functions of radial spectrum

Further we consider two correlation functions
B1n(p1, p2) andB2n(p1, p2) for radial spectrum of sig-
nal modes:

B1n(p1, p2) = ⟨Sn(p1)S∗
n(p2)⟩ ,

B2n(p1, p2) = ⟨Sn(p1)S−n(p2)⟩ . (17)

3.1. Plane pump wave

In the limit case of plane pump wave (d → ∞,
α → ∞) the correlation functions B1n(p1, p2) and
B2n(p1, p2) can be easily found. At α → ∞ Eq. (15)
has a quite simple form:

∂Sn(p, ξ)

∂ξ
= i

√
Gp2Sn(p, ξ) + i(−1)n

G

2
S∗
−n(p, ξ) .

(18)
A solution of Eq. (18) is

Sn(p, ξ) =

[
cosh(λξ) + i

√
G

λ
p2 sinh(λξ)

]
Sn0(p)

+
i(−1)nG

2λ
sinh(λξ)S−n0(p)

∗ , (19)

where λ = G
√
1− 4p4/G/2, and Sn0(p) is a radial

spectrum of nth mode at the input of OPA. It is obvious
that components of radial spectrum are uncorrelated.

Using Eq. (19) for correlation function B1n(p1, p2)
we obtain that

B1n(p1, p2) =
DG

8πλ21

[
G cosh(2λ1ξ)−4p41

]
δ(p1−p2) ,

(20)
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Fig. 1. Dependence of coupling function Hn(p, p) on radial frequency p for two signal modes: (a) n = 0, (b) n = 1. α: 5 (1), 50 (2).
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where λ1 = λ(p1). The spectral intensity ⟨|Sn(p)|2⟩ =
B1n(p, p) for large gain Gξ ≫ 1 is

⟨|Sn(p)|2⟩ ≈
D

4π
exp[(G− 2p4)ξ] . (21)

The parametric gain of the component p depends on its
value due to diffraction but does not depend on the mode
number. So, the parametric gain as well as the band-
width of radial frequencies are the same for all modes.
In this case an intensity of nth mode at the output of
OPA (ξ = 1) for G≫ 1 is

⟨|Fn(ρ)|2⟩ =
β40D

16π3
exp(G)

∞∫
0

p2 exp(−2p4)J2
n(pρ) dp ,

(22)
where ρ = β0r. The distribution of normalized in-
tensity Pn(ρ) = ⟨|Fn(ρ)|2⟩/⟨|F0(0)|2⟩ for three signal
modes is shown in Fig. 2. We note that under paramet-
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Fig. 2. Distribution of normalized intensity of signal modes at the
output of OPA. Large parametric gain, plane pump wave. n: 0 (1),

1 (2), 2 (3).

ric amplification the correlation between signal modes
with opposite topological charges appears. At large
parametric gain Gξ ≫ 1 we find

B2n(p1, p2) ≈ iB1n(p1, p2) . (23)

3.2. Gaussian pump beam

The equations which describe an evolution of cor-
relation in radial spectrum of signal modes in OPA
pumped by Gaussian beam can be obtained from Eq. (15).
A set of equations for nth mode has a form

∂B1n(p1, p2)

∂ξ
= i(p21 − p22)

√
GB1n(p1, p2)

−i(−1)nG

∞∫
0

q[Hn(p2, q)B2n(p1, q)

−Hn(p1, q)B
∗
2n(p2, q)] dq ,

∂B2n(p1, p2)

∂ξ
= i(p21 + p22)

√
GB2n(p1, p2)

+i(−1)nG

∞∫
0

q[Hn(p2, q)B1n(p1, q)

+Hn(p1, q)B1,−n(p2, q)] dq ,

∂B1,−n(p1, p2)

∂ξ
= i(p21 − p22)

√
GB1,−n(p1, p2)

−i(−1)nG

∞∫
0

q[Hn(p2, q)B2n(q, p1)

−Hn(p1, q)B
∗
2n(q, p2)] dq . (24)

These equations should be solved with the boundary
conditions at ξ = 0:

B1,n(p1, p2) =
D

2π
δ(p1−p2), B2n(p1, p2) = 0 . (25)

4. Numerical results

Equations (24) were solved numerically and evolu-
tion of correlation functions B1n and B2n, as well as
variation of spectral intensity ⟨|Sn(p)|2⟩ = B1n(p, p)
and mode intensity ⟨|Fn(r)|2⟩ on propagation length in
OPA were analysed.

The intensity of radial spectrum at the output of OPA
is shown in Fig. 3 for three signal modes. With a de-
crease of pump beamwidth d (Ld ∝ d2) the parametric
gain of vortex modes with n ̸= 0 becomes smaller in
comparison with a fundamental mode. Simultaneously
the parametric gain is also decreasing for all modes due
to decrease of pump beam power (∝ d2): compare with
a dotted line in Fig. 3(a), which corresponds to a plane
pump wave. For a pump beam with the wavelength
λ = 0.5 µm and radius d = 100 µm in the nonlin-
ear crystal (length 1 cm, refraction index nr = 1.5)
we find Ld/l = πnrd

2/(lλ) ≈ 9.4. The evolution of
normalized correlation functionB1n under propagation
in OPA for two signal modes is shown in Fig. 4. The
width of correlation function (degree of correlation) in-
creases with a propagation length. Hence the phasing of
the components of radial spectrum takes place in OPA
pumped by the beam with a finite beamwidth. At rather
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Fig. 3. Normalized to D/(2π) intensity of radial spectrum for three
signal modes (n = 0, 1, 2) at the output of OPA. G = 10. Ld/l =
20 in (a) and 10 in (b). Dotted line corresponds to plane pump wave.

low parametric gain a degree of correlation in the radial
spectrum of modes with n ̸= 0 is larger for radial fre-
quencies p≪ 1, Fig. 4(b). At large parametric gain the
maximum of correlation degree is shifted to the larger
values of p (Fig. 4(c)) due to the shape of coupling func-
tion Hn(p), see Fig. 1(b). The degree of correlation in
the radial spectrum depends on a pump beamwidth d.
The normalized correlation function B1n at the output
of OPA is shown in Fig. 5 for two modes at different
values of Ld/l. The distribution of normalized inten-
sity Pn(ρ) of two signal modes at the output of OPA is
shown in Fig. 6. Hence, the intensity of the mode with
a nonzero topological charge is considerably smaller in
comparison with intensity of fundamental mode, see
Fig. 2. Due to nonuniform profile of pump beam the
largest gain in OPA occurs at the axis (r = 0) of Gaus-
sian beam. For this reason the modes with the nonzero
topological charges are suppressed, and simultaneously
the azimuthal correlation is introduced into the noise
field under propagation of signal wave in OPA. In this
way the phasing of spatial spectrum of amplified sig-
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Fig. 4. Evolution of correlation function B1n under propagation in
OPA for two signal modes (n = 0, 1). pm corresponds to maximum
value of B11. G = 10, Ld/l = 3 in (a, b), 10 in (c). ξ: 0.25 (1), 0.5

(2), 0.75 (3), 1.0 (4).

nal beam from quantum noise level by narrow Gaussian
pump beam becomes possible, and the signal beam with
a good spatial quality is observed at the output of OPA,
as in experiment described in Ref. [3].
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Fig. 5. Correlation functions B1n at the output of OPA for different values Ld/l. G = 10. pm corresponds to maximum value of B11. n =
0 in (a), 1 in (b); Ld/l: 20 (1), 10 (2), 3 (3).

5. Conclusions

It was shown that in cylindrical coordinates a random
optical field can be described in classical approach as a
superposition of orthogonal coaxial vortex modes with
random amplitudes and of various topological charges
n. It was demonstrated that only vortex modes with op-
posite topological charges are coupled under parametric
amplification, and that essentially simplifies the analy-
sis of correlation in the random optical field.

In OPA pumped by a plane wave the parametric gain
of all vortex modes is the same. In contrast to this, the
largest parametric gain in OPA pumped by Gaussian
beam is observed for fundamental mode (n = 0). As a
result, with decrease of pump beamwidth a suppression
of modes with nonzero topological charges occurs, and
at large gain an azimuthal correlation in amplified ran-
dom optical field appears. Simultaneously, the phasing
of the components of radial spectrum takes place. In
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Fig. 6. Distribution of normalized intensity of signal modes at the
output of OPA. G = 10, Ld/l = 20. n = 0 (1), 1 (2).

this way an optical beam of high correlation degree can
be obtained under parametric amplification of random
optical fields in OPA.
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PARAMETRINIS TRIUKŠMINIŲ OPTINIŲ LAUKŲ STIPRINIMAS

V. Pyragaitė, A. Stabinis
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Santrauka
Parodyta, kad kvantinio triukšmo sukeltas parametrinis gene-

ravimas gali būti aprašytas klasikiniame artinyje kaip ortogonalių
bendraašių sūkurinių modų su atsitiktinėmis amplitudėmis ir įvai-
riais topologiniais krūviais n parametrinis stiprinimas. Kaupinant

Gauso pluoštu, didžiausias parametrinis stiprinimas yra būdingas
pagrindinei modai (n = 0), o kitos modos yra slopinamos. Ana-
lizuojama įvairių modų radialinio spektro koreliacijos evoliucija
vykstant parametriniam stiprinimui.


