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Electrostatic fields in the toner image transfer nip of laser printers were calculated by exact solution of the Poisson equations
for a two-dimensional (2D) model and by applying for the paper the approximation of dielectric thickness. Both the distribu-
tion and location of the electric field strength component parallel to the paper surface were investigated and field values were
calculated for different paper and toner parameters. The conditions of the occurrence of Paschen discharge in the toner image
transfer nip were analysed.

Keywords: electrostatic fields, Poisson equation, electrophotography, toner transfer, paper

PACS: 41.20.Cv, 42.30.Va

1. Introduction

In electrophotographic printers and copiers, the toner
image is transferred from the photoreceptor onto the pa-
per or onto an intermediate belt using an electric field.
The quality of the transferred image depends on the
electric field strength and its configuration in the trans-
fer nip. Various aspects of toner image transfer have
been widely investigated [1–11]. An image transfer
system is frequently quite complicated with a complex
symmetry (Fig. 1), the paper is dielectrically inhomoge-
neous, and an exact mathematical description of charge
transfer (i. e., of transfer of the charged toner particles)
is therefore especially complex. For this reason the im-
age transfer dynamics are usually considered in terms
of a simplified one-dimensional (1D) model [1, 4, 7] or
a model based on the assumption that the field lines
are perpendicular to every surface of the system layer
[2, 6]. The latter assumption allows one to calculate the
vertical component of the electric field perpendicular to
the paper surface in a complex system though there is
no exact justification for such approximation. Besides
it is then impossible to evaluate the horizontal electric
field component parallel to the paper surface, which is
important in practice. The parallel component caused
by the paper roughness has been evaluated using the

Fig. 1. Diagram of the system ‘photoreceptor cylinder – toner
(PCT) – paper – transfer cylinder’, where σ is the surface charge
density at the semiconductor–toner interface, Q is the toner space
charge density, ρ1 is the semiconductor cylinder radius, h is the dis-
tance from the PCT center to the toner edge, d is the paper thickness,
ρ2 is the radius of the transfer cylinder (all quantities are dimension-

less; see the text).

method of finite elements [8] and it has been found to
be quite small – about 1% of the perpendicular electrical
field value. In addition, it has been shown [8] that val-
ues of the perpendicular component obtained using the
1D model may differ from the exact values obtained nu-
merically by a factor greater than 2. It is clear that these
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models are only a crude approximation of a real image
transfer system. Not only the mentioned paper dielec-
tric inhomogenity and surface roughness, but also the
geometry of a real system can have an essential role in
the distribution of electrostatic field. In the toner–paper
interface region the electric field has not only a vertical
component perpendicular to the paper surface but also a
horizontal component parallel to the paper surface. The
latter component, together with the Paschen effect, can
play role in the widening of the transferred image and
its quality. The role of the geometry on the electric field
distribution in the toner transfer nip is not investigated
in detail but the rising requirements to the image qual-
ity make important the investigation of the impact of
the geometry of toner transfer nip.

Various researches [8, 10, 11] have investigated the
influence of the dielectric heterogeneity of paper and
the role of paper microstructure on the toner image
transfer using modified 1D models. Finite element
methods can be used to study variation in the electric
field z component with local variations in paper struc-
ture and dielectric properties, although the horizontal
behaviour remains unclear.

A similar problem of calculating the electric field
strength in a system with a complex configuration arises
in the analysis of the photoreceptor charging by the
cylinder [12]. In this case, electric fields have been eval-
uated using a 1D model and it is claimed that the results
are in good agreement with experimental data, although
there is no analysis of the limits of applicability of the
1D approximation [12].

The present work is not concerned with problems of
charge dynamics and paper inhomogeneity. Instead, the
aim is to obtain exact solutions of the Poisson equation
taking into account the 2D geometry of the system, in
order to determine properties of electrostatic field in a
toner image transfer system and to evaluate the parallel
to the paper surface electric field component. Expres-
sions of the photoreceptor and toner electrostatic poten-
tial are derived, the case of infinite dielectric permittiv-
ity of paper is analysed, and the highest value of elec-
trostatic field strength is determined. Also the common
methods for the calculation are formulated and other
cases of paper parameters are analysed using the ap-
proximation of dielectric thickness.

Exact calculation of the electric field distribution and
its dependence on the transfer nip geometry and paper
dielectric permittivity and thickness enables one to pre-
dict the conditions of the occurrence of Paschen dis-
charge. The results obtained may be important not only
for the definition of initial conditions for the transfer of

(a)

(b)
Fig. 2. Diagrams of the investigated system in polar coordinates:
(a) εp = ∞ and (b) εp = ε0. S, T are the points in the semiconduc-

tor and in the toner respectively; A is a point in the air.

charged toner particles, but also for the evaluation of
results of 1D models.

2. Distribution of electrostatic potential in the
cylinder–semiconductor–toner system

In all cases considered in this work, the photorecep-
tor cylinder of organic semiconductor was covered by a
constant thickness toner layer (PCT) and only the pho-
toreceptor and the toner properties (thickness, dielectric
permittivity) were varied. The system is unlimited in
the z direction perpendicular to the plane of the cross-
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section shown in Fig. 1, and it is symmetric relative to
the xOz plane (Fig. 2).

The radius of the metal cylinder coated with the
semiconductor layer is denoted R (cm), and its poten-
tial, which is equivalent to the toner image transfer po-
tential, is denoted U0 (V). The potential of the transfer
cylinder is zero. In the analysis, if not stated other-
wise we use dimensionless quantities: distances being
expressed in units of R, and potentials in units of U0.
Using such units, the radius of the cylinder and its po-
tential are equal to unity (Fig. 1), the paper thickness d
is equal to the actual paper thickness ddim (cm) divided
by R (cm), i. e., d = ddim/R, all dielectric permittiv-
ities are relative to the air dielectric permittivity. The
latter value is ε0 = 1 but in the text it is denoted as ε0.
Dimensionless electric field strength is obtained after
dividing the dimensional electric field strength by cylin-
der radius: U0 (V) /R (cm) etc. The distribution of the
potential U in the PCT part is then described in polar
coordinates ρ and φ (Fig. 2) by the following equation:

∂2U

∂ρ2
+

1

ρ

∂U

∂ρ
+

1

ρ2
∂2U

∂φ2
= −Q , (1)

where Q is the dimensionless space charge density

Q =
qR2

εaU0
, (2)

where R and U0 quantities on the right-hand side of
equation are dimensional; εa is the absolute dielectric
permittivity of the semiconductor or toner, and q is the
dimensional space charge density (C/m3). Since in the
PCT region the polar radius ρ varies in a finite interval
1 ≤ ρ ≤ h (Fig. 1), and the system is symmetrical rela-
tive to the xOz plane (Fig. 2), the general expression of
the potential is a linear combination of partial solutions
of the homogeneous equation (1):

Const , ln ρ , ρn cos(n · φ) , ρ−n cos(n · φ) ,

n = 1, 2, . . . , (3)

plus a partial solution of the inhomogeneous equation
Uq. Assuming that Q is independent of both φ and ρ,
we obtain

Uq = −1

4
Qρ2 . (4)

In order to derive the general expressions for poten-
tials in the semiconductor and in the toner, we assume
that there is no space charge in the semiconductor, i. e.

Uq = 0. Thus, the general expression for the potential
in the semiconductor is

US(ρ, φ) = A0+A ln ρ+
∞∑
n=1

(
Anρ

−n+anρ
n
)

cosnφ ,

(5)
where A0, A, An, an are constants. US must satisfy
the boundary condition US(1, φ) = 1, so that A0 = 1,
an = −An, and (5) becomes

US(ρ, φ) = 1 +A ln ρ+
∞∑
n=1

An(ρ
−n − ρn) cosnφ ,

(6)
where 1 ≤ ρ ≤ ρ1 (Fig. 1), 0 ≤ φ ≤ π (Fig. 2).

Since the toner space charge density Q ̸= 0, the po-
tential inside the toner UT is given by

UT(ρ, φ) =B0 +B ln ρ− 1

4
Qρ2

+
∞∑
n=1

(
Bnρ

−n + bnρ
n
)

cosnφ , (7)

where B0, B, Bn, and bn are constants. The boundary
conditions at ρ = ρ1 (where ρ1− 1 is the semiconductor
thickness, see Fig. 1) are

US(ρ, φ) = UT(ρ, φ) , (8)(
∂US

∂ρ
− ε2

ε1

∂US

∂ρ

)∣∣∣∣
ρ=ρ1

= σ , (9)

where ε2 and ε2 are the relative dielectric permittiv-
ity of the semiconductor and the toner respectively,
σ is the dimensionless surface charge density on the
semiconductor–toner interface

σ =
σdR

ε1aU0
, (10)

with R and U0 dimensional; ε1a is the absolute dielec-
tric permittivity of the semiconductor, and σd is the
dimensional surface charge density, which is assumed
constant.

This work uses the approximation of complete charge
compensation, therefore

2πρ1σd = −πR(h2 − ρ21)q , (11)

where σd, R, q are dimensional quantities, and h−ρ1 is
the dimensionless thickness of the toner (Fig. 1). From
(11), (10), after inserting the toner absolute dielectric
permittivity ε2a in (2), we obtain

σ =
ε2
2ε1

h2 − ρ21
ρ1

Q . (12)
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Using relations (8) and (9), we obtain the expression
for the B0 coefficient, which appears in equation (7),
via theB coefficient, and the expressions for theBn and
bn coefficients via the An coefficient (see Appendix A).
The resulting expression of the potential in the toner is

UT(ρ, φ) = 1 +
Q

4

(
ρ21 − ρ2 − 2h2

ε2
ε1

ln ρ1
)

+

(
ε2
ε1

ln ρ1 + ln
ρ

ρ1

)
B

+
∞∑
n=1

An

(
αn

ρn
+ βn

ρn

ρ2n1

)
cosnφ , (13)

where ρ1 ≤ ρ ≤ h, 0 ≤ φ ≤ π (Fig. 2),

αn =
1

2

[
1 +

ε2
ε1

−
(
1− ε2

ε1

)
ρ2n1

]
,

βn =
1

2

[
1− ε2

ε1
−
(
1 +

ε2
ε1

)
ρ2n1

]
. (14)

The constants B and An are obtained from relation-
ships between UT and the potential UA of the ambient
air at the point ρ = h.

3. The case of infinite dielectric permittivity of
paper (εp = ∞)

When the dielectric permittivity of the paper is infin-
ity, the surface potential of the paper facing the toner is
equal to the potential of the transfer cylinder, i. e., it is
equal to zero (the paper is assumed to be infinite in the
y direction). The potential UA of the air between toner
and paper must satisfy the boundary condition UA = 0
when x = −h (Fig. 2(a)), and it also must obey the cor-
responding continuity conditions between UA and UT.
In order to simplify the mathematical expressions fol-
lowing from the boundary condition UA(x = −h) =
0, UA is there expressed in terms of solutions of Eq. (1)
in two coordinate systems with different points of ori-
gin: O (as in Section 2) and O′ defined by x = −2h,
where the latter point is obtained by reflecting O in the
paper surface (Fig. 2(a)). The analysed region may be
at an arbitrary distance from O and O′, and the expres-
sion for UA must therefore contain only terms that do
not vanish at infinity, i. e.

UA(ρ, φ) = C ln
ρ

ρ′
+

∞∑
n=1

(
Cn

cosnφ
ρn

+Dn
cosnφ′

ρ′n

)
.

(15)

At points x = −h, we have ρ = ρ′, φ = π −
φ′, cosφ′ = (−1)n cosnφ. The boundary condition
Ua(x = −h) = 0 is satisfied when Dn = −(−1)nCn,
and

UA = C ln
ρ

ρ′
+

∞∑
n=1

Cn

(
cosnφ
ρn

+ (−1)n
cosnφ′

ρ′n

)
.

(16)
The radius vectors ρ and ρ′ at any point in space are

related as follows (Fig. 2):

ρ′ = r + ρ , (17)

hence these vectors and their projections on the x axis
are related by expressions

ρ′ =
√
r2 + ρ2 + 2rρ cosφ ,

x′ = r + x = r + ρ cosφ = ρ′ cosφ′ ,

ρ′ sinφ′ = ρ sinφ ,

φ′ = arccos
r + ρ cosφ

ρ′
, (r = 2h) . (18)

The values of the constants C, Cn, B, An are ob-
tained from the conditions

UA
∣∣
ρ=h

= UT
∣∣
ρ=h

, ε0
∂UA

∂ρ

∣∣∣∣
ρ=h

= ε2
∂UT

∂ρ
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ρ=h

.

(19)
UT (13) is expanded in a Fourier series relative to φ, so
that the equations for the constants can be obtained by
equating the corresponding Fourier coefficients on both
sides of equalities (19). After eliminating B and An

from the equations thus obtained, the following system
of algebraic equations is obtained for the determination
of C and Cn (see Appendix B):

−
(
ε0
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ln ρ1 +
ε0
ε2

ln
h

ρ1
+ ln

r

h

)
C

+
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Q

4
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h
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)
,

(−1)m

m

(
h2

r

)m gm + 1

gm − 1
C +

∞∑
n=1

[
δmn + (−1)nTmn

]
× Cn = 0 , m = 1, 2, . . . . (20)



J. Kaladė et al. / Lithuanian J. Phys. 49, 145–162 (2009) 149

Fig. 3. Dependence of electric field strength in U0 (V) / R (cm) units on the distance y in the air between toner and paper at various heights
h + x above the paper when εp = ∞. Left-hand scale: in (a) vertical component (perpendicular to the paper surface), in (b) horizontal
component (parallel to the paper surface), in (c) their ratio. For all curves, h = 1.005, ρ1 = 1.001; ε1 = 2; ε2 = 2.5; Q = 200. Right-hand

scale: the broken line represents the external toner surface. y and h+ x are in R (cm) units.

Here,

Tmn =
hm

gm − 1

2

π

×
π∫

0

sinmφ sinnφ′ − gm cosmφ cosnφ′(√
a+ b cosφ

)n dφ ,

(21)

a = r2 + h2 , b = 2rh ,

gm =
ε2
ε0

αm − βm(h/ρ1)
2m

αm + βm(h/ρ1)2m
, (22)

and φ′ is calculated from Eq. (18) after setting ρ = h.

Equations (20) are solved by replacing infinite sums
with finite sums: nmax = N , the value of N be-
ing chosen so that any further increase does not af-
fect the final results within the permitted uncertainty
limits. Results of the calculation of various compo-
nents of the electric field strength in the air between
toner and paper (perpendicular component relative to
the paper surface Ex(x, y) = −∂UA/∂x, parallel
component relative to the paper surface Ey(x, y) =
−∂UA/∂y, radial component relative to toner exter-
nal surface Eρ(h, φ) = −(∂UA/∂ρ)|ρ=h, and tan-
gential component relative to toner external surface
Eφ(h, φ) = −(1/ρ · ∂UA/∂φ)|ρ=h) near the toner are
shown in Figs. 3 and 4. In the case discussed in this
section (εp = ∞), the results obtained do not depend
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Fig. 4. Dependence of electric field strength in U0 (V) / R (cm) units on the angle φ (Fig. 2(a)) in the air near the toner surface (ρ = h)
when εp = ∞. Left-hand scale: in (a) radial component, in (b) tangential component, in (c) their ratio. h, ρ1, ε1, ε2, Q are the same as in

Fig. 3. Right-hand scale: the broken line represents the external toner surface.

on the size of the support cylinder, and the calculated
value of Ex is the largest possible value of Ex that can
be obtained by varying εp and paper thickness.

4. The case εp = ε0

Assuming hypothetically that the paper has dielectric
permittivity εp = ε0 and has no space charge, the paper
is mathematically equivalent to air, and the magnitude
of Ex near the toner is the smallest possible. The field
strength depends on the radius of the transfer cylinder
and on the paper thickness. Considering the case when
transfer roller is replaced by the conductive plate, i. e.
when ρ2 → ∞ (the case of finite ρ2 will be discussed
separately), we can then use the formulas of Sec. 3, with

r replaced by r = 2(h+d). The dependence of the field
strength components is shown in Figs. 5 and 6.

5. The case of the real paper

In a 1D system, e. g. made of an air and dielec-
tric layer having no space charge, the electrostatic field
strength in the air does not depend on dielectric thick-
ness and dielectric permittivity separately but depends
on their ratio only. In the system shown in Fig. 1 the
paper and the air between paper and toner is not a 1D
system but it may have some properties of 1D system
locally. Having in mind that the paper thickness d ≤
0.02 and obtaining the values of electric field strength
at paper surface from Figs. 3 and 5, we obtain that the
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Fig. 5. Dependence of electric field strength in U0 (V) / R (cm) units on the distance y in the air between toner and paper at various heights
h + x above the paper when εp = ε0, ρ2 → ∞ for two values of paper thickness d. Left-hand scale: in (a) vertical component, in (b)
horizontal component, in (c) their ratio. For all curves, h = 1.005, ρ1 = 1.001; ε1 = 2; ε2 = 2.5; Q = 200. Right-hand scale: the broken

line represents the external toner surface. y and h+ x are in R (cm) units.

change of electric field strength in the practicaly impor-
tant y axis region 0.1 ≤ y ≤ 0.2 does not exceed 10%.
Thereby the local homogeneity on y axis exists at the
mentioned accuracy and herewith one-dimensionality
exists also. Thus in the analysis of a real paper case we
consider that the paper dielectric properties are depen-
dent only on its dielectric thickness d0 = d/εp. The
validity of this approach we will analyse later but here
we will only note that in the limiting cases εp = ∞,
εp = ε0 (d0 = 0, d0 = d respectively) the dielectric
thickness approach is accurate.

At above-mentioned conditions there is no need in
the additional mathematical apparatus to calculate the
electric field strength: it is sufficient to replace the pa-
per thickness d0 by the paper dielectric thickness in the
formulas from the third section (εp = ε0). The calcula-
tion results are presented in Figs. 7–9.

6. Discussion

The results are discussed for a single side of the gap
between the photoreceptor and the paper that corre-
sponds to y ≥ 0. The electric field strength and its
distribution on the other side of the gap (y ≤ 0) will
be different because in a printer the toner is then on the
paper and the calculation is not directly applicable then.

The results presented in Figs. 4 and 6 indicate that
the radial and tangential components Eρ and Eφ of the
electric field on the toner surface exist in an approxi-
mately 30-degree wide interval 180◦ > φ > 150◦ (this
interval corresponds to a distance equal to 0.6 times the
photoreceptor radius, as measured along the paper sur-
face) and rapidly decrease to zero with increasing φ.
When εp = ∞, the largest values of Eφ and of the ratio
Eφ/Eρ (see Fig. 4(b, c)) are larger than the correspond-
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Fig. 6. Dependence of electric field strength in U0 (V) / R (cm) units on the angle φ (Fig. 2(b)) in the air near the toner surface (ρ = h)
when εp = ε0, ρ2 → ∞ for two values of paper thickness d. Left-hand scale: in (a) radial component, in (b) tangential component, in (c)

their ratio. h, ρ1, ε1, ε2, Q are the same as in Fig. 5. Right-hand scale: the broken line represents the external toner surface.

ing values when εp = ε0 (Fig. 6(b, c)), and the latter
values decrease with increasing paper thickness d. For
the real paper εp > ε0, but an increase in εp has qualita-
tively the same effect as a decrease in d, and this means
that for real paper the largest values of Eφ and of the
ratio Eφ/Eρ would not exceed the values obtained for
εp = ∞. Thus, for the analysed geometry and the h, ρ1,
ε1, ε2 values indicated in Figs. 4, 6 and for any d and εp,
Eφ does not exceed 0.04Eρ (see Fig. 4(c)). Therefore,
in the mentioned case the field lines can be assumed to
be perpendicular to the toner surface.

On the paper surface, the perpendicular and parallel
to paper surface components Ex(−h, y) and Ey(−h, y)

are greatest in the interval 0 ≤ y ≤ 0.5 (Figs. 3(a),
5(a, b), 7(a, b)). This corresponds to the mentioned in-
terval of φ values (180◦ > φ > 150◦). When εp = ε0,

the largest value of the Ey component (EyMAX) on the
paper surface decreases with increasing d, but is equal
to zero when d = 0 (when εp = ∞). It follows that
EyMAX has a maximum as a function of d. The results
indicate that this maximum is at d = 0.005. However,
the ratio EyMAX/Ex increases with d and it can exceed
0.15 (Fig. 7(c)). This value is essentially higher as com-
pared with that obtained analysing the paper roughness
influence [8]. This ratio also shows that the assumption
of the perpendicularity of electric field lines to the pa-
per surface [2, 6] may be quite crude. Assuming that the
field line is perpendicular to the paper surface and that
EyMAX/Ex ≤ 0.03, it follows that for paper with e. g.
εp = 10 this would be the case if the paper thickness
d ≤ 0.02 (Fig. 8(c)). For example, if the photoreceptor
diameter is 30 mm, then the paper thickness would be
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Fig. 7. Dependence of electric field strength in U0 (V) /R (cm) units on the distance y near the paper surface. Left-hand scale: in (a) vertical
component, in (b) horizontal component, in (c) their ratio, for several values of paper thickness and of toner and paper dielectric permittivity.
For all the curves, h = 1.005, ρ1 = 1.001; ε1 = 2; Q = 200. Right-hand scale: the broken line represents the external toner surface. y and

x are in R (cm) units.

300 µm and the paper would have a large content of salt
added in order to increase the electrical conductivity. In
any case, there is a real probability that the component
Ey on the paper surface decreases the resolution of an
image. The non-zero value of Ey above the paper also
contributes to this effect.

An increase in toner dielectric permittivity leads to a
decrease in the effective distance between the poles of
potential, i. e., has the same effect as a decrease in paper
thickness. It is also clear that the electric field depends
on the ratio of the dielectric thicknesses of toner and
paper ((h− ρ1)/ε2 and d/εp, respectively). For a toner
thickness h− ρ = 0.004, an increase of toner dielectric
permittivity from 2.5 to 10 leads to a decrease in dielec-
tric thickness of 0.0012. When εp = ε0 and d = 0.02,

this is an insignificant effect. However, for real paper
with εp = 3 and d = 0.02, the suggested increase in ε2
has approximately the same effect as a change in paper
thickness from d = 0.02 to 0.0055. When εp = ε0,
ε2 = 2.5 this would thus be significant. Calculations
with different toner dielectric permittivity confirm these
qualitative conclusions. In Fig. 7(b, c), this is shown
only for the Ey component (curves 2, 4 and 5, 6).

For the model discussed here, the horizontal compo-
nent of the electric field Ey is not always zero (Ey >

0). This causes some spreading of charged toner on the
paper surface, particularly in the practically important
region 0 < y < 0.5. Calculations (also see Fig. 7(b))
indicate that for a paper thickness d = 0.005–0.05,
the largest values of this component on the paper sur-
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Fig. 8. Dependence of electric field strength in U0 (V) /R (cm) units on the distance y near the surface of paper for different values of paper
dielectric thickness d/εp. Left-hand scale: in (a) vertical component, in (b) horizontal component, in (c) their ratio. h, ρ1, ε1, Q are the

same as in Fig. 5. y and x are in R (cm) units.

face are located between y = 0.07 and 0.19, which
corresponds to values of π − φ from 4◦ to 11◦. The
non-zero value of Ey in this region is the main differ-
ence between the discussed model and the 1D approx-
imation. Another difference is the dependence of the
vertical component Ex on the distance to the paper sur-
face (Figs. 3(a), 5(a); also see further in this section).
An important contribution to Ey comes from the loga-
rithmic term in potentialUA, which on the paper surface
(x = −h) is given by (Appendix B)

∆Ey(−h, y) = y
r(2h− r)

(h2 + y2)[(r − h)2 + y2]
C , (23)

where C is the constant appearing in the expression for
the potential (16). If the point O′ in Fig. 2(b) is located
on the axis of the support cylinder, then, for finite ρ2,

r = h + ρ2 + d. Taking into account that C < 0 we
obtain ∆Ey < 0 when ρ2+d < h. Thus, under certain
conditions the focusing of the transferred toner is pos-
sible. This indicates that using a transfer cylinder with
a certain finite diameter it is possible to obtain a bet-
ter image than when the toner image is transferred onto
an intermediate flat transfer belt (when ρ2 approaches
infinity).

The calculated values of the vertical component of
the electric field on a paper surface when y = 0 (i. e.,
Ex(−h, 0)) are equal to the values of field strength E
given by the 1D model, when the 1D field is calculated
under the same conditions as Ex(x, y), i. e., when εp =
∞ or εp = ε0. This should also apply for the real paper
(εp ̸= ε0). This means that the interpolated value of Ex

on the real paper surface E(INT)
x (−h, y) can be obtained
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Fig. 9. Paschen effect. (a) conditions for the Paschen effect. 1, . . ., 6 are dependences of potential change in the air gap on the layer thickness
x1, when the cylinder radius is 1 cm, semiconductor and toner thicknesses are 10 and 40 µm, respectively, dielectric permittivities are ε1 =
2 and ε2 = 2.5, respectively; 7 is Paschen curve [9]. In (b), left-hand scale is variation of the horizontal component of electric field Ey in
the Paschen effect region, right-hand scale is dependence of thickness of the air gap between paper and toner on the air coordinate y (dashed
line). (c) Variation of the vertical component Ex in the Paschen effect region (the end-points of the curves correspond to the toner surface).

Ex , Ey are in U0 (V) / R (cm) units; y, x, h+ x are in R (cm) units.

using the maximum value E
(MAX)
x (−h, y) when εp =

∞ and the minimum value E
(MIN)
x (−h, y) when εp =

ε0.
Calculating E for real paper from the 1D equality

E = −
1 +

Q

2
(h− ρ1)

2

ρ1 − 1

ε1
+

h− ρ1
ε2

+
d

εp

, (24)

assuming the same weights for E
(MAX)
x (−h, y) and

E
(MIN)
x (−h, y) for all y, and taking those weights from

the case when y = 0, we obtain

E(INT)
x (−h, y) = E(MAX)

x (−h, y)

− E
(MAX)
x (−h, 0)− E

E
(MAX)
x (−h, 0)− E

(MIN)
x (−h, 0)

×
[
E(MAX)

x (−h, y)− E(MIN)
x (−h, y)

]
. (25)

Figure 8(a) (curves 7 and 3) presents the compari-
son of the calculation results obtained by using expres-
sion (25) and by applying the paper dielectric thickness
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approximation. The proximity of the results shows the
reliability of the used methods.

It is known (e. g. [2, 7]) and has been mentioned in
the introduction of this work that one of the transferred
toner image quality deteriorative factors on the Paschen
discharge. The conditions of the latter effect are not in-
vestigated enough. Our work gives the possibility to
determine the initial conditions of Paschen effect in the
toner image transfer nip. Without going further into the
air ionization phenomena mechanisms, we have taken
the Paschen curve [13] which has been determined un-
der conditions when the field strength is the same at
all points in the air gap. Although in the analysed
image transfer system the electric field in the air gap
is not strictly homogeneous, in the supposed region of
Paschen effect y does not exceed 0.15R (cm) and the
degree of inhomogeneity as seen from Fig. 9(b, c) is not
significant.

Figure 9 presents calculation results when the pa-
per is characterized by its dielectric thickness d0. Fig-
ure 9(a) illustrates the Paschen effect and shows that at
U0 = 103 V, R = 0.01 m the semiconductor thickness
ρ1 − R is 10 µm and toner thickness h − ρ1 is 40 µm,
and the largest interval of thickness x1 of the air gap
between the paper and the toner where the effect is pos-
sible is from 16 to 73 µm. This interval corresponds
to a paper dielectric thickness d0 = 0. As the dielec-
tric thickness increases, the interval for the effect nar-
rows and, when d0 ≥ 9 µm, it disappears completely.
The thickness x1 and its air coordinate y are related
to each other by the expression y =

√
(2h− x1)x1

(see Fig. 9(b), right-hand scale), from which it follows
that for the chosen set of transfer nip parameters the
abovementioned interval of x1 values (16 to 73 µm)
corresponds to y values from 570 to 1210 µm. Cal-
culations, which are partly illustrated in Fig. 9(b), in-
dicate that when the paper dielectric thickness varies
from 2 to 200 µm, the y coordinate, which gives the
distance from the xOz plane to the point of the maxi-
mum horizontal component of the electric field strength
Ey (i. e., EyMAX), increases from 390 to 1210 µm.
Thus, it includes the complete interval of the maxi-
mum Paschen effect. Besides, EyMAX increases from
the paper surface towards the toner surface. For exam-
ple when the paper dielectric thickness d0 = 40 µm,
EyMAX increases from 3.8 up to 5.3 V and comprises 3–
4% of the vertical component of field strength in that re-
gion of the air (see Fig. 8). In the region of the Paschen
effect, the vertical component of field strength Ex does
not change significantly from the paper surface towards
the toner (see Fig. 9(c)) and it is practically the same

as in the 1D model, which assumes the paper thick-
ness equal to x1. Far from the Paschen effect region,
e. g., when y ≥ 0.005 m, the relative increase in Ex

from the paper towards the toner is more noticeable (see
Figs. 3(a), 5(a)).

At the mentioned values of R, ρ1, and h the Paschen
effect can only occur when the cylinder potential ex-
ceeds 870 V (see Fig. 9(a)). However, in the case of
paper with εp = 10 and thickness 100 µm (dielectric
thickness 0.001) the Paschen effect will occur when
the potential exceeds 1020 V. The situation is differ-
ent for other values of R, ρ1, and h. If R and ρ1 are the
same as before and the toner thickness is reduced by
one half, then the Paschen effect takes place when U0

exceeds 730 V, whereas the maximum region of this
effect widens (curve 5 in Fig. 9(a)) and its distance to
the xOz plane ranges from 390 to 1330 µm. Accord-
ing to the 1D model [7], at U0 = 1000 V, paper thick-
ness 80 µm, toner thickness 13.2 µm, and paper and
toner relative dielectric permittivity 2.5 and 1.7 respec-
tively, the Paschen effect begins at air gap 18.6 µm. Our
calculation shows that in the case of work [7] parame-
ters and when R = 1 cm the Paschen effect is impossi-
ble. For the effect at abovementioned air gap to occur
the potential must be increased up to ≥1.5U0. Calcula-
tion also shows that the Paschen effect potential and the
components of electric field in the air between the toner
and the paper depend (accuracy ≤1%) only on the ratio
dtoner/ε2 and do not depend on either the toner thickness
or its dielectric permittivity separately.

For other values of R, e. g. when R varies from
0.5 to 2 cm, the minimum value of the potential which
must be exceeded in order for the Paschen effect to oc-
cur remains equal to 870 V, whereas the distance from
the xOz plane to the maximum region of the effect in-
creases and this region becomes wider (whenR = 2 cm,
the furthest point is at 1710 µm).

7. Conclusions

Exact solutions of the Poisson equation for 2D case
of a flat paper transported in a toner image transfer sys-
tem allow one to draw the following conclusions:

1. With the photoreceptor cylinder radiusR = 0.01 m,
the semiconductor thickness 10 µm, and the toner
thickness 40 µm, the Paschen effect occurs when
the cylinder potential U0 exceeds 870 V. When
U0 = 103 V, the distances from the xOz plane (i. e.,
the plane perpendicular to the paper surface passing
through the axis of the cylinder) to the end-points
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of the maximum interval where the Paschen effect
takes place are 570 and 1210 µm. As the paper di-
electric thickness d0 increases from d0 = 0 (i. e.,
from εp = ∞ to finite εp), the interval of the effect
narrows, and it disappears completely when d0 ≥
9 µm (Fig. 9).

2. In the air between the paper and toner and on the
paper surface, the electric field strength has a hori-
zontal component parallel to the paper surface, Ey,
the maximum EyMAX of which at paper surface oc-
curs at a distance from the xOz plane that depends
on the paper dielectric thickness: as the dielectric
thickness increases from 2 to 200 µm, the distance
increases from 390 to 1210 µm (Fig. 8). In the re-
gion of the Paschen effect, the value of EyMAX can
be up to 4% of the value of the vertical component
of field strength perpendicular to the paper surface.
At the paper dielectric thickness d0 > 200 µm and
outside of the Paschen effect region the horizontal
component parallel to the paper surface can be even
10–15% of the vertical component (Figs. 7 and 8 ).

3. The perpendicular to the paper surface component
of the electric field strength Ex rapidly decreases
with increasing distance from the xOz plane. In
the region between the xOz plane and the furthest
edge of the Paschen effect region, the dependence
of Ex on the distance to the paper surface in the
nip between the paper and the toner is insignifi-
cant and that component is practically equal to the
field strength obtained in the 1D model (Fig. 9(c)).
However when the distance from xOz plane out-
side the Paschen effect furthest edge is increasing,
the calculated in a 2D modelEx value depends sub-
stantially (Figs. 3 and 5) on the distance from the
paper surface and differs essentially from the value
obtained in 1D model.

Appendix

A. Derivation of expression (13) for toner potential

The expanded versions of equations (8) and (9) are

1 +A ln ρ1 +
∞∑
n=1

An
1− ρ2n1

ρn1
cosnφ = B0 +

+B ln ρ1 −
1

4
Qρ21 +

∞∑
n=1

Bn + ρ2n1 bn
ρn1

cosnφ , (A.1)

A

ρ1
−

∞∑
n=1

Ann
1 + ρ2n1
ρn+1
1

cosnφ =
ε2
ε1

(
B

ρ1
− 1

2
Qρ1

+

∞∑
n=1

n
bnρ

2n
1 −Bn

ρn+1
1

cosnφ− h2 − ρ21
2ρ1

Q

)
. (A.2)

In the latter equation, the expression of σ given in equa-
tion (12) has been incorporated. After equating the co-
efficients at cosnφ and the terms that do not depend on
φ on both sides of the equations, we obtain

1 +A ln ρ1 = B0 +B ln ρ1 −
1

4
Qρ21 ,

A =
ε2
ε1

(
B − 1

2
Qh2

)
, (A.3)

An(1− ρ2n1 ) = Bn + ρ2n1 bn ,

An(1− ρ2n1 )
ε1
ε2

= Bn − ρ2n1 bn . (A.4)

From (A.3) it follows that

B0 = 1+
Q

4

(
ρ21− 2

ε2
ε1

h2 ln ρ1
)
+

(
ε2
ε1

− 1

)
ln ρ1B .

(A.5)
From (A.4),

Bn =
1

2

[
1 +

ε1
ε2

−
(
1− ε1

ε2

)
ρ2n1

]
An ,

bn =
1

2ρ2n1

[
1− ε1

ε2
−
(
1 +

ε1
ε2

)
ρ2n1

]
An . (A.6)

After combining (7) with (A.5) and (A.6), equation (13)
is obtained:

UT(ρ, φ) = 1 +
Q

4

(
ρ21 − ρ2 − 2h2

ε2
ε1

ln ρ1
)

+

(
ε2
ε1

ln ρ1 + ln
ρ

ρ1

)
B

+
∞∑
n=1

An

(
αn

ρn
+ βn

ρn

ρ2n1

)
cosnφ . (A.7)
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B. The case εp = ∞. Derivation of equations for calculating air potential constants and expressions for
components of electric field strength

After expansion, the conditions in equation (19) can be written as follows:

C ln
h√

q + b cosφ
+

∞∑
n=1

Cn

(
cosnφ
hn

− (−1)n
cosnφ′

√
a+ b cosφ

)
= 1 +

Q

4

(
ρ21 − h2 − 2

ε2
ε1

h2 ln ρ1
)

+

(
ε2
ε1

ln ρ1 + ln
h

ρ1

)
B +

∞∑
n=1

An
αn + (h/ρ1)

2nβn
hn

cosnφ , (B.1)

C
r

h

r + h cosφ
a+ b cosφ

−
∞∑
n=1

Cn

ncosnφ
hn+1

− (−1)nn

cosnφ′ − r
cos (n+ 1)φ′
√
a+ b cosφ

h(
√
a+ b cosφ)n

 =

ε2
ε0

−1

2
Qh+

B

h
+

∞∑
n=1

nAn

(
h

ρ1

)2n

βn − αn

hn+1
cosnφ

 , (B.2)

where

a = r2 + h2 , b = 2rh , φ′ = arccos
r + h cosφ√
a+ b cosφ

. (B.3)

The final term on the left-hand side of (B.2) has been obtained using the expression

∂

∂ρ

cosnφ′

ρ′n
= −n

sinnφ′

ρ′n
∂φ′

∂ρ
− n

cosnφ′

ρ′n+1

∂ρ′

∂ρ
= − n

ρρ′n

[
cosnφ′ − r

cos (n+ 1)φ′

ρ′

]
, (B.4)

where ρ = h. The second equation of (B.4) is obtained using equations (18) for φ′ and ρ′ when calculating the
partial derivatives ∂φ′/∂ρ, ∂ρ′/∂ρ and replacing cosφ and sinφ with cosφ′ and sinφ′ according to equation (18).

In order to derive the relations of Fourier coefficients that follow from (B.1) and (B.2), the relations between the
free coefficients are obtained by calculating the following integral of both sides of each equation:

1

π

π∫
0

. . . dφ .

Using the 4.224.9 formula given in [10], we obtain

1

π

π∫
0

ln
√

a+ b cosφ dφ = ln r , (B.5)

and the formula 2.554.2 presented in [10] gives

1

π

π∫
0

r + h cosφ
a+ b cosφ

dφ =
1

r
. (B.6)
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Equation (B.1) then leads to

C ln
h

r
−

∞∑
n=1

Cn(−1)n
1

π

π∫
0

cosnφ
(
√
a+ b cosφ)n

dφ = 1 +
Q

4

(
ρ21 − h2 − 2

ε2
ε1

h2 ln ρ1
)
+

(
ε2
ε1

ln ρ1 + ln
h

ρ1

)
B ,

(B.7)

and (B.2) gives

C +
∞∑
n=1

nCn (−1)n
1

π

π∫
0

cosnφ′ − r
cos (n+ 1)φ′
√
a+ b cosφ

(
√
a+ b cosφ)n

dφ =
ε2
ε0

(
B − 1

2
Qh2

)
. (B.8)

After obtaining B from (B.8) and substituting that expression in (B.7), we have

−
(
ε0
ε1

ln ρ1 +
ε0
ε2

ln
h

ρ1
+ ln

r

h

)
C

+
∞∑
n=1

Cn(−1)n+1 1

π

π∫
0

 cosφ′

(
√
a+ b cosφ)n

+ n

(
ε0
ε1

ln ρ1 +
ε0
ε2

ln
h

ρ1

)cosnφ′ − r
cos (n+ 1)φ′
√
a+ b cosφ

(
√
a+ b cosφ)n

 dφ =

1 +
Q

4

(
ρ21 − h2 + 2h2 ln

h

ρ1

)
. (B.9)

Using equations (18), we transform the integrand of the (B.9) integral:

cosnφ′ − r
cos (n+ 1)φ′
√
a+ b cosφ

(
√
a+ b cosφ)n

=
cosnφ′

(
√
a+ b cosφ)n

− r (cosnφ′ cosφ′ − sinnφ′ sinφ′)

(
√
a+ b cosφ)n+1

=

cosnφ′

(
√
a+ b cosφ)n

− r

(
√
a+ b cosφ)n+2

[cosnφ′(r + h cosφ)− h sinnφ′ sinφ] =

(h2 + hr cosφ) cosnφ′

(
√
a+ b cosφ)n+2

+ rh
sinnφ′ sinφ

(
√
a+ b cosφ)n+2

. (B.10a)

After integrating the final term of this equation by parts and using the following expression (which follows from
equation (18)),

∂φ′

∂φ
=

h2 + hr cosφ
a+ b cosφ

, (B.10b)

we have

rh
1

π

π∫
0

sinnφ′ sinφ
(
√
a+ b cosφ)n+2

dφ = − 1

π

π∫
0

(h2 + rh cosφ) cosnφ′

(
√
a+ b cosφ)n+2

dφ . (B.11)

Thus,

1

π

π∫
0

cosnφ′ − r
cos (n+ 1)φ′
√
a+ b cosφ

(
√
a+ b cosφ)n

dφ = 0 , (B.12)
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hence,

1

π

π∫
0

cos (n+ 1)φ′

(
√
a+ b cosφ)n+1

dφ =
1

r

1

π

π∫
0

cosnφ′

(
√
a+ b cosφ)n

dφ . (B.13)

When n = 1, the integral on the right-hand side of (B.13) (without the multiplier 1/r) is equal to (B.6). Therefore,

1

π

π∫
0

cosnφ′

(
√
a+ b cosφ)n

dφ =
1

rn
. (B.14)

Hence, (B.9) coincides with the first equation of the system of equations (20).
The other equations are obtained by calculating the following integrals of both sides of equations (B.1) and (B.2):

2

π

π∫
0

. . . cosmφ dφ , m = 1, 2, . . . .

(B.1) gives

−C
1

π

π∫
0

cosmφ ln(a+ b cosφ) dφ+
Cm

hm
+
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n=1

Cn(−1)n+1 2

π

π∫
0

cosnφ′ cosmφ

(
√
a+ b cosφ)n

dφ =
αm+ (h/ρ1)

2mβm
hm

Am ,

(B.15)

and (B.2) gives

Cr
2

π

π∫
0

r + h cosφ
a+ b cosφ

cosmφ dφ− m

hm
Cm +
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n=1

Cn(−1)nn
2

π

π∫
0

cosnφ′ − r
cos (n+ 1)φ′
√
a+ b cosφ

(
√
a+ b cosφ)n

cosmφ dφ =

ε2
ε0

m

hm

[(
h

ρ1

)2m

βm − αm

]
Am . (B.16)

After multiplying both sides of this equation by hm and dividing by m, and then dividing each term of the resulting
equation by (B.15), we obtain

CLm +
∞∑
n=1

[
σmn + (−1)nTmn

]
Cn = 0 , m = 1, 2, . . . , (B.17)

where

Tmn =
hm

gm − 1

2

π

π∫
0

[(
n

m
− gm

)
cosnφ′ − r

n

m

cos (n+ 1)φ′
√
a+ b cosφ

]
cosmφ

(
√
a+ b cosφ)n

dφ , (B.18a)

Lm =
hm

gm − 1

[
r

m

2

π

π∫
0

(r + h cosφ) cosmφ

a+ b cosφ
dφ− gm

1

π

π∫
0

cosmφ ln(a+ b cosφ) dφ
]
. (B.18b)

The term in the integrand of (B.18a), which includes the factor n/m, is transformed using (B.10a), and the resulting
function

cosmφ sinnφ′ sinφ
(
√
a+ b cosφ)n+2
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is integrated by parts. Using (B.10b), we obtain

n

m

2

π

π∫
0

[
cosnφ′ − r

cos (n+ 1)φ′
√
a+ b cosφ

]
cosmφ

(
√
a+ b cosφ)n

dφ =
2

π

π∫
0

sinnφ′ sinmφ

(
√
a+ b cosφ)n

dφ .

Thus, we obtain equation (21) instead of the expression for Tmn (B.18a).
After integrating the second integral of (B.18b) by parts and rearranging, we obtain

1

π
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cosmφ ln(a+ b cosφ) dφ =
2rh

πm
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0

sinmφ sinφ
a+ b cosφ
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and this leads to
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cosmφ

a+ b cosφ
− hgm
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By applying formula 3.613.1 given in [10], we obtain

1

π
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0

cosnφ
a+ b cosφ

dφ =
1

r2 − h2

(
− h

r
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.

It follows that

Lm =
(−1)m

m

(
h2

r

)m gm + 1

gm − 1
, (B.19)

which leads to the second equation in the system of equations (20).
We shall now derive expressions for the electric field components. In order to find Ex and Ey , the quantities ρ,

ρ′, φ, φ′ will be expressed as functions of coordinates x, y, measured from the origin O:

ρ =
√
x2 + y2 , ρ′ =

√
(x+ r)2 + y2 , φ = arccos

x√
x2 + y2

, φ′ = arccos
x+ r√

(x+ r)2 + y2
. (B.20)

We then obtain
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, (B.21)

where φ and φ′ are expressed according to (B.20). Using those equations in conjunction with equation (16), we
obtain expressions for the vertical and horizontal components of electric field Ex and Ey in the air between toner
and paper:
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The radial and tangential components Eρ and Eφ are calculated as functions of the angle φ on the outer surface
of the toner only, i. e., when ρ = h. Here, we use equalities (18) and formulas (B.4), (B.10b). Thus, we obtain

∂

∂φ

cosnφ′

ρ′n
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r sinφ cosnφ′ − (h+ r cosφ) sinnφ′

(
√
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. (B.23)

We then have

Eρ =
1

h

−r
r + h cosφ
a+ b cosφ

C +
N∑

n=1

nCn

cosnφ
hn

− (−1)n
cosnφ′ − r

cos (n+ 1)φ′
√
a+ b cosφ

(
√
a+ b cosφ)n


 ,

Eφ =− r sinφ
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where

φ′ = arccos
r + h cosφ√
(a+ b cosφ)

. (B.25)
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Santrauka
Tiksliai sprendžiant Puasono lygtį, dvimačiu atveju apskaičiuo-

tas elektrostatinio lauko stiprio pasiskirstymas lazerinio spausdin-
tuvo tonerinio vaizdo perkėlimo srityje, popierių apibūdinant di-
elektrinio storio artiniu. Ištirta elektrinio lauko stiprio vektoriaus

sando, lygiagretaus popieriaus paviršiui, padėtis ir jo vertės bei po-
pieriaus paviršiui statmenas sandas įvairiems popieriaus bei tone-
rio parametrų rinkiniams. Išanalizuotos Pašeno išlydžio tonerinio
vaizdo perkėlimo srityje sąlygos.


