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Analysis of the multivariate data distributions can be helpful or directly applicable in pattern recognition tests. Estimate of
the volume of the critical region of overlapping distributions is essential in determination of the confidence level of classifica-
tion. Mathematical tools for analysis of the multivariate distributions (included probability, false positives and false negatives,
means for calculation of the critical region) are developed. Sum of the false negative and the false positive is found as a very
approximate characteristic of the total uncertainty of classification. The false negative probability is extremely distribution
coordinate dependent and analysis of the details of the overlapping distributions is needed to evaluate the real risk of misclas-
sification of samples. Application of the multivariate distributions to the regional classification of wine samples according to
the data of multielement analysis is presented as an example.
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1. Introduction

Variety of information presented as numerous data
form the basis of the modern decision making in decid-
ing or rejecting suggested hypothesis or selecting be-
tween few of them. It is because and due to possibil-
ity of generation of the large data sets by the modern
measurement techniques. As an example, data on com-
position of a lot of samples including somewhere up to
sixty chemical elements is usual in recent environmen-
tal and geochemistry research, food chemistry and food
authenticity studies, clinical and forensic toxicology.
Even larger data sets are characteristic of the data for
multivariate calibration, ultraviolet, visible, infrared,
and mass spectrometry, gene and time series studies.
Various techniques, including dispersion and correla-
tion analyses, discriminant, factor, principal compo-
nent, cluster, neural networks, and others [1] are used
for more concise presentation, analysis, and interpre-
tation of such data sets. Many aspects of the method-
ology of the use of those and related techniques were
discussed in recent publications [1–6]

Naturally, in the classification or pattern recognition
matters, evaluation of the quality of classification is an
essential issue. In the present paper we show that analy-
sis of the multivariate distributions of data or some their

derivatives, as principal components, for example, can
be helpful, or directly applicable for the pattern recog-
nition studies. A lot of tables and mathematical expres-
sions for analysis of the bivariate distributions can be
found, but very few data concern multivariate distribu-
tions. Tables or convenient means for calculation of the
probability density functions, α and β type errors, eval-
uation of the critical region of the overlapping distribu-
tions would be of interest. The aim of the present paper
is to aid development of such means and application of
the multivariate distributions in data analysis. In some
cases the results were found to be extraordinary simple.
Application of the results to classification of wine sam-
ples according to their country of origin is presented as
an illustration.

2. Multivariate normal distributions. Theoretical
treatment

The normal distribution characterizes the data where
many small, independent effects additively contribute
to each observation. The distribution is described by
two parameters: location (typically mean or “average”,
µ) and scale (standard deviation or “variability”, σ).
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The continuous probability density function (PDF) of
the normal distribution is the Gaussian

f(x;µ, σ) =
1

σ
√
2π

exp
[
− (x− µ)2

2σ2

]
, (1)

with σ > 0. About 68% of values of the normal distri-
bution are contained in the range of one standard devia-
tion from the peak. About 95% of the values are within
two standard deviations and about 99.7% are located
within three standard deviations from the mean. Pre-
cisely, the area under the curve between −nσ and nσ
is geometrical definition of the standard error function
erf(x) of real argument

P (|x| < nσ) = erf
(

n√
2

)
. (2)

In practice the range in which the distribution of vari-
ables is being regarded is always limited. If, for exam-
ple, in “deciding whether or not a particular sample may
be judged as likely to have been randomly drawn from a
certain population” [7] we restrict ourselves to the range
±2σ (power of the test 0.95), the probability of rejecting
the null hypothesis that is actually true (false positive, α
or type I error, or p level of significance) is 0.05. If the
distributions partially cross, false negative error, or ac-
ceptance of the null hypothesis while, in fact, the alter-
native hypothesis is true, is possible. Naturally, no am-
biguity arises if the critical region, where the two dis-
tributions overlap, is small as compared to the selected
level of significance α. If the critical region is compa-
rable to α, then careful analysis of the probability dis-
tributions inside the critical region is necessary. Many
tables and procedures can be found to help analysis of
the univariate distributions. In contrast, for the multi-
variate distributions direct calculations usually have to
be performed. The probability density function of the
bivariate normal distribution is

f(x, y;µ, σ) =
1

2πσxσy
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, (3)

where σx and σy are the standard deviations of the x
and y values, ρ is the correlation coefficient.

The d-dimensional Gaussian (multivariate probabil-
ity distribution) function is defined as

f(x⃗; µ⃗, σ) =
1

(2π)d/2
√

detσ

× exp
[
− 1

2
(x⃗− µ⃗)⊤σ−1 (x⃗− µ⃗)

]
, (4)

where ⊤ denotes transposition and −1 inverse operation,
correspondingly. σ is a covariance matrix, with

σij = ⟨(xi − µi)(xj − µj)⟩ . (5)

Here the angle brackets denote expectation value of the
quantity inside:

µi = ⟨xi⟩ . (6)

Using Eq. (4) the probability density function of the
trivariate normal distribution takes the following ex-
plicit form:

f(x1, x2, x3;µ, σ) =
1
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Here

ρt =−σ33σ
2
12 + 2σ13σ23σ12 − σ11σ

2
23 − σ2

13σ22

+σ11σ22σ33 . (8)

Note that for bivariate distribution σ11 = σ2
1 , σ22 = σ2

2 ,
andσ12 = ρσ1σ2. Some data for comparison of the nor-
mal, bivariate, and trivariate probability distributions
are presented in Table 1. Because volume of ellipsoid is
always less than volume of surrounding cuboid, it fol-
lows that probability included in the ellipsoidal volume
within some standard deviation from the mean is also
always less than the normal distribution probability of
the same interval raised to power of dimension of the
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Table 1. Comparison of the included ellipsoidal probability of the
univariate (normal), bivariate, and trivariate distributions. The sec-
ond and the third entries of the univariate distribution column rep-
resent the first entry raised to the power of 2 and 3 correspondingly.

Range Normal, squared, cubed Bivariate Trivariate

0.5σ 0.3829, 0.1466, 0.0561 0.11750 0.03086
1.0σ 0.6827, 0.4661, 0.3182 0.39347 0.19875
1.5σ 0.8664, 0.7506, 0.6503 0.67534 0.47783
2.0σ 0.9545, 0.9111, 0.8696 0.86467 0.73854
2.5σ 0.9876, 0.9753, 0.9632 0.95607 0.89994
3.0σ 0.9973, 0.9946, 0.9919 0.98889 0.97071

space. In particular, the normal probability squared is
always slightly larger than elliptical bivariate probabil-
ity. The same is true for trivariate probability (Table 1)
when compared with the normal probability raised to
power of 3. The presented data for these distributions
depend neither on the variables ratio nor on the covari-
ance matrix.

Included ellipsoidal probabilities of higher dimen-
sional multivariate distributions can be described by the
following simple formula:

P (d, |x| < nσ) = 1−
Γ(d2 ,

n2

2 )

Γ(d2)
. (9)

Here d is the space dimension and Γ denotes the usual
gamma function:

Γ(z) =

∞∫
0

tz−1e−tdt , Re(z) > 0 , (10)

Γ(z, z1) =

∞∫
z1

tz−1e−tdt . (11)

From (9) it comes as a little surprise that ellipsoidal
probabilities in even-dimensional space can be ex-
pressed using the elementary functions only. For ex-
ample, for bivariate distribution (3) the included prob-
ability within 2σ variance interval is P (2, |x| < 2σ) =
1 − 1/e2. In odd-dimensional spaces this probability
includes single one-dimensional erf(z) function. For
example, for trivariate distribution the included prob-
ability for the same deviation is P (3, |x| < 2σ) =
−4/(

√
2πe2)+erf(

√
2). These can be easily checked to

have the same numerical values as presented in Table 1.
More results on exact expansion of (9) are presented in
Appendix.

If two distributions overlap, the volume of the criti-
cal region can be found as an integral common to both
distributions. If some level of significance is accepted,

the range of the distribution is restricted by the corre-
sponding ellipsis and the critical region is part of the
overlapping distribution inside the ellipsis. Risk for the
corresponding false negative error must be accounted
for when the data inside the ellipsis are being regarded.

3. Analysis of the real distributions. Discussion

Characteristic examples of the bivariate and 3-di-
mensional data distributions are presented in Figs. 1 and
2 below. The data represent the problem of classifica-
tion of wine samples measured in [8]. The absolute con-
centrations of 19 elements, namely Li, B, Na, Mg, Al,
K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Ba in
102 wines from Bulgaria (5), Chile (25), France (26),
Hungary (7), Italy (6), Spain (28), California (5), mea-
sured by double focusing sector field mass spectrometer
Element2 were taken for the analysis below. The num-
ber of the tested samples is given in parentheses. Tm
was used as an internal standard. Relative measurement
uncertainty usually did not exceed 10%. Step by step
approach from all the samples to smaller classes (see
Fig. 1) was used for classification. The Anova F-test
was used to select the most informative elements at each
classification step and enabled reduction of noise. More
details on the measurement procedure can be found in
[8]. In particular, elements Rb, Sr, Li, and Zn had large
F-ratio values and were most useful for the current clas-
sification. Principal component analysis (PCA) for the
selected elements was used to minimize correlations be-
tween measured data. Sometimes even one principal
component was enough to distinguish between the two
populations. Usually the first principal component ex-
plained 40–80% (44% in Fig. 1 and 60% in Fig. 2) of the
dispersion of the data, second principal component 10–
40% (33% in Fig. 1 and 25% in Fig. 2), but sometimes
the higher principal components are important. For ex-
ample, the 3rd principal component explained 22.3% of
the variance relative to Fig. 1. The 3rd and 4th compo-
nents (not shown) explain 11.0 and 3.7% of the variance
relative to Fig. 2, correspondingly.

Of course, it is not evident in advance that applica-
tion of the PCA will aid regional classification. The
main tendencies of data variation highlighted by the
principal components cannot be necessarily due to the
regional effects. Studies in [8], where comparison
of the data classification capabilities of the raw ele-
ment concentration data and the principal components
was undertaken, revealed that application of the PC in-
creased classification capabilities in comparison to the
raw data in the case under study. In addition, the results
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Fig. 1. Results of PCA analysis of concentrations of Sr, Rb, and Zn in wines from different countries. Square (cuboid) □ denotes samples
from Chile and California, triangle (tetrahedron) △ is for wines from Spain, Bulgaria, and Hungary, and circle (sphere) ⃝ represents brands
from France and Italy. 3D ellipsoids are drawn at 95% confidence level. 2D ellipses are calculated in the same way using x−y projection

points.

of the PC distribution tests were in correspondence with
the normal distribution, although the power of the test
was not high because of the small data sets.

Two and three principal component scatters of all
the measured data for Sr, Rb, and Zn are presented in
Fig. 1. The points tend to group into 3 batches. The
one consists of samples from Spain, Bulgaria, and Hun-
gary, the other is formed by wines form Chile and Cal-
ifornia, and the last one is wines from France and Italy.
The mean values of the principal components for each
group and the corresponding covariance matrices of the

trivariate distribution are listed in Table 2. One could
notice appreciable correlation between principal com-
ponents within the groups while, from the very PC con-
cept, no correlation between the principal components
for the batch in general is possible. Specific rules of
data classification is the source of this correlation.

If, for example, 95% confidence level for classifi-
cation is accepted, the distributions partially overlap
(Fig. 1). It is to be noted that if we draw confidence
ellipsoids matching multivariate PDF parameters, then
these ellipsoids will not generally coincide with the el-
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Table 2. Principal components analysis of Rb, Sr, and Zn element concentration data in samples of wines from
Chile and California (□), Spain, Bulgaria, and Hungary (△), and France and Italy (⃝).

Data △ group □ group ⃝ group

Covariance matrix
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

PC1 0.0400 −0.0066 −0.0128 0.0237 0.0014 0.0076 0.0223 0.0031 0.0057
PC2 −0.0066 0.0383 0.0069 0.0014 0.0188 −0.0147 0.0031 0.0210 −0.0069
PC3 −0.0128 0.0069 0.0690 0.0076 −0.0147 0.0419 0.0057 −0.0069 0.0317

Mean
−0.264 −0.225 −0.0148 0.429 −0.107 −0.0008 −0.072 0.382 0.0193

lipsoids which include 95% of the data points. It is
because ellipsoid constructed by descriptive statistic
methods ensures that the prescribed fraction of data (in
our case 95% of points) lie inside the locus of ellipsoid
without any explicit hypothesis about data distribution
probability function. Despite the fact that both ellip-
soids are centred on group mean value and their ori-
entations coincide (it is calculated using the same co-
variance matrix), lengths of major / semi-minor / minor
axes generally differ.

Detailed probability distribution analysis is needed
to decide how essential is the risk in classification and
must or may not the accepted confidence level be re-
duced. The natural expectation is that disposition of
more data should provide better separation of samples.
This is completely confirmed by calculations of the bi-
variate probability function intersection integrals for
different groups of data presented in Table 3. The in-
tegrals represent the part of the interfering distribution
inside the 95% confidence level ellipse being regarded
and can be interpreted as the hypothesis false negative
error that the point in the intersection area belongs to
this group, while in reality it belongs to another one.
As follows from the table, classification of a sample
found inside the parameter region characteristic of the
△ group according to the two elements data (Sr, Rb)
is not possible, because overlapping of the other distri-
butions is very large. At the same time identification
of the samples from □ and ⃝ groups at least at confi-
dence level about 0.94 seems possible. Discrimination
is much better for the three elements (Sr, Rb, Zn) data
set (see Fig. 1 also). According to the integral charac-
teristics presented in Table 3, classification of all the
data at confidence level about 0.9 is possible. In reality
it is evident that at the crossing line of the two overlap-
ping distributions the probabilities to find a sample as
originating from any of the two distributions is equal,
while at the opposite side of the ellipse probability of
an error in classification is negligible. Sum of the two

false negatives □ and ⃝ relative to △ could seem as
some integral characteristic of possible error, but it is
clear from Fig. 1 that either one or another is possible,
not both. In such a manner the integral characteristics
evaluate only the mean probability of classification of
a large number of samples. They account for the de-
creasing character of the characteristic distributions but
do not correspond to the problem of classification of
particular sample represented by particular data set.

As another example, it seems trivial that two batches
can be classified as separate if the variation of the de-
scribing parameters within the batches is small as com-
pared to the differences between the mean values. Nev-
ertheless, even if the centres of the distributions coin-
cide but dispersions are very different, classification can
be possible. In Fig. 2 the PC analysis of concentrations
of Sr, Rb, Zn, and Li in wines from Spain and France is
presented. The overlap of the two batches at 95% confi-
dence level is negligible. The data for Bordeaux wines
(France) are marked by triangles (△) in the figure. Nat-
urally, they are found inside the ellipsis characteristic
of the wines from France. Nevertheless, it follows from
calculation of the bivariate PDF cross-section integral
(at 95% confidence level) that probability of the wines
from other regions of France to have characteristics sim-
ilar to those from Bordeaux is comparatively small. The
integral of probability density function of the data of
wines from France (with Bordeaux district excluded)
over 95% confidence ellipse area (denoted by solid thick
line in Fig. 2) of Bordeaux wines is 13.5%. This can be
easily seen from very different shapes of PDF charac-
teristic of wines from Bordeaux and France in general
(Fig. 2). If Bordeaux district is included in PDF param-
eters estimation, the calculated integral value increases
to 14.0%. If instead of two principal components as
shown in Fig. 2 we take three largest principal compo-
nents, the trivariate PDF integral (false negative from
other regions of France relative to Bordeaux) reduces
to 7.2%. If all four PCA components are taken into ac-
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Table 3. The bivariate probability function intersection integrals for different
groups of data. False Negative (FN) is part of the interfering distribution inside
the 2D 95% confidence level ellipse being regarded. The bivariate distributions
were calculated for the PC of the two elements (Sr, Rb) and three elements (Sr,
Rb, Zn) data sets for wines from Chile and California (□), Spain, Bulgaria, and
Hungary (△), and France and Italy (⃝). The third PC component of the three-

element case is omitted as it has not improved the classification.

Sr, Rb PCA; FN from Sr, Rb, Zn PCA; FN from
Null hypothesis △ □ ⃝ △ □ ⃝

△ – 23.4% 59.2% – 3.80% 8.15%
□ 2.23% – 0 2.01% – 0
⃝ 6.24% 0 – 4.31% 0 –

Fig. 2. Results of PCA analysis of concentrations of Sr, Rb, Zn, and Li chemical elements in wine from Spain (□) and France. Two largest
PCA components, which explain correspondingly 60.3 and 25.0% of variance, are shown. The remaining PCA components explain 11.0 and
3.7% of data correspondingly. Bordeaux wines are marked by △ and brands from remaining France districts are represented by circles ⃝.
Ellipsoids in the x−y plane (solid lines) are drawn at 95% confidence level. Isocontours of bivariate PDF surfaces denote ellipsoids of

included probability.

count, the integral further reduces to below 2%, illus-
trating the high potential of application of the higher
dimensions.

As limited number of samples is tested, deviation of
the determined standard deviation value from the true
one can be significant. The Student’s t coefficient can
be included into calculation of the axes of the ellipses to
account for the uncertainty. Multivariate Student’s dis-
tributions ought to be used instead of the normal ones in
the case (see [9] also). Naturally, generic principles of

calculations discussed above and presented in the Ap-
pendix remain the same.

4. Conclusions

In such a manner we find that analysis of the mul-
tivariate distributions is an effective, transparent, and
convenient tool to evaluate the accuracy of classifica-
tion and the main sources of uncertainty. Mathematical
means for application of the method are developed and
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presented. Possible role of the higher dimensions (up
to the forth) is demonstrated. It is stressed that the de-
tailed topography of the distributions must be analysed
to evaluate the real risk of classification in any par-
ticular case under analysis. The selected confidence
level for discrimination between the batches and the
corresponding d-dimensional space included character-
ize only the probability not accounted for in the anal-
ysis, false positive, that decreases if the coverage fac-
tor is increased. The volume of the critical region is
only a very rough characteristic of the overlapping dis-
tributions. The false negative probability distribution is
not only distance, but especially orientation, or coordi-
nate, dependent. The probability of misclassification is
essentially different near the critical region and at the
opposite side of the distribution. Thus analysis of the
distributions provides detailed information on the un-
certainty of classification. More detailed description of
the mathematical tools used for the analysis of distribu-
tions is included in the Appendix.

Extension of the applicability of the integral classifi-
cation probabilities to data analysis could be desirable.
As one of the approaches, it could be done by extension
of applicability of the false positive, or α error, concept.
Ellipses or higher dimension pictures of the space that
includes the selected probability are in correspondence
with this concept. Overlapping with other distributions
indicates overestimation of the confidence level. The
space being regarded ought to be restricted in a manner
to exclude the regions where the false negative proba-
bility density is not negligible (e. g., three or ten times
less) as compared to the lowest probability density of
the null hypothesis distribution in any region being ac-
counted for (naturally, it is lowest at the border of the
selected false positive level space). Such a line or sur-
faces ought to exclude the regions where the false neg-
ative probability is significant. Then new integral false
positive value must be found as the integral probability
inside this space. It would be applicable to the parame-
ter region found from the distribution analysis.

Thus the sum of the false negative and the false posi-
tive is only an approximate characteristic of the total un-
certainty of classification. The false negative probabil-
ity is extremely distribution coordinate dependent and
analysis of the details of the overlapping distributions is
needed to evaluate the real risk of classification of the
real samples. We hope that the material concerning the
multivariate normal distributions presented above and
in the Appendix can be helpful for such analysis.

5. Appendix

Computer algebra system Mathematica [10] was
used both for symbolic and numeric calculations. Be-
sides general system kernel functionality a number of
functions from MultivariateStatistic.m and ANOVA.m
packages appeared to be very useful.

Mathematica’s impressive symbolic definite integra-
tion capabilities were used to derive formula (9). The
results were checked by numerical integration proce-
dure for a number of selected values. Expansions of (9)
for particular d and σ values, part of which are used in
Table 4, were calculated with the system built-in com-
mand FunctionExpand[ ]. The expansion results again
were checked by high precision numerical integration
routines.

Numerical integration of the multivariate PDFs over
(generally overlapping) d-dimensional ellipsoidal re-
gions was realized with the additional Boolean help
function in the integrand. This Boole function was de-
fined to have value 1 if the point under integration be-
longed to the interior of both ellipsoidal shapes and 0
otherwise. Because most of the integrands included fast
falling functions, numerical integration limits had to be
carefully adjusted to ensure reliable best precision re-
sults.

Full calculation details are available as Mathematica
notebook with accompanying full measured concentra-
tion data text file, available for download from http://
mokslasplius.lt / eksperimentai / files / eksperimentai /
Notebooks / MultivariateQuantification.tar.gz .
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Table 4. Probability included in multivariate PDF. Space dimensions d and deviations σ.
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Santrauka
Duomenų klasifikacijos pasikliautinumo lygį lemia skirstinių

persiklojimo laipsnis. Yra daug būdų ir patogių priemonių vienma-
čiams skirstiniams analizuoti, tačiau daugiamačių skirstinių analizė
retai taikoma. Straipsnyje pateikiamos lentelės ir būdai daugiama-
čių Gauso skirstinių įskaitytajai tikimybei, kritinei sričiai, klaidin-
gosioms teigiamosioms ir klaidingosioms neigiamosioms tikimy-
bėms skaičiuoti. Parodoma, kad klaidingosios teigiamosios ir klai-

dingosios neigiamosios tikimybių suma yra tik labai apytikrė kla-
sifikacijos pasikliautinumo charakteristika. Klaidingoji neigiamoji
tikimybė yra lokalizuota skirstinyje, ir jos vaidmuo duomenų klasi-
fikavimui iš esmės priklauso nuo to, kiek konkretūs duomenys yra
toli nuo tos srities. Pateikiamas pavyzdys, kaip daugiamačių skirs-
tinių analizė panaudojama vyno bandinių regioninei klasifikacijai
pagal spektrometrinius cheminės analizės duomenis.


