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In connection with recent studies of extremely long-living spin-cyclotron excitations that are actually magneto-
excitons in the quantum Hall electron gas, we discuss the contribution to light absorption related to the presence of 
a magnetoexcitonic ensemble in this purely electronic system. The distribution of magnetoexcitons in an ‘incoherent’ 
phase, as well as absorption of light, is determined by a smooth random potential inevitably present in a quantum 
well. Since weakly interacting excitations have to obey the Bose–Einstein statistics, one may expect the appearance of 
a coherent phase where all magnetoexcitons are in the same state. The absorption of light is still determined by disor-
der in the system, but it turns out to be about an order of magnitude higher. A comparative analysis is made of both 
incoherent and coherent cases. The condition for coherent–incoherent phase transition is discussed. It is expected to 
be strongly related to long-distance inter-excitonic correlations. The latter are accounted in terms of virial correction 
(i.e. depending on magnetoexciton concentration) for the single magnetoexciton energy found within the approxi-
mation of a slightly non-ideal gas.
Keywords: two-dimensional electron gas, quantum well, magnetic field, optical absorption, resonant Ray-
leigh reflection, magnetoexciton, cyclotron spin-flip excitation, Bose–Einstein condensation
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1. Introduction (cyclotron spin-flip excitation)

Cyclotron spin-flip exciton (CSFE) in the ν = 2 quan-
tum Hall system is the lowest-energy excitation [1–
3] and has an extremely long lifetime. The latter is 
theoretically estimated to be up to several millisec-
onds [4, 5]. As is usually the case in relaxation prob-
lems, the time actually turns out to be shorter due 
to the  presence of additional relaxation channels 
which could hardly be predicted before a specific ex-
perimental study. In fact, the CSFE relaxation found 
experimentally in the  unpolarised quantum Hall 
system created in a  GaAs/AlGaAs heterostructure 
reaches 100 μs [6] that seems to be a record value for 
a  delocalised state excited in the  conduction-band 

electron system. Such a slow relaxation suggests that 
the excitation ensemble obeying the Bose–Einstein 
statistics can, at a  sufficiently high concentration, 
experience a transition to a coherent state, i.e. Bose–
Einstein condensate. Note that both CSFE crea-
tion and CSFE monitoring are performed by opti-
cal methods [3, 6]. In this respect, it is of interest to 
study the contribution to light absorption related to 
the CSFE ensemble in the 2DEG. In the present work 
we perform a  comparative analysis of absorption 
by the CSFE ensemble in incoherent and coherent 
phases. (This also strongly correlates with light emis-
sion if the resonant reflection technique is used [6].)

The CSFE is a  solution of the  many-electron 
Schrödinger equation with a  δS  =  1 change of 
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the total spin as compared to the ground state where 
S  =  0. In other words, generally, this excitation is 
a  triplet with S = 1 and Sz = 1, 0, –1. All the three 
components have equidistant energies gapped by 
the  Zeeman value |gμBB|. The  lowest-energy com-
ponent corresponds to Sz  =  1 because the  g-factor 
is negative in GaAs heterostructures. In the present 
study we consider only such S = Sz = 1 magnetoex-
citons. A  noticeable concentration of such excita-
tions, N/𝒩ϕ ≲ 0.1 (𝒩ϕ is the total number of states 
in the  Landau level), can be achieved experimen-
tally [6]. At high concentrations the  inter-excitonic 
(CSFE–CSFE) interaction seems to become fairly 
strong. Yet, in the following we study an exciton en-
semble only in the ‘dilute limit’, thus ignoring CSFE–
CSFE coupling. Due to the very long CSFE relaxation 
time we consider an exciton ensemble as a metasta-
ble system with a given number of excitons N.

The dependence of CSFE energy on the 2D mo-
mentum q in the ν = 2 unpolarised quantum Hall 
system was first calculated by Kallin and Halp-
erin  [1]. The  authors studied the  problem within 
the first order in a small parameter given by the ratio

rs = EC/ℏω(e)
c (1)

of the characteristic Coulomb energy EC to the cy-
clotron energy ℏω(e)

c (EC ≲ e2/κlB, where κ is the di-
electric constant, /Bl c eB=   is the  magnetic 
length). Besides, they considered the  ultra two-di-
mensional limit in the absence of any disorder. In-
deed, the CSFE energy counted off the ground-state 
level is determined by the  formula Eq  =  δ(0)  +  Eq, 
where
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is the q-dispersion (here and everywhere below mo-
mentum q is measured in 1/lB units; J0 is the Bessel 
function), and

δ(0) ≡ ℏω(e)
c – |gμBB| + ε0

is the  q  =  0 energy including cyclotron and Zee-
man energies, and the  negative Coulomb shift ε0 
remaining nonzero even if q → 0. (The ε0 < 0 value 
representing the second-order Coulomb correction 
(~ℏω(e)

c  r2
s) calculated in the  work  [2] and experi-

mentally measured in [3].) The form factor is 
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where χe(z) describes the  electron size-quantised 
functions in the quantum well. (The χe(z) function 
in a  quantum Hall system should be B-depend-
ent.) The CSFE q-dispersion for the ν = 1 filling is 
the same as Eq in the ν = 2 case if obtained within 
the ‘single-mode approximation’. So, an example of 
the calculation (2) for a certain real system is pre-
sented, e.g. in Ref. [7]. It shows a very weak q-dis-
persion: |Eq| ≲ 0.01 EC down to q ~ 1 (~1/lB in com-
mon units). It is worth noting that there are various 
ways to compute the form factor (3) based on dif-
ferent calculation/modelling of the  function χe(z). 
Approaches were discussed earlier in the review [8] 
(see also Refs. [2, 4, 5, 7]). However, practice shows 
that in a  quantum Hall system (in a  strong mag-
netic field) a simple semi-empirical formula
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works quite well for wave vectors q ≲  1, where 
the  fitting parameter d, proportional to the  ef-
fective width of the  quantum heterostructure, is 
measured in lB units.

In the absence of any interaction mixing spa-
tial and spin variables, the Hamiltonian of a trans-
lationally invariant quantum Hall system has 
the following form:

Ĥ = – |qμBB|Ŝz + Ĥ(1) + ĤCoul . (5)

Here Ŝz is the  z component of the  total spin 
operator of electrons, Ĥ(1) is the  ‘kinetic energy’ 
operator of electrons and ĤCoul is the Coulomb in-
teraction operator. We recall the eigenfunctions of 
the operator Ĥ(1)
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representing the  p-orbital function of the  nth 
Landau level. (The  Landau gauge is used: Hn is 
the Hermite polynomial, xp = –plB, p-numbers are 
measured in 1/lB units.)

Using the  ‘excitonic representation’ technique 
(see the  Appendix below) the  CSFE with the  2D 
momentum q is presented in the form of action of 
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the exciton creation operator Q†
q on the ground state 

|0〉. Specifically,

–i ( – /2)† –1/2 †
–e x y

y

q p q
p p q

p
Q N b aφ= ∑q  (7)

(Q-operators as applied to a quantum Hall system 
were first used in works [10, 11]). In our case |0〉 de-
notes the ν = 2 ground state with a fully occupied zero 
Landau level; ap is the operator annihilating an elec-
tron on the upper spin sublevel of the zero Landau 
level with spin down, i.e. antiparallel to the magnetic 
field, and b†

p creates an electron on the first Landau 
level with the spin directed along the magnetic field. 
The operators in Eq. (5) can be expressed in terms 
of the  excitonic representation  [see Eqs.  (A3) and 
(A5) in the Appendix]. The commutators with Q†

q 
satisfy the following properties: [Ŝz, Q

†
q] = –1, [Ĥ(1), 

Q†
q] = ℏωc. In the following, considering the Cou-

lomb interaction, we will limit ourselves only to 
the  first order in rs. This means that in the  ĤCoul 
operator one may keep only the terms commuting 
with Ĥ(1), thus preserving the  cyclotron energy of 
the studied states, and certainly preserving the spin 
state due to the  well-known property of the  Cou-
lomb interaction. These terms can be extracted from 
a  general expression of ĤCoul. Designating them as 
Ĥ′

Coul (see the Appendix) we have

[Ĥ′
Coul, Q

†
q]|0〉 = EqQ

†
q|0〉. (8)

The CSFE represents a purely electronic kind of 
magnetoexciton  [9] where the  quantum mechani-
cal average of the  distance between the  positions 
of a promoted electron and an effective ‘hole’ (a va-
cancy in the spin-down sublevel of the zero Landau 
level) is equal to Δr = lBq × ẑ [1]. Therefore, this exci-
tation possesses an electric dipole-momentum

dq = elBq × ẑ. (9)

2. Light absorption by an incoherent excitonic 
ensemble

First, we study the incoherent state of the CSFE en-
semble

|N〉 = Q†
qN
Q†

qN–1 …Q
†
q1

|0〉, (10)

considering the  general case under the  condition 
N ≪ 𝒩ϕ where all qs are assumed to be different. 

One can find that the squared norm has the follow-
ing property:

〈N|N〉 = [1 + O(N/𝒩ϕ)] 〈N–1|N–1〉. (11)

The perturbation operator responsible for light 
absorption has the form

P † †ˆ
p p

p
A V a= ∑P , (12)

where V†
p is the  creation operator of a  valence 

heavy hole, and A is a certain constant. The opera-
tor (12) is uniquely determined by two features of 
absorption: (i) in this case only ‘vertical’ electronic 
transitions are relevant, i.e. the photon generates 
a pair of a valence hole and an a-sublevel electron, 
both in the  same intrinsic p-states of their Lan-
dau levels; (ii) all the  p-states equiprobably par-
ticipate in the absorption process. Such properties 
of the light absorption are related to the condition 
Lkphoton|| ≪ 1 where the length L is the characteris-
tic of electron 2D-density spatial fluctuations and 
kphoton|| is the photon wave vector component par-
allel to the electron system plane. This condition is 
actually satisfied [6]. The action of the  𝒫 operator 
on the state |N〉 results in the AΣi|f, qi〉 combina-
tion of N states:

†ˆ| f , – | 0
ii

j i

χ
≠

〉 = 〉∏q qq Q . (13)

Here χq  =  𝒩ϕ
–1/2Σpe

–iqx(p+qy/2)V†
pb

†
p+qy

 is the  exciton 
operator which, by acting on the  ground state, 
generates a  valence hole and a  b-sublevel elec-
tron. If N  ≪  𝒩ϕ, then neglecting any interac-
tion of Q†

qj
|0〉 excitons with each other and with 

the  |v  –  e,  q〉  =  χ†
q|0〉 exciton, we find that |f,  qi〉 

has a squared norm equal to 〈N – 1|N – 1〉. With 
the help of Eq. (11) one obtains a matrix element 
squared for transition from the  initial state to 
the final |f, qi〉 state. If both are appropriately nor-
malised, it is

|Mi|
2 = 〈〈qi, f|| P||N〉〉2 ≈ |A|2 (14)

(〈〈…|| is notation for a normalized state). The fol-
lowing calculation of the  absorption rate repre-
sents a procedure of summation over all possible 
final states:
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The approach used is actually single-excitonic, 
hence

Dq = ℏω + Eq – Ev–e,q, (16)

where ω is the  probing laser-beam frequency, Eq 
is the total energy of the CSFE Q†

q|0〉, and Ev–e,q is 
the energy of creation of the valence-hole–conduc-
tion-electron magnetoexciton state |v – e, q〉.

2.1. Energy of the CSFE in the presence of a smooth 
random potential

The following study, that is, in fact, summation of 
the  δ-functions in Eq.  (15), becomes impossible 
without a certain concretization. This concretisa-
tion should set a  specific initial state (10) repre-
senting the distribution of qi numbers over their 
possible values. This distribution is established 
and determined by two competing effects: by 
thermal diffusion related to interactions with pho-
nons, and by drift motion, where the drift velocity 
of magnetoexciton ∂Eq/∂q is determined by two 
parameters, namely, momentum q and smooth 
random electric field  ℰ⃗ = – ∇φ(r), r =  (x,  y). We 
assume that only drift motion accompanied by 
cooling due to phonon emission results in the es-
tablishment of an initial state (10).

First, let us study a domain with linear dimen-
sions smaller than the  spatial dispersion param-
eter Λ of the smooth random potential φ but still 
larger than the  magnetic length. For definite-
ness we consider Λ to be the  correlation length 
of the  φ spatial distribution, the  mean value of 
the potential being –φ ≡ 0. Within this domain we 
use a  gradient approximation considering field 
φ(R), as well as gradients ∇Rφ and coordinate 
R as parameters inherent to the domain (for ex-
ample, R indicates the domain centre). So, within 
the domain the electrostatic term in the Hamilto-
nian is equal to φ =   ℰ⃗(R)r. r can be presented in 
terms of secondary quantisation: ∫dr ψ†r ψ, where 
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c
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↓
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(here |Ex| = | E⃗ | ≡ E ), where

†

, , /
ŷ np np
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P pc cσ σ
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is a  component of the  Gor’kov–Dzyaloshinsky 
momentum operator P rewritten in the  ‘general-
ised’ form valid for purely electronic magneto-
excitons in a  quantum Hall system (P is present-
ed in 1/lB units). In particular, PQ†

q|0〉  =  qQ†
q|0〉. 

 P = Σjpj + eAj – eB × rj] being a generalization of 
the  Gor’kov–Dzyaloshinskii operator  [8], plays 
the  role of the  total momentum of a  magnetized 
2DEG. (Σj means summation over all electrons, p 
is the  2D electron momentum operator, and A  is 
the  2D vector-potential, units where ℏ  =  c  =  1 
are employed.) To calculate the  commutator with 
the  operator Q†q we choose the  Landau gauge, 
A = (0, Bx), and, in terms of secondary quantiza-
tion, obtain the following: Px = (2π/𝒩ϕ)1/2iΣn,p,q,σδ'q 
c†

n  p+q/2σcn  p–q/2σ/lB and Py  =  Σn,p,σ  pc†
npσc

†
npσ/lB, where 

δ'x is the  distributional derivative of the  Dirac 
δ-function, i.e. δ'x [f(x)] ≡ – f '(0). The operator

† †
1

,

1ˆ
2 n p np

n p

nK c cσ σ σ+

+
= ∑  (19)

is the Landau level ‘raising’ operator; c†
npσ is the crea-

tion operator for the nth Landau level, for instance, 
ap ≡ c0p↓ and bp ≡ c1p↑. Now we obtain the contribu-
tion of the electrostatic term (17) to the magneto-
exciton energy Eq. The first-order correction is

† † †ˆˆ0 | | | | 0 – 0 | | | | 0

( ) .

B

B z

l

l

ϕ〈 〉 ≡ ×〈 〉

= ×

q q q qP

q





Q Q Q QE

E

In principle, the second-order correction should 
be determined by the K-terms of the operator (17). 
By so calculating, attention should be given to 
the fact that the energy of the Q†

q|0〉 state is count-
ed off the ground state energy. However, the latter, 
for its part, also includes the second-order electro-
static correction, and both corrections appear to be 
equal. Thus, the difference vanishes and the ∝ ℰ2 
total correction is reduced to a zero result. This fea-
ture is due to the symmetry of the purely electronic 
system considered. Formally, as applied to the case 
of a common two-particle magnetoexciton [9], this 
symmetry would correspond to electron and hole 
masses satisfying the  me  =  –mh equivalence and 
thus result in vanishing of the ~ℰ2 term in the mag-
netoexciton energy.
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Now we can write out the  relevant energy of 
the magnetoexciton within the domain. We consid-
er its q dispersion (2) in the vicinity of the weakly 
manifested roton minimum (see Ref. [7]). So, with-
in a constant independent of parameters q and R, 
the relevant part of the energy is

Eʹ 2
01( , ) ( – ) ( )B zq q l�� � � �q R q

�
E E ,                  (20)

where parameters α and q01 are positive and sup-
posedly estimated as α ≃ 0.1 meV and q01 ≃ 1 in 
the  1/lB units. This energy reaches its local mini-
mum value at

q = qm(R) = – (lB/2α + q01/ℰ)  ℰ⃗ × z,

which is the  root of equation ∂Ԑ/∂q = 0. The  lo-
cal minimum corresponds to zero group velocity, 
hence to the zero drift velocity of the electron and 
effective ‘hole’ composing the  magnetoexciton. 
Physically this means vanishing of the total electric 
field that acts on each quasiparticle since the elec-
tron–‘hole’ interaction field just compensates 
the external one. It is natural to consider the ini-
tial metastable state corresponding to this mini-
mum. Due to cool down processes, diffusion and 
drift, that are fast compared to the CSFE lifetime, 
the  magnetoexciton gets ‘stuck’ in the  smooth 
random potential with energy δ(1)  +  Ԑm(R), 
where

Em(R) = Ԑ ′(qm,R) = –lBq01ℰ – (ℰlB)2/4α          (21)

(δ(1) is a constant independent of R, see the study 
of spin-exciton kinetics in Ref.  [12]). Thus, 
the  system represents a  frozen but chaotic state 
held by the  smooth random potential. Magneto-
exciton trapping occurs only in domains where 
|Em| ≳ T, hence, for T ~ 1 K we get lBE ≳ 1 K (i.e. 
ℰ ≳ 100 V/cm). In principle, this is in agreement 
with the  mean ℰ value expected for the  wide-
thickness quantum well used in the  experi- 
ment.

2.2. Energy of the ‘common’ electron–hole 
magnetoexciton

The final state |v–e, qm〉 emerging within the do-
main as a result of photon absorption is explicitly 
defined. It represents a ‘common’ two-particle 2D 

magnetoexciton studied, for instance, in Ref. [13] 
which is now, however, considered against 
the  background of the  zero Landau level com-
pletely occupied by conduction band electrons. 
This background is ‘rigid’ and its state, if calcu-
lated to the first order in the Coulomb interaction 
and external electric field, is not changed even in 
the  presence of the  magnetoexciton. The  occu-
pied electron Landau level for its part does not 
influence the  q-dispersion of the  energy Ev–e,q 
studied within the  same approximation. In our 
specific case, where the  valence-hole belongs to 
the zero Landau level and the electron to the first 
one, the  Ev–e,q energy represents a  mode with 
the  azimuthal number m  =  1 (the E01 eigenstate 
in the notation of Ref.  [13]). This mode has also 
a roton minimum, i.e. the actual q-dependence of 
the Ev–e,q energy in the vicinity of the qm value is 
~β(q – q02)

2, where q02 ~ 1 and β > 0. Now, if q-dis-
persion is considered with the use of the parabolic 
valence-band model, as in Refs. [9, 13], it is neces-
sary to take into account the appropriate v-e effec-
tive form factor in the dispersion equation similar 
to Eq. (2). For values q ≳ 1 the ℱve(q) form factor 
is found to be considerably larger than the ℱee(q) 
one, i.e. it occurs owing to the greater ‘compact-
ness’ of the  heavy-hole size-quantized function 
|χv(z)|2 compared to that of the electron function 
|χe(z)|2. As a  result, the  property β  >  α holds for 
the q-dispersion parameters.

The  energy dependence on external random 
field can be studied in the  way described above 
with the only replacement of the field operator  φ 
by the operator

φ –   ℰ⃗(R) rh,

where rh is the position of the valence hole within 
the domain. The first-order correction in the elec-
tric field ℰ is the same as for the purely electronic 
magnetoexciton, while the  second order correc-
tion does not vanish. Indeed, first, the ∝ ℰ2 cor-
rections to the energies of purely electronic states 
b†

p|0〉 and |0〉 determined by the  operators of Eq. 
(19) do not compensate each other, unlike the case 
with states Q†

q|0〉 and |0〉. Second, the ∝ ℰ2 correc-
tion to the state V†

p|0〉 should also be taken into ac-
count. As a result, the total correction is the same 
as that found by Gor’kov and Dzyaloshinsky [9]. 
Finally, the relevant part of the Ev–e,qm

 energy is
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β
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where β > α, q02 ~ 1; ω(e)
c and ω(h)

c are the cyclotron 
frequencies in the conduction and valence bands, 
respectively. The last term in Eq. (22) is definitely 
small and, within the framework of the absorption 
mechanism studied here, it has to be taken into ac-
count only in the symmetric case where α ≈ β and 
q01 ≈ q02. However, this term also becomes essential 
in further calculations relating to a  coherent en-
semble of magnetoexcitons.

2.3. Estimate of the  absorption rate according to 
formula (15)

The domains participating in summation (15) must 
satisfy two conditions: (i) they contain a magneto-
exciton and (ii)  correspond to a  vanishing argu-
ment of the δ function. Therefore, within the con-
stant C independent of the coordinate, we come to 
the equation

ℏω – C = Ev–e(qm, R) – Em(R) (23)

for R. Obviously, the first-order electrostatic terms 
lB(qm ×   ℰ⃗)z cancel each other in this difference. As 
a result, by substituting expressions (21) and (22), 
Eq. (23) can be rewritten in the form

F(R) = ℏω – const, (24)

where
2

01 02 2

( )( ) ( – ) ( – )
4

B Bl lF q qβ β α
α α

= +R EE ,       (25)

and const is a  combination of the  forbidden gap 
and the  Coulomb, Zeeman and cyclotron shifts 
relevant to the case (∝ ℰ2/ω c

(e,h) terms are ignored). 
The frequency ω of the probing laser beam seems 
to be appropriately tuned in order to ensure 
a  maximum signal, i.e. specifically, in terms of 
our study, to provide the  maximum number of 
domains participating in the sum (15). The solu-
tion of Eq. (24) determines a certain line in the (x, 
y) plane. We introduce local orthogonal coordi-
nates s and u, where s is the length along the line, 
and the  unit vector û is parallel to ∇F. It is ap-
parent that in the general case of the smooth and 

random field F(R), which is related to smoothness 
and randomness of ℰ, the line represents a closed 
non-self-intersecting curve (loop) with a  length 
determined by the  inhomogeneity characteristic 
Λ and frequency ω. First, consider a  certain do-
main du × ds adjacent to the curve. If the distribu-
tion of magnetoexcitons over the area S = 2πl2

B𝒩ϕ 
of the  light spot created by the  pumping laser is 
equiprobable, then the probability to find a CSFE 
within the  domain is (N/S)duds and the  contri-
bution of the  domain to the  sum in Eq.  (15) is 
( / )d (| |u)d d / | |N S s F u N s S Fδ∫ =∇ ∇ . Summating 
over all such domains we estimate the contribution 
of a  single loop to the  sum (15) as / | | N S FωL ∇ , 
where Lω is the loop length and | F | ∇  is the mean 
value along the  loop. It is natural to assume that 
at frequency ω corresponding to the  maximum 
of the  absorption signal the  largest contribution 
to the  (15) signal is provided by ‘standard’ loops 
(see the  discussion on electron-drift trajectories 
in a quantum Hall system presented in Ref. [14]). 
For those we estimate Lω ~πΛ', where Λ' is the lin-
ear characteristic of the  inhomogeneity for the

| ϕ=E ∇  | field, and, hence, Λ'~ Λ. A more delicate 
estimate shows that Λ'’ = k Λ, where k < 1. Indeed, for 

example, if it is assumed that 2 ( )ϕE ∇  and φ is 

a Gaussian random field, then 2 2| |  2( / )ϕ = ∆ Λ∇ , 
Δ describing potential amplitude ((


φ2)1/2. There-

fore, in this case 2 /∆ ΛE , and 1/ 2k  . 

By analogy we find 2| | / '∆ ΛE∇  and 
3| | / '2∆ ΛE∇ .

These estimates should be substituted into 
2 2 2

01 02 ~ / | – | | | /| | ( | –  ) ( ) | 4B BF l q q lβ α ε β α ε α+∇ ∇ ∇ . 
The  last step in performing the  summation in 
Eq.  (15) is calculation of the  total number of 
standard loops corresponding to the frequency ω. 
Intuitively, this number is γS/(πΛ′2/4) with 
the  factor γ ≃  1/4 for standard loops. Multiply-
ing it by the  contribution of one standard loop 
found above, we obtain an estimate for the  ab-
sorption rate ℛI = 𝒦IN, where 𝒦I is the ‘oscillator 
strength’:

𝒦I = 2π|A|2/ℏΦΔ. (26)

In this formula
2

01 02 2

2~| – | –1
2

B Bl lq q β β
α α α

∆ Φ +  Λ Λ 
.         (27)
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Since α, β and lB are inversely proportional to 
the square root of the magnetic field B, the oscilla-
tor strength (26) should grow with B.

3. Light absorption by coherent 
magnetoexcitons

The employed single-exciton approximation fails 
with growing magnetoexciton density n = N/S. We 
discuss the  dependence of oscillator strength on 
density n at the temperature which is certainly as-
sumed to be lower than the value that enables to 
consider the  incoherent magnetoexciton system 
as a frozen spatial chaos. Two scenarios of the in-
fluence of the inter-exciton interaction on oscilla-
tor strength may be assumed. The first represents 
a  gradual evolution: the  larger the  magnetoexci-
ton density is, the smoother the effective random 
potential becomes since the  increasing density 
apparently results in a larger effective correlation 
length Λ. Indeed, dipole momenta dqm (9) orient-
ed to minimise electrostatic energy should also 
create in the  2D space a  screening electric field 
reducing the external one. The absorption signal 
should grow with weakening of the random elec-
tric field ℰ ~ Δ/Λ (see Eqs. (26) and (27)).

In the other scenario that we consider in more 
detail the  oscillator strength increases abruptly 
at a  certain value of 𝑛  = 𝑛c. This increase can be 
explained by a  spontaneous rearrangement of 
the magnetoexciton system. We do not study the or-
igin and features of this ‘phase transition’ definitely 
related to the inter-magnetoexciton interaction and 
favourable for occurrence of a  coherent state. So, 
throughout this section as well as the previous one, 
we will stay within the  framework of a model ig-
noring the inter-magnetoexciton interaction.

We demonstrate how the  light absorption rate 
can be estimated within the framework of the mod-
el of a coherent state where a great number of mag-
netoexcitons belong to the same state, i.e. they have 
equal wave vectors. First, we consider a cluster with 
the area ℒ × ℒ (so that 𝒩ϕ = ℒ2/2πl2

B) where all N 
excitons in the cluster form a single coherent state. 
Now, instead of the initial state (10), we have

|Ñ〉 = (Q†
q)

N|0〉. (28)

The energy ENq of this state does not depend 
on any spatial fluctuations of the electrostatic field 

in the case of a large cluster size: ℒ ⨠ Λ. Indeed, at 
constant q the summation of electrostatic contribu-
tions lB(q× z) ∇φ(r) over the cluster area is reduced 
to the integration ∝ ∫ dr ∇φ(r) and thereby yields 
a zero result. However, if ℒ ≲ Λ, the electrostatic 
energy still contributes to EN,q. The squared norm 
of state (28) is calculated in the same way as it was 
done earlier in the case of q ≡ 0. The norm RN was 
first calculated for the  q  ≡  0 case in the  work by 
Dzyubenko and Lozovik [15]. The calculation was 
based on certain commutation rules for Q†

0-exciton 
operators. It can also be performed in a similar way 
based on the commutation rules for the Q†

q opera-
tors at arbitrary q (see the Appendix) and yielding 
the same formula. The result

RN = 〈Ñ|Ñ〉 = N!𝒩ϕ!/𝒩N
ϕ (𝒩ϕ – N)! (29)

does not depend on q. Now we find the  result 
of action of  𝒫 (see Eq.  (12)) on the  initial state: 
 𝒫|Ñ〉 = – AN χq|� N–1〉.Within our approximation, 
ignoring any inter-excitonic coupling, we consid-
er |fq〉 = χq|� N–1〉 as a final state that has a squared 
norm equal to RN–1 and energy EN–1q  +  Ev–e (see 
Eq. (22) for Ev–e), and thus calculate the transition 
matrix element squared

|MN|2 = |〈fq| 𝒫|Ñ〉|2/RnRN–1 ≈ |A|2N (30)

(the N ≪ 𝒩ϕ condition is used). This result is by 
factor N larger than |Mi|

2 found in the above calcu-
lation. Eq. (30) corresponds to the amplifcation by 
factor N (and thereby also amplified radiation in 
resonance-reflection optics) for systems of coher-
ent quantum oscillators (cf. spontaneous radiation 
by molecular gas [16]). However, the comparative 
absorbing capacity must again be estimated by 
calculating the  oscillator strength, and again we 
are forced to take into account the external ran-
dom field.

Indeed, according to Eq.  (22), the  energy of 
the  χq|0〉 exciton depends on the  field ℰ  (R). We 
divide the  cluster area ℒ  × ℒ into small domains 
parameterised by coordinate R, and therefore again 
consider ℰ(R) and ∇ℰ(R) within every domain 
as constant parameters. (The linear dimension of 
the  domain is assumed to be smaller than Λ but 
larger than lB.) Then the matrix element for transi-
tion resulting in creation of a χq|0〉 exciton within 
the  R-domain is determined by Eq.  (30) with N 
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replaced by ρdR. (ρ = N/ℒ2 to describe the CSFE 
density in the cluster considered to be constant.) 
Thus, the absorption rate represents a sum over all 
domains, i.e. integration over the 2D space:

2

II

, –1 – ,

2 | |

d ( – – )N N e

A

E E E

π ρ

δ ω

=

+∫ q q q







vR . (31)

Considering the  difference ENq–EN–1q–Ev–e(q,  R) 
within the domain (see Eq. (22) for Ev–e) we conclude 
that the first-order electrostatic terms lB(q× z) ℰ(R) 
compensate each other in the initial and final states, 
and therefore do not enter the difference. Now, how-
ever, the electrostatic contribution to the argument 
of the δ function in Eq.  (31) is related to the ∝ ℰ2 
terms in Eq. (22). The situation differs from the pre-
vious one in the replacement of field F(R) with field 
–ℰ2(R) (1/ω(e)

c    +  1/ω(h)
c)l2

B/2ℏ. Considering again 
the (u, v) local coordinate system (dR = dudv) we 
choose the  unit vector û directed along the  gradi-
ent ∇ℰ2(R). As a  result, estimating |∇ℰ2|  ~  Δ2/Λ′3 
and following Eq. (31), we find, first, the contribu-
tion of one ‘standard’ loop to the  absorption rate. 
And, finally, multiplying by the  number of stand-
ard loops within the  cluster ~  ℒ2/πΛ′2 (assuming 
ℒ ⨠ Λ), we find the contribution of the cluster to 
the absorption rate ℛII = 𝒦IIN, where the oscillator 
strength is

𝒦II ~ 2|A|2πω(h)
c (Λ/lBΔ)2 (32)

(considering that ω(h)
c <  ω(e)

c and Λ′ ≃  Λ/√
−
2). Thus, 

the enhancement of the absorption/reflection sig-
nal due to magnetoexciton clustering is 𝒦II/𝒦I. In 
the case where the first term in Eq. (27) is assumed 
to be larger than the second one we obtain

( )
c 01 02

II I
| – |/ ~

h

B

q q
l

ω β
α
Λ

∆
K K . (33)

Using the  actual experimental data  [6]: 
Δ/ℏω(h)

c  ≃  0.1, α/β  ≃  0.5, lB/Λ  ≃  0.2 and 
|q01 – q02| ≃ 0.1, we obtain the estimate

𝒦II/𝒦I ≃ 10.

So, when studying light absorption/reflection, 
we expect the amplification effect to be approxi-
mately by an order of magnitude in the  case of 

quantum transition between incoherent and co-
herent phases.

4. Long-distant Coulomb correlations in 
a slightly non-ideal magnetoexcitonic gas

Now, in contrast to the  previous sections, we will 
neglect any disorder but take into account a  weak 
inter-exciton coupling. So, considering our system 
in the ‘clean limit’, we will study deviation of an ac-
tual excitonic gas from the ideal state due to double 
exciton correlations. We will also ignore the proba-
bility of any essential change of Q†

qi|0〉 single exciton 
quantum states, including, for instance, formation of 
bi-excitons or dissociations into electron–hole pairs. 
It will enable us to find only a  small correction to 
the  single CSFE energy proportional to the  small 
but finite concentration N/𝒩ϕ. This first-order virial 
correction can be compared to the correction related 
to the smooth random potential studied above.

4.1. Double exciton state

Within the  first-order approximation in terms of 
a small parameter rs (1) the single magnetoexciton 
state Q†

q|0〉 diagonalizes the Hamiltonian ĤCoul (see 
Eq. (8)), but the double exciton state Q†

q1
 Q†

q2
|0〉 does 

not. The  latter is an ‘almost’ eigenstate. Indeed, we 
have

1 2 1 2 1 2

1 2

† † † †
Coul

† †
Coul

ˆ , | 0 ( ) | 0

ˆ[ , ], | 0 ,

q qH

H

  〉 = + 〉 
 + 〉 

q q q q

q q

Q Q E E Q Q

Q Q (34)

where the double-commutation term arises as a re-
sult of the magnetoexciton interaction. We empha-
sise that by calculating the commutators in Eq. (34), 
as well as in Eq.  (8), as part of our approximation 
approach, in the ĤCoul operator it is possible to keep 
only the  terms preserving the  cyclotron energy of 
the ket vector Q†

q1
Q†

q2
|0〉. This simplifies the calcula-

tion by changing from ĤCoul to Ĥ′
Coul (see Eq. (A7) 

for Ĥ′
Coul in the Appendix), so that the exciton–ex-

citon interaction results in

 ( )
( )

1 2

1 1

2 2

1 2

† †
Coul

i /2 i /2
00 11

i /2 i /2 † †
00 11 –

ˆ , ,
( ) e e

e – e ,

ee

H'
q h h

q
h h

φ

× ×

× ×
+

    
= −

×

∑
q q

q q q q
q q

q
q q q q

q q q q q q

Q Q



Q Q

  
(35)
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where functions h…q are given by Eq.  (A2) 
in the  Appendix. It is interesting that, unlike 
the  [Ĥ ′

Coul, Q
†
q] commutator that does not com-

mute with the exciton operator, the double-com-
mutator (35) commutes with any operator Q†

q. This 
means that triple, quadruple, etc. commutators 
are equal to zero. In order to find the first-order 
Coulomb correction to the energy, the state (35) 
should be projected onto the unperturbed double-
exciton state Q†

q1
Q†

q2
|0〉. Considering that

2 1 1 2

1 2 1 2

2 1

† †
,0

i ( – )/2 i( – ) /2

, –

0 | | | 0

e +e–

Q Q Q Q

φ

δ

δ

+ −

× ×

〈 〉 =

+

q q q q q q q

q q q q q q

q q q 

 (36)

(see Eq. (A8) in the Appendix) we obtain a correc-
tion to the double exciton energy Eq1 + Eq2 propor-
tional to 1/𝒩ϕ, namely:

2 1 1 2

† †
Coul

1 1 2 2 1 2

ˆ0 | , , | 0

[ ( , ) ( , )] / .

H

W W φ

  ′  
= +

q q q q

q q q q

Q Q Q Q


 

(37)

Here the  function W1(…) comes from the  sec-
ond Kronecker delta in Eq.  (36) (the first one, 
δq,0, yields a  zero contribution to the  result). 
Designating q2

12 =  |q1  –  q2|
2  =  q2

1 +  q2
2  –2q1q2cosΦ, 

we get

2
12

4
– /212 12

1 1 2
12

2 2 1 2
12

( )( , ) e
4

sin(4 – 2 )sin .
2

qee q qW
q

q qq


= 


Φ  +   

q q 

 (38)

The function W2(…) arises from the last term 
in Eq.  (36) and contains the  summation over q 
in accordance with Eq.  (35). The  summation is 
certainly converted to the integration that can be 
performed over the directions of vector q, then we 
arrive at

2

2 1 2

– /2 2
0 1 0 20

2 4
0 12

( , )

e d ( ){(2 – )[ ( ) ( )]

–(2 – / 4)[1 ( )]}.

q
ee

W

q q q J qq J qq

q q J qq

∞
= +

+ +

∫

q q



    (39)

This correction to the  double-exciton energy 
proportional to 1/𝒩ϕ appears because every mag-

netoexciton is localised within the  finite area 
2πl2

B𝒩ϕ. At first glance, the  found correction is 
found with a  ‘superfluous accuracy’, since single 
exciton energy is also determined only with ac-
curacy to the ~ EC/𝒩ϕ value. However, our result 
(37)–(39) appears only due to the exciton–exciton 
correlation and, hence, for N ⨠ 1 magnetoexcitons 
this correction becomes proportional to N2/𝒩ϕ 
(see the  next subsection), whereas the  error in 
the energy of N non-interacting excitons is ~ NEC/𝒩ϕ. 
Another feature of the  found correction is its fi-
niteness even if both momenta q1 and q2 become 
zero. This property of the  W2 value is related to 
the fact that the electron and effective hole form-
ing the studied magnetoexciton belong to differ-
ent Landau levels. Therefore, the magnetoexciton 
essentially changes the  orbital wave function of 
the 2DEG compared to the ground state even in 
the q = 0 case: in other words, the q = 0 CSFE hav-
ing no dipole moment still has a quadrupole mo-
ment. This feature distinguishes the  CSFE from, 
for instance, the  spin-wave exciton in the  v  <  2 
quantum Hall system, where the electron and ef-
fective hole belong to the same Landau level, and 
in the q = 0 case this excitation does not perturb 
the 2DEG orbital state.

For equal absolute values, |q1| = |q2| = q, the de-
pendence of the sum U(q, Φ) = W1 + W2 is shown 
in Fig. 1(a). So, the long-distance magnetoexciton 
interaction is actually attractive. There is a  deep 
minimum at Φ  =  0, i.e. in case magnetoexciton 
momenta are aligned along the  same direction. 
In Fig. 1(b) we also demonstrate the dependence 
of the  function V(p)  =  W1  +  W2, where the  mo-
menta are parallel but not equal, namely: Φ = 0, 
|q1| = q01 + p and |q2| = q01 – p with the fixed pa-
rameter q01 corresponding to the  minimum of 
the single-exciton energy dispersion Eq.

Note that in the  special coherent state with 
q1 ≡ q2 the result of calculation (37) must be divided 
by the  squared norm of the  state (Q†

q)
2|0〉, which 

is not unit now but equal to R2 = 2. This double-
exciton ‘coherent’ state is a dedicated point marked 
by closed dots in Fig. 1(a, b).

4.2. Multi-excitonic state. Virial correction to 
magnetoexciton energy

Now we study again the  |N〉 multi-excitonic state 
(see Eq.  (10)) with the  exciton number N that is 
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much smaller than 𝒩ϕ. This condition allows us to 
consider not only all q momenta to be different but 
the  momentum of any pair qi  +  qj different from 
any other pair momentum q′i + q′j. We introduce 
the notation

Q †i,κ = Q†
qi

 Q†
qi+1

…. Q†
qκ–1
Q†

qκ
,

where κ ≥  i and, besides, define that Q †i,i–1 = 1. In 
particular, |N〉 = Q †i,N|0〉. We present the action of 
operator ĤCoul as

(0)
Coul Coul

† † †
1, –1 Coul 1,

1

ˆ | |

ˆ[ , ] | 0 ,
N

i i i N
i

H N E N

H +
=

〉 = 〉

+ 〉∑ qQQ Q  (40)

where E(0)
Coul is the Coulomb part of the ground state 

energy. The summation in Eq. (40) is converted to

(41)
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∑

q

q q

Q

Q Q

Q Q

Q Q Q

In the  first approximation of the  interaction 
we can again change from ĤCoul to Ĥ′Coul, then find 
the first sum in Eq. (41),

1 2

† † †
1, –1 1, Coul

1

ˆ[ , ] | 0

( ... ) | ,

i

N

N

i i N
i

q q q

H

N

+
=
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= + + + 〉

∑ qQ

E E E

Q Q

   
            

 
 (42)

and present the  second sum containing double 
commutators as 

† † † † †
1, –1 1, –1 1, Coul

ˆ[[ , ], ] | 0 .
i ji i j j N

i j
H+ +

<

′ 〉∑ q qQ QQ Q Q  (43)

Sums with triple commutators and with com-
mutators of higher orders are absent as a result of 
vanishing (see above). Sum (43) with double com-
mutators contains ≈  N2/2 terms. In order to find 
the  appropriate contribution to the  total energy 
this sum should be projected to the |N〉 state. After 
a simple analysis based on the commutation alge-
bra of the exciton operators we find this projection 
in the  leading approximation in terms of a  small 
parameter –n = N/𝒩ϕ:

† †
Coul

ˆ– 2 | – 2 0 | , , | 0
j i ji

i j
N N H

<

  ′≈ 〈 〉   ∑ q q qq
Q Q Q Q .

Then dividing by the  norm 〈N|N〉 and using 
Eqs. (11) and (37) we obtain the sum of all the terms 
giving contribution of the inter-exciton interaction 
to the total Coulomb energy:

1 2
1 [ ( , ) ( , )].i j i j

i j
W W

φ <

+∑ q q q q


 (44)

This sum is of the order of N2Eq/𝒩ϕ. To find its spe-
cific value it is necessary to know the distribution 
of the qi vectors in the K-space determined by tem-
perature and smooth random potential. Let us con-
sider the simple case where temperature is equal to 
zero, and, hence, all qi have approximately the same 
absolute values, for instance, in the  vicinity of 
the  dispersion minimum q01, but simultaneously 
have an isotropic distribution of their directions. 
Then summation in Eq. (43) is reduced to averag-
ing over the angle Φ between qi and qj, ∑

N
i<j … = 

N(N – 1) ∫…dΦ/4π. Dividing this result by N, we ob-
tain the correction to the energy of one magnetoex-
citon proportional to the magnetoexcitonic concen-
tration –𝑛 = N/𝒩ϕ. So, if |q1| = |q2| = … = |qN| = q, 
the correction is 

Fig. 1. Functions U(q, Φ) and V(p) measured in units 
of e2/κlB (see the text). Both are calculated at the pa-
rameter d = 1 with the form factor given by Eq. (4). De-
pendence of U(q, Φ) on the angle Φ between q1 and q2 
is shown for the specific value q = |q1| = |q2| = 0.9 (a). 
Function V(p) = W1 + W2, where Φ = 0, is calculated 
for q1 = 0.9 + p and q2 = 0.9 – p (b). The ‘coherent’ case 
q1 ≡ q2 is marked by closed dots.

(a)

(b)

p
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Evir(q) = –𝑛[w1(q) + w2(q)]. (45)

Here

2

1 1 20

1( ) d ( , )
4

q W
π

π
= Φ∫ q q1w , (46)

where W1 is determined by formula (38) with 
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The function Evir(q)/–𝑛 = w1(q) + w2(q) calculated 
using the  form factor (4) with d  =  1 is shown in 
Fig. 2(a). Thus, for actual values 0 < q ≲ 1 the virial 
correction is negative.

Finally, we study the  correction for the  co-
herent state where all momenta are the  same, i.e. 
qi ≡ q. Again the condition 1 ≪ N ≪ 𝒩ϕ is con-
sidered to be satisfied. Generally, the  calculation 
scheme remains the same: the action of ĤCoul onto 
|Ñ〉 = (Q†

q)
N|0〉 results in the double commutation 

term

2
† –2 † †

Coul
ˆ( ) [[ , ], ] | 0

2
NN H ′ 〉q q qQ Q Q

(cf. Eq. (43)). Then by using Eq. (35) and projecting 
onto |Ñ〉 we obtain

2 2 2
00 11
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2

–2 cos( )] ,

ee

N

pN h h
p

h h P
φ

+

×

∑ p p
p

p p pp q




  

(48)

where

PNp = 〈Ñ|(Q†
q)

N–2Q†
q+pQ

†
q–p|0〉. (49)

In order to find the  correction to energy this 
expression has to be divided by the squared norm 
RN (29). The  analysis based on the  commutation 
rules for Q operators shows that under our condi-
tions 

PNp/RN = δp,0–𝒩ϕ
–1 (50)

(see the  Appendix). So, taking into account that 
h00 0 = h11 0 ≡ 1 and dividing expression (48) by RN and 
N we obtain a virial correction per one magnetoex-
citon in the condensate state, ~Evir(q) = –𝑛v(q), where 

2

0

– /2 2
0

2 4

( ) e d ( )[(1– / 2) ( )

–1 /2 – / 8].

p
eeq p p p J pq

p p

∞

=

+
∫ v

This is also negative, see Fig. 2(b).

5. Conclusions

In conclusion, we estimate the CSFE concentration 
–𝑛 responsible for failing single-exciton corrections 
related to the external disorder. It is obvious that 
the  interaction energy per one magnetoexciton 
calculated above should be compared to energy 
(21) holding the  magnetoexciton by the  smooth 
random potential. In the  incoherent state, if 
q ≃ 1, virial correction (45) is Evir ≃ –0.1–𝑛 if mea-
sured in e2/κlB units. Considering magnetic fields 
in the range B = 5–10, lB ≃ 10 nm, and assuming 
E ≃ Δ/Λ with Δ ≃ 0.5–0.8 meV and Λ = 50 nm, 
the comparison leads to an estimate for the criti-
cal concentration –𝑛c ≃  0.1 allowing excitation to 
escape from the  local energy minimum. Besides, 
according to our study, this concentration should 
be basically inversely proportional to the field B.

Fig. 2. Energies are measured in units of e2 = κlB and 
calculated at parameter d  =  1 with the  form factor 
given by Eq. (4). Virial correction in incoherent mag-
netoexcitonic gas  (a): Evir(q)/–𝑛  = w1(q)  + w2(q) (see 
the  text). Virial correction in the coherent state  (b): 
Evir(q)/–𝑛 = v(q).

(a)

(b)
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Thus, long-distant inter-excitonic correlations 
in a  nonideal magnetoexciton gas are attractive, 
which should certainly contribute to some ‘self-
organization’ of the system and to a transition from 
the incoherent to coherent phase. It is noteworthy 
that pair correlations are most significant for mag-
netoexcitons with co-directional momenta (see 
the Θ = 0 case in the results presented in Fig. 1). 
The effectively critical concentration for such exci-
tations becomes considerably lower than the value 
found above. As a result, we should expect the usu-
al pattern of transition through the  inhomogene-
ous intermediate state, namely, via formation of 
coherent phase embryos, domain clusters, etc.

We emphasise once again that our calculations 
valid only for a weakly nonideal gas, in principle, 
do not exclude a different scenario of appearance 
of a dense phase in the system: for instance, an en-
semble of bi-excitons or an electron–hole liquid 
may arise instead of a coherent state.
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Science Foundation for Basic Research: Grant 18-
02-01064. The author is grateful to I.V. Kukushkin 
and L.V. Kulik for useful discussions.

Appendix A
Excitonic representation (ER)

The general expression for the Coulomb Hamilto-
nian 

† †
Coul 1 2 1 2 1 2 2 1

1ˆ ˆ ˆ ˆ ˆd d ( ) ( ) ( – ) ( ) ( )
2

H U= Ψ Ψ Ψ Ψ∫ r r r r r r r r ,

where  Ψ(r) = Σnpσ cnpσψnp(r) (see Eq. (6)), can be re-
written in the form

 (A1)

Coul
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q p p
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q
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Here operators ap, bp, cp and dp are electron an-
nihilation operators cnpσ corresponding to binary 
indexes a, b, c and d where each designates both 
the Landau level number and the spin sublevel. For 
example, a = (na, σa). Factors

Vbdca(q) = [ℱee(q)/q]hnanb
 –qhncnd q

 δσa,σb
 δσc,σd

are expressed in the formfactor ℱee and the build-
ing block functions used in the ER technique 
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where 
i ( i )
2 x yq q q± = ± ±  and Lk

n are the Laguerre 

polynomials. For its part, expression (A1) can be 
presented in terms of excitonic Q-operators
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ab p q p q

p
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(note that Qabq ≡ Q†
ba–q). In particular, the Q-oper-

ator (7) used in the paper corresponds to indexes 
a = (0, ↓) and b = (1, ↑). ℬ†

0 in Eq. (A3) is the q = 0 
‘intra-sublevel’ operator:

–i† –1/2 † –1 †
/2 – /2e x

y y

q p
bb p q p q

p
Q b bφ φ +≡ = ∑q q B

(ℬq = ℬ†
–q). The Q-operators form the closed Lie al-

gebra with commutation rules
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For a  fixed pair of different indexes (a, b) we 
have

[Q†
abq1

, Q†
abq2

] = [Qabq1
, Qabq2

] ≡ 0,

where a ≠ b, and
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and
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In particular cases we get:

[Qabq, Q
†
abq] = 𝒜0–ℬ0 and

[𝒜0–ℬ0, Q
†
abq] = –2Q†

abq/𝒩ϕ. (A4)

As applied to integer quantum Hall systems and 
in case we are interested only in first-order Cou-
lomb corrections, only terms with 𝑛a + 𝑛c = 𝑛b + 𝑛d 
not changing the cyclotron energy have to be kept 
in the  general expression (A3) –  these are terms 
commuting with the Hamiltonian of non-interact-
ing electrons,
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
 

(A5)

Besides, it is always possible to further re-
duce the number of terms taken into account in 
the Coulomb Hamiltonian, which occurs on spec-
ifying the type of excitation under study. Consid-
erable simplifications appear in the  study of sin-
gle-exciton low-energy excitations in an integer 
quantum Hall system (see, for instance, the well-
known work [1]). The exciton mode is presented in 
the form Q†abq|0〉, where the a sublevel is considered 
as fully occupied and the b sublevel is completely 
empty (i.e. 𝒜q|0〉 = δq,0 and ℬq|0〉 = 0). The result is 
provided by the terms in Eq. (A3) non-commut-
ing with Q†abq and leading to states corresponding 
to the  same changes of cyclotron numbers δ𝑛  = 
𝑛b – 𝑛a and spin numbers δSz = σb – σa. Here we 
limit ourselves to the case where quantum num-
bers δn and δSz uniquely determine the only possi-
ble mode corresponding to this type of excitation. 
In other words, the only pair (a, b) is uniquely de-
termined. This condition is met for the  CSFE at 
the ν = 2 filling where δn = δSz = 1. Moreover, if 
δn = δSz = N > 1, we have the only realisation in 
the form of multi-excitonic states |N〉 or |Ñ〉. How-
ever, there are more complicated situations, for 
example: (i)  in the ν > 1 magnetoplasma modes, 
where δn = 1 and δSz = 0 [1], two (a, b) pairs are 
possible; (ii) in the ν = 1 CSFE, where δn = –δSz = 1 
(see [17]), the single-exciton approach is not suffi-
cient since the double-exciton mode with coupled 

magnetoplasma and spin-wave excitons becomes 
significant even in the first-order approximation. 
For the only pair (a, b) the Coulomb Hamiltonian 
terms that have to be taken into account are as 
follows: 

(A6)Coul
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For CSFE at ν  =  2 filling, where specifically 
a  =  (0,  ↓) and b  =  (1,  ↑), the  relevant terms to 
study our excitation or even a  magnetoexcitonic 
ensemble in the first-order approximation are

 (A7)
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where c represents the only sublevel: c = (0, ↑).
Finally, we present results of the  calculation 

of some mathematical expectations in the  case 
of an integer filling factor. For the  exciton state 
Q†

abq|0〉, where the  sublevel a of the ground state 
is fully occupied, but b is empty (i.e. 𝑛a  ≤  𝑛b), 
we have

〈0|Qa’b’q2
Q†

abq1
|0〉 = δa,a’ δb,b’ δq1,q2

.

The multi-exciton state

|N, ab〉 = Q†
abqN
Q†

abqN–1… Q†
abq1

|0〉,

when projected to another

|N', a'b' 〉 = Q†
a’b’q’N’

Q†
a’b’q’N’–1… Q†

a’b’q’1
|0〉,
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leads to a  non-zero result only if N  =  N', a  =  a', 
b = b' and q1 + q2 + … + qN = q'1 + q'2 + … + q'N. In 
particular, the four-Q operator expectation value is

(
2 1 1 2

2 2 1 1 1 2 2 1

1 2 1 2

† †
' '

, , ' , ' , ' , ' ,

, ' '

0 | | 0
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+ +
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= +

Φ
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
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where Φ = (q1′ × q1 + q2′ × q2)/2.
Formula (29) for the  squared norm RN can be 

proved for any state |Ñ, ab〉 = (Q†
abq)

N|0〉 by the tech-
nique of mathematical induction with the  use of 
commutation rules (A4). When calculating the PNp 
expectation (see Eq. (49)) by means of Eqs. (A4) we 
come to the recurrence relation

,0 –1

–1

12 –

( – 2)( – –1)

N N

N

P R

N N
P

φ

φ

φ

δ
 

=   
 

+

p p

p





,

where N ≥ 2 and P2p = 2(δp,0 – 1/𝒩ϕ). The substi-
tution PNp  =  2(δp,0  –  1/𝒩ϕ)(1/2  +  εN)RN results in 
a recursive relation for εN which we write out just in 
the N/𝒩ϕ → 0 limit: εN = εN–1(1 + 2/N)–1. The latter 
simple equation enables us to make the estimation 
εN < O(1/lnN) if N ⨠ 1, hence, in the 1 ≪ N ≪ 𝒩ϕ 
case we obtain formula (50).
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