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The growing precision of optical and scattering experiments necessitates a better understanding of the influence 
of damping onto the collective mode of sheet electrons. As spin-polarized systems are of particular interest for spin-
tronic applications, we here report spin-sensitive linear response functions of graphene, which give access to charge- 
and spin-density related excitations. We further calculate the  reflectivity of graphene on an SiO2 surface, a  setup 
used in s-wave scanning near-field microscopy. Increasing the partial spin-polarization of the graphene charge car-
riers leads to a significant broadening and shift of the plasmon mode, due to single-particle interband transitions of 
the minority spin carriers. We also predict an antiresonance in the longitudinal magnetic response function, similar 
to that of semiconductor heterostructures.
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1. Introduction

Although the existence of purely two-dimensional 
(2D) materials is prohibited by long-range thermal 
fluctuations [1], in 2004 Geim and Novoselov [2] 
produced monoatomic thin graphite layers, now 
famous as ‘graphene’. (Anharmonically coupled 
streching/bending modes [3–5] prevent the insta-
bility; the resulting rippling is avoided by placing 
the  sheet on a  flat support material.) Graphene’s 
honeycomb structure implies many captivating 
properties, e.g. despite its thinness, a mechanical 
strength 200 times that of steel. The large carrier 
mobility results in excellent thermal and electric 
conductivity, dynamically tunable by chemical 
doping or an applied gate voltage [6]. Doubtless, 
graphene is a promising candidate for high-speed 
and optoelectronic devices [7, 8].

In addition, graphene holds the most intriguing 
potential for spintronic applications: the spin–orbit 
coupling (SOC) allows the  development of appli-
ances where, due to their interplay, spin and charge 
currents can be manipulated simultaneously, offer-
ing the perspective of novel logic and memory de-
vices. Clearly, this requires a  thorough theoretical 
understanding of graphene’s spin-resolved proper-
ties. Of particular interest is the collective behaviour 
of the  charge carriers: effective, spin-dependent 
interactions and correlations between the  charge 
carriers (electrons or holes) have manifest finger-
prints in the  excitation spectrum, accessible ex-
perimentally. Specifically, light scattering from sur-
faces using scanning near-field optical microscopy 
(s-SNOM) has provided accurate data on graphene, 
pioneered by Fei et al. [9] in the mid-infrared, and 
later extended to the teraherz range [10, 11].
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Graphene’s valence- and conduction-band en-
ergies touch at the 6 corner points of the Brillouin 
zone (BZ). Half of them are equivalent (as two 
atoms are in the  unit cell), and referred to as K 
and K' points. In their vicinity electrons and holes 
behave as massless Dirac fermions [12] with a lin-
ear energy dispersion, contrary to the  quadratic 
one of conventional 2D electron liquids (2DELs) 
in semiconductor layers. The single-particle exci-
tations then form continua (‘particle-hole bands’, 
PHBs) with linear boundaries; they offer promi-
nent decay channels (‘Landau damping’  [13]) 
for the plasmon. The vanishing gap brings about 
another crucial difference to the  standard inter-
face 2DELs: interband transitions lead to damp-
ing at much shorter wavelengths than the  intra-
band PHB. Consequently, graphene’s plasmon 
is much stronger influenced by a  spin polariza-
tion of the  system, because the  interband PHB 
edge is drastically decreased with increasing spin 
imbalance.

Experimentally, 2DELs with a different amount 
of ↑ and ↓ spins have been realized (various 
meth ods being reviewed in  [14]). For such sys-
tems a long-lived ‘spin-plasmon’ (the longitudinal 
magnon) was predicted [15]. Placing such a spin-
imbalanced 2DEL between coupled (spin-torque) 
nanomagnets would enable tuning of their cou-
pling via controlling the  spin populations. With 
the  prominent electron layers realized in GaAs–
GaAlAs heterostructures this intriguing idea does 
not work, as correlations lower the spin-plasmon 
peak [16].

In graphene, where the  touching Dirac cones 
imply a  richer excitation spectrum even in 
the simple linear-dispersion model, they prevent 
a  straightforward generalization of these predic-
tions. Therefore, it is highly interesting to study 
the effect from scratch. To the best of our knowl-
edge, the dielectric response of partially spin-po-
larized graphene has not yet been investigated. In 
this work, we derive the  partial Lindhard func-
tions from spin-sensitive linear response theory. 
For ease of reading, the spin density (∝ the mag-
netization’s z component) in this context is simply 
referred to as ‘spin’, i.e. ‘spin–spin response’ stands 
for ‘spin-density  –  spin-density response’. We 
performed the  first Random Phase Approxima-
tion (RPA) calculations for single-layer graphene 
with a  spin imbalance, and present results for 

the density–density (or charge–charge) response, 
the spin–spin response, as well as for the density–
spin response. The latter describes magnetic exci-
tations caused by electric perturbations and vice 
versa, resulting not from the  SOC but the  Cou-
lomb interaction and Pauli exclusion.

In addition, we apply our dielectric function to 
determine the  reflectivity of graphene on a  SiO2 
substrate as studied in s-SNOM experiments [9]. 
When, at a sufficiently high doping, the plasmon 
energy reaches that of optical phonons in the sub-
strate, the  coupling between the  modes causes 
the  dispersions to ‘repel’ each other. We investi-
gate how this is affected by a spin imbalance.

This work is organized as follows. We first 
address in Section  2 the  fundamental ambigu-
ity of defining a  collective mode’s precise loca-
tion if damping is significant. In Section  3, after 
briefly reviewing the energy bands and presenting 
the  spin-dependent formalism (3.1.), we derive 
the partial Lindhard functions for spin σ fermions 
(3.2.) and the  resulting RPA response functions 
(3.3.). The  reflectivity of spin-imbalanced gra-
phene on SiO2 is studied in Section 4, followed by 
a critical discussion of our results in Section 5. All 
calculations are done for zero temperature T = 0, 
the majority of spins are denoted without loss of 
generality as ↑.

2. Collective modes

Collective excitations of many particles are char-
acterized by their in-phase movement. Charge 
carriers in solids have additional degrees of free-
dom, e.g. a spin, and possibly a  ‘pseudospin’ due 
to different valleys (band structure minima with 
the  same energy at different points of the  BZ as 
in graphene’s K, K' points). In such multicompo-
nent systems, in addition to the overall collective 
mode of the density, various subspecies may oscil-
late with opposite phases. The  full density mode 
is the  plasmon (with an in-phase oscillation of 
all spins). The  longitudinal mode where ↑–spins 
collectively move against ↓–spins is referred to as 
the ‘spin-plasmon’ [15].

Long-lived collective excitations are mathe-
matically found from poles in response functions, 
equivalent to peaks in the scattering cross section. 
However, if damping and drag forces are present, 
their determination becomes ambiguous [17]. We 
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exemplify this for the  Drude model for classical 
charge carriers  [18]: ϵD(ω)  =  1  –  ω2

pl/ω(ω  +  i–η), 
with the  classical plasmon frequency ωpl and 
damping parameter –η ≡ ηωpl. Measurements [19] 
of the  graphene optical transmission and reflec-
tion coefficient are well described by this model 
with η = 0.007. From a spectroscopic perspective, 
the  plasmon is best defined  [20] as the  complex 
zero of the complex dielectric function ϵ(ω1 + iω2). 
In the Drude model damping shifts the observed 
mode towards lower energies ω1/ωpl = (1 – η2/4)1/2, 
with ω2 = η/2.

By contrast, scattering experiments (e.g. electron 
energy loss spectroscopy (EELS)  [21, 22]) probe 
the loss function Im ϵ–1(ω), proportional to the scat-
tering cross-section. Correspondingly, the plasmon 
is defined as a peak in the latter. For a small η the two 
definitions agree nicely, and, in addition, ω1 (the real 
part of the complex root of ϵ) is also very close to 
the zero of Re ϵ (a plasmon definition found in many 
textbooks).

With increasing wave vector q ≠ 0 the graphene 
plasmon enters the  interband single-particle con-
tinuum and gets highly Landau-damped. For large 
η, using the  appropriate definition for calculating 
the collective modes becomes crucial [17]. In Fig. 1, 
we show the real and imaginary part of the Drude 
loss function. While the maximum of Im ϵ –1

D (ω) is 
hardly effected by damping with η≲1, the zero of 
Re ϵD (ω) is significantly lowered.

This sensitivity on η shows the  importance of 
using the  appropriate definition for the  collective 

modes in spin-imbalanced graphene, where inter-
band damping is formidable. We therefore obtain 
the  plasmon from the  maxima in the  imaginary 
part of the response functions (condition of maxi-
mal dissipation [9]). Before presenting our results 
of these loss functions and that of the  influence 
of the  substrate, we briefly review the  linear re-
sponse theory for a  homogeneous and isotropic 
2DEL with linear energy dispersion, and derive 
the spin-resolved RPA response functions.

3. Spin-sensitive linear response theory

3.1. Energy dispersion near the Dirac points

The Pauli matrices σ� describe the particles’ behav-
iour in an applied magnetic field B, with �σz denot-
ing their orientation with respect to the given di-
rection. Similarly, two more Pauli vectors �τK and �τK', 
termed ‘pseudospin’, describe the states at K and K'. 
Single-particle energies εℓ

σ,τ,k are thus characterized 
by their band index ℓ, spin σ and pseudospin τ, and 
the 2D wave vector k. The latter is measured rela-
tive from K and K', respectively.

A thorough first-principles study of graphene’s 
band structure in the  presence of SOC was pre-
sented in Refs.  [23, 24]. Aiming at spintronics 
applications, a  large external (or ‘Rashba’) SOC 
induced by an external electric field or magnetic 
adatoms is desirable. Although giving rise to band 
splitting near the Dirac points, this gap is rather 
small  [23]. Therefore, using a  linear energy dis-
persion in vicinity of K and K' is a good starting 
point.

Denoting with μ the  chemical potential and 
measuring all energies with respect to the  Fermi 
energy μ(T  =  0) of the  undoped graphene (i.e. at 
the  meeting point of the  upper and lower Dirac 
cone), the single-particle Hamiltonian of a charge 
carrier with Landé factor 2 near K can then be ex-
pressed as [12]

‒̂�hσ,K ≡ �ĥK + �σz  μBBz – μ, (1a)

where μB is Bohr’s magneton and unity matrices are 
not spelled out explicitly. The pure graphene part, 
in a compact and in a matrix form, reads

�ĥK = ћυF p̂ . �τK = ћυF , (1b)

Fig. 1. The  real part of the  Drude dielectric func-
tion (left). The zero of Re ϵ(ω) decreases rapidly with 
the  damping rate η  =  –ηωpl. The  plasmon observed 
in EELS is at the  maximum of Im ϵ–1(ω) (right). 
The complex root of ϵ(ω) (a short line in the middle, 
marked ‘ℂ = 0’) is affected much less.

ω/
ω pl

Re ε(ω) Im ε–1(ω)

η = 0.2
η = 0.1
η = 0.05
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where υF ≈ 106 m/s [12] is the material constant and 
p̂ = ћ∇/i is the 2D momentum operator. A similar 
operator ĥσ,K' holds near K' (see Appendix A).

Both ĥK and ĥK' yield the same energy dispersion 
proportional k = |k| resulting in the eigenvalues of 
Eq. (1a):

ϵ ℓστ (k) = ℓћυFk + σμBBz – μ, (2a)

	 		≡ ℓћυFk – μσ. (2b)

The only effect of the  valleys being to contrib-
ute the  degeneracy factor gV  =  2 in summations, 
we therefore suppress this index in the  following. 
The dispersion (2) suggests the definition of spin-
dependent chemical potentials μσ as explained in 
Fig.  2. These determine the  maximal wave vec-
tors kσ

(μ)  ≡  μσ/ћυF for occupations with the  spin σ 
(the ‘Fermi wave vectors’ of each spin component). 
Without a magnetic field, in undoped graphene all 

μσ = 0 = μ, with no electrons in the conduction and 
no holes in the valence band. A system in B ≠ 0 has 
at least one μσ ≠ 0.

The density of charge carriers with spin σ in 
the  conduction and valence band determines μστ 
via the T = 0 Fermi distribution function f(ε) and 
the energies of Eq. (2):

.
 (3)

For the partial chemical potentials μσ there are 
eight different scenarios possible, corresponding to 
a system with the following properties:

1. undoped, paramagnetic: μ↑  =  0  =  μ↓, both 
spin-species have the same density �↑ = �↓;

2. undoped, partially polarized: μ↑ = –μ↓, �↑ > �↓;
3. n-doped, paramagnetic: μ↑ = μ↓ > 0, �↑ = �↓;
4. n-doped, partially polarized: μ↑  >  μ↓  >  0, 

�↑ > �↓;
5. n-doped, fully polarized: μ↑ > 0, μ↓ = 0, �↓ = 0;
6. p-doped, paramagnetic: μ↑ = μ↓ < 0, �↑ = �↓;
7. p-doped, partially polarized: μ↑  <  μ↓  <  0, 

�↑ > �↓;
8. p-doped, fully polarized: μ↑ < 0, μ↓ = 0, �↓ = 0.
In Fig. 2 these eight cases are depicted schemati-

cally. From diagrams 5 and 8 it is seen that in these 
cases interband excitations are possible with zero 
energy.

With hindsight to spintronic applications 
the spin-imbalanced doped cases are of major inter-
est. Without SOC, all the magnetic properties dis-
cussed here, in p- and n-doped graphene behave in 
exactly the same manner. Without loss of generality 
we therefore assume zero or no doping.

The total density now equals that of the  con-
duction band, and defines the  cut-off wave vec-
tor kμ as that of the paramagnetic system with this 
density (spin degeneracy factor gS = 2). The maxi-
mally occupied kμ,σ obeys analogous relations:

, (4a)

. (4b)

The polarization parameter ζ quantifies the spin 
imbalance in partially spin-polarized systems 
(–σ ≡ –σ denotes the opposite spin):

Fig. 2. Energy dispersions for all eight possible cases: 
undoped and doped graphene with paramagnetic, 
partially polarized and fully polarized settings. The left 
(green) cones depict the minority (or spin ↓) charge 
carriers, and the right (blue) cones show the majority 
(or spin ↑) ones. Consistent with Eq. (2), μσ(><)0 shifts 
the crossing point to lower (higher) energies.
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ζσ ≡ (�σ – �–σ) / �. (5)

Inverting this, one readily finds �σ = (1 + ζ)�/2 
and the relation of the partial Fermi wave vectors 
kμ,σ and energies μσ with those of the paramagnetic 
system

       ,
 (6)

We conclude this section with noting that 
in order to achieve a  finite density, an empiri-
cal cut-off parameter kΛ must be introduced for 
the  valence band such that the  number of states 
in the BZ is conserved [25]. In the area AP = 3a2/2 
(a = 14.2 nm [26]) of the primitive cell, each car-
bon atom contributes one p-orbital state to the va-
lence band (as well as another one to the conduc-
tion band). This corresponds to defining kΛ from 
the  density  as a  constant of 
the system. 

3.2. Partial Lindhard functions of graphene

The free polarizability (or ‘Lindhard function’) of 
graphene is given by [27] (where fσ

ℓ(k) ≡ f(εσ
ℓ(k)) are 

the Fermi functions)

 (7)

with a  small imaginary part in the  denomina-
tor ensuring causality, Ω denoting the volume, 
and |ϕσ

ℓ(k)〉 the eigenstates of the Hamiltonian in 
Eq. (1a) for the band index ℓ ∈ {C,  V}. The full 
density–density response function is obtained 
by .

In the  following, we successively present 
the  undoped and doped paramagnetic χ0  [27] 
and then derive the partially spin-polarized Lind-
hard functions. All quantities are given in re-
duced units, energies being measured in μ and 
lengths in kμ of the  paramagnetic 2D Dirac liq-
uid, in particular –q = q/kμ,  

–ω = ωħ/μ and –χ = μχ/�. 
The alert reader may notice that these appear to 
diverge in the  undoped system, where μ  →  0. In 
this case, any arbitrary ~μ and ~kμ with ~μ = ħvF 

~kμ de-
scribe the  same result. This reflects the  fact that 

χ0(q, ω) ∝	n/μ which both vanish, but at a finite 
ratio. The  chosen units allow meaningful com-
parisons of systems having different ζ by anal-
ogy with conventional 2DELs with parabolic 
dispersion.

A. Undoped system (μ = 0):
In the case of no doping, where all μσ = 0, the full 
free response reads [27]

 (8a)

or, in reduced units,

.
 

(8b)

The partial spin response is due to sym-
metry.

B. Doped system (μ ≠ 0):
A non-vanishing chemical potential μσ ≠ 0 changes 
the form of the response function dramatically to

,

 (9)

with

 (10)

and  arccosh(z). The  function F 
determines the structure of the response function 
in the (–q, –ω)-plane, the various arising regions char-
acterized by z± ≡ (2 ± –ω)/–q are shown in Fig. 3.

In a  spin-polarized system, the  response func-
tions of the constituents are rescaled with individu-
al Fermi wave vectors kμ,σ. Thus we get for the par-
tial response functions

    .  (11)

.

,

,
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The Fourier transform of the  Coulomb 
interaction expressed in reduced units is 

 
with the effective graphene 

coupling constant α. For a free standing graphene 
sheet it is given by [27] α = αgr = e2/4πє0ħvF ≈ 2.2 
and by α = αgr/κS(ω) in a surrounding with a di-
electric function κS(ω).

3.3. Spin-sensitive Random Phase Approximation

The observed excitations are determined by mutu-
ally dependent exchange and correlation effects. In 
the  RPA, particles react with the  free response χ0

σ 
(ensuring the  Pauli principle and thus accounting 
for exchange) to the effective electric and magnetic 
field in the probe; this mean field reflects the cor-
relations. Generalized RPA theories use refined ef-
fective interactions Vσσ' (q), various spin-dependent 
potentials having been introduced for the 2DEL [16, 
28–31]. The  generalized RPA response of multi-
component systems takes a matrix form [29]

χ = (1 – V · χ0)–1 · χ0. (12)

In the present case V = (Vσσ'), and χ0 =  (δσσ'χσ
0). 

Generalizing these potentials further to dynamic 
ones allows one to capture double plasmon excita-
tions [32, 33] and intrinsic damping. Except for ar-
tificial graphene [34–36], correlations here [37, 38] 
are well described by the ‘bare’ RPA, where all ma-
trix elements are the Coulomb potential VC(q).

We calculated the  density–density, density–
spin and spin–spin response functions, which can 
be obtained from Eq. (12):

, (13a)

, (13b)

. (13c)

From the  density–density response function, 
the dielectric function is obtained directly via

є–1
gr(q, ω) = 1 + VC(q) χnn(q, ω). (14)

As Im χnn is proportional to the dynamic struc-
ture factor, Im є–1

gr gives the  loss function of gra-
phene. How the  individual response functions 
of Eq.  (14) contribute to the  Raman spectrum 
in the  2DEL is nicely explained in  [22]. Anoth-
er major importance of their imaginary part is 
that they cause a  phase delay in the  response to 
external perturbation, thus giving rise to energy 
dissipation.

Our results for all three parts of graphene’s 
loss function are shown in Fig. 4 for a doped sys-
tem with μ = 1800 cm–1 and a spin-polarization 
of ζ = 0.5 (this means that n ≈ 1015 cm–2 and that 
75% of the  spins are ↑). The plasmon is clearly 
visible in all three response functions, display-
ing the  q -behaviour for long wavelengths. 
The  wave vector where it enters the  interband 
PHB is commonly referred to as qc, beyond qc 
the mode gets strongly Landau-damped [29].

We explicitly point out that both magnetic-
field related response functions, χss and χns, show 
a distinct lack of excitations above the plasmon in 
the minority interband PHB (a sign change in χns 
and a white region in χss). Due to the similarity to 
the 2DEL  [16, 39], we call it ‘magnetic antireso-
nance’ (mAR). It can be understood as follows. An 
external magnetic perturbation Bext leads to a fluc-
tuation in the  magnetization (or spin-density 
s(r)), which for ζ ≠ 0 due to the Coulomb coupling 
implies a fluctuation in the particle-density �(r) 
as well: δn = χ�s B

ext and δs = χss B
ext. The imaginary 

part of the response functions representing ener-
gy absorption, the vanishing of both, Im χss(q, ω) 
and Im χns(q, ω), prohibits magnetic dissipation at 
these wave vectors and frequencies (Re remains 
the finite). This phenomenon is similar to the well 
known Fano-resonance [40] and fundamental for 
a binary system (here, ↑ and ↓).

Fig. 3. Regions in the reduced (–q, –ω)-plane in which 
z+ (left) and z– (right) are positive (green), negative 
(blue), and where they exceed ±1.
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4. SNOM reflectivity

The basic principle behind s-SNOM is to illuminate 
the apex of a sharp cantilever above the sample, po-
larizing the tip. Due to its small curvature the re-
sulting local electric (dipole-)field is very strong. 
This near field then interacts with the  specimen 
and is backscattered, sensibly changing, in turn, 
the  amplitude and phase of the  reflected light far 
away from the sample. Background scattering from 
both, the tip and the surface, is deduced by vibrat-
ing the cantilever and demodulation of the detect-
ed signal. The method provides a high spatial reso-
lution, probing wavelengths largely independent of 
the illumination.

With s-SNOM, density waves can be induced 
and observed at much larger wave vectors com-
pared to other optical means, q >> 1/λlight. The acces-
sible q are in the order of the inverse of the cantile-
ver tip radius a.

The s-SNOM signal strongly depends on the op-
tical properties of the  sample, with contributions 
from the  substrate as well as from the  graphene 
sheet. The  reflectivity for the  P-polarized light of 
the supporting material with dielectric function κS 
is approximated as

. (15)

Here, we use the results measured by Fei et al. [9], 
where we performed the  least square fit (see Ap-
pendix B for details). Placing a graphene sheet onto 
this substrate changes its reflectivity to

 (16)

with graphene’s dielectric function ϵgr given in 
Eq. (14).

The dipole moment 𝑝D induced in the  tip 
is caused by the  local field composed of both, 
the external one as well as the backscattered field 
of the  sample (typically described by an image 
dipole). Denoting the polarizability as α, this im-
plies that 𝑝D = αE0 + G𝑝D. Here, the function G for 
the single-dipole approximation gets relevant. For 
the cantilever tip at distance d it reads [41, 42]

 (17a)

, (17b)

with I~d ≡ 1/4~d3 and where all lengths are now con-
veniently measured via the  tip-radius: ~k	 ≡  q  a 
and ~d  ≡  d/a. In Eq.  (17) the  reflectivity rP is ba-
sically averaged with the  distribution function 
g~d(

~k)  =  4  ~d3~k2  exp(–2kd) which has its maximum 

Fig. 4. The negative imaginary part of the response functions χnn, χns and χss for spin polarization ζ = 0.5, in 
the (q, ω) plane (right), as well as at the experimentally accessible wave vector, q0 ≈ 0.62kμ (left). The styles of 
the vertical q0 lines match those of the same function in the left plot. The q0 plasmon (‘plsm.’), having entered 
the  interband PHB, is strongly Landau damped. The magnetic antiresonance (mAR) [39] is the prominent 
curved white region in the rightmost panel; the corresponding dark-blue dash-dotted curve has a distinct gap 
around ω ≈ 1.5μ, and the green dashed curve becomes zero there.

ω/
m

Im c/mn–1 q/km q/km q/km

–Im cnn
–Im cns
–Im css

–Im cnn –Im cns –Im css
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at kmx = 1/d. Consequently, G(ω, d) is dominated by 
rP(1/d, ω).

In s-SNOM, the cantilever is typically operat-
ed in the tapping mode. To improve the signal to 
noise ratio, the measured signal s is proportional 
to the third order demodulation integral

 
   (18)

with the time periodic distance d(ϕ) = d0 + d1cos(ϕ). 
This turns into the sum over all residues in the unit 
circle of

, (19)

with the  analytically continued distance 
. Therefore, the measurement 

is determined by the poles of fs(z), i.e. the zeroes 
of 1  –  G(ω,  d(z)). Approximating the  function 
g~d(

~k)  ≈  δ(1/~d–~k) leads to a  better understand-
ing of these singularities. For the  free stand-
ing graphene sheet, –κ = 1, the poles are given by 
єgr(1/d, ω) = 1/(1 – a3/4d3). This shows that both, 
the  distance and tip radius, significantly influ-
ence the measured signal s3(ω), so that recover-
ing the  exact plasmon position from the  mea-
sured signal is highly non-trivial. Much more 
promising is to evaluate s3(ω) numerically from 
the model rP(q, ω) with Eqs. (16)–(18), and then 
compare with the measured data.

We calculated the  reflectivity rP of graphene 
on SiO2 for the  experimentally investigated para-
meters [9]. The minority PHB interband edge, lower 
for higher spin polarization ζ, causes the  plasmon 
peak, narrow at ζ = 0.0, to get both broader and shift-
ed downwards until one can no longer distinguish 
a  well-defined collective mode. This picture also 
nicely demonstrates how the plasmon and the opti-
cal SiO2 modes repel each other due to the coupling 
between graphene and substrate in Eq. (16).

Fig. 5. The reflectivity rp of graphene on SiO2 for zero, partial and full polarization (ζ = 0.0, 0.5 and 1.0, respec-
tively). As in Fig. 4, the left part shows cuts at q0 = 0.62kμ, a typical wave vector for s-SNOM with a tip radius of 
a ≈ 30 nm. The doping level of the graphene sheet corresponds to μ = 1800 cm–1.

Fig. 6. The imaginary part of G(ω, d = 0.85a), Eq. (17), 
for different spin polarizations ζ (red solid lines) for 
graphene on SiO2. For low ζ the plasmon is prominent; 
larger ζ lead to its shift towards lower energies and rig-
orous damping. The  narrow (blue dashed) left peak 
corresponds to an optical mode of the substrate with-
out graphene. All parameters are the same as in Fig. 5.
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For a  mean doping level of μ  =  1800  cm–1, 
s-SNOM is sensitive to wave vectors of typically 
0.62kμ. Results for different spin polarizations ζ 
are shown in Fig. 6 for a tip radius of a ≈ 30 nm.

At a polarization of ζ = 0.6 the plasmon mode 
gets strongly damped, as seen in the dipole inter-
action function G(ω, d) in Fig. 6. Thus, no collec-
tive behaviour can be observed anymore.

5. Conclusions

We have calculated the RPA linear response func-
tions of spin-imbalanced graphene, for a  free-
standing sheet as well as on a  silicon oxide sub-
strate. Similar to the  partially spin-polarized 
2DEL, graphene also displays a magnetic anti-res-
onance at ωmAR(q). Along this characteristic line in 
the  spectrum, an external magnetic field cannot 
cause excitations visible in scattering experiments: 
Im χss and Im χns, describing spin–spin fluctua-
tions and spin–density fluctuations, respectively, 
both vanish. While Im χns, containing the  infor-
mation on cross-correlations between charge and 
magnetization, just changes its sign, Im χss is es-
sentially zero in a  rather broad ω region over 
a wide q range. Interband longitudinal spin excita-
tions (i.e. particle-hole excitations of the minority 
spins with no spin-flip) are drastically suppressed 
and can no longer contribute to dissipation 
there.

Compared to the 2DEL [39], graphene’s mAR 
shows several similarities. First, the  intensity of 
the spin–spin and the density–spin loss function 
vanishes at exactly the same (q, ω) combinations, 
underpinning the  term mAR. Second, this effect 
occurs in the PHB of the minority spin electrons, 
and, third, it starts exactly where the  plasmon 
starts to be strongly damped: this demonstrates 
that the  coupling between the  collective mode 
and individual particle-hole excitations is respon-
sible for transferring the oscillation energy from 
one spin species to the other. However, the mAR 
in graphene lies at energies above the  plasmon, 
resulting from the  fact that interband excita-
tions are the  dominating damping mechanism, 
in contrast to the  intraband Landau damping in 
the 2DEL.

The conventional plasmon enters the  inter-
band PHB at the critical wave vector qc. Increasing 
the spin polarization ζ lowers the minority inter-

band edge and consequently also qc, leading to an 
earlier Landau damping. This shifts the collective 
mode to lower energies and causes an intense 
broadening. This drastic reduction of the lifetime 
and mean free path of the collective mode opens 
the door for spin-controlled plasmon transistors. 
In its working point, the  paramagnetic on-state 
has almost no mode damping, whereas in the fully 
polarized off-state the plasmon is thoroughly hin-
dered.

At finite wave vectors, the  dispersion can be 
observed with s-SNOM, in contrast to other opti-
cal setups, restricted to q ≈ 0. In order to test our 
results experimentally, we therefore applied our 
theory to the  Fresnel coefficient of P-polarized 
light. This reflectivity rP(q, ω) is a key quantity en-
tering the dipole interaction function G(ω, d) in 
s-SNOM. We here predict that the plasmon peak 
is lowered by ~30% from the paramagnetic value 
at ζ ≈ 0.6 and that it will no longer be observable 
for spin polarizations exceeding this value.
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Appendix A 
Hamiltonian in both Dirac cones 

In the close vicinity of the K' points the pseudo-
spin matrix  is replaced by  . 

The different sign of the x component can be used 
to define the valley quantum number τ = ±1 and 
thus to write the matrix of the Hamiltonian in 
Eq. (1b) as

, (A1)

in order to treat the two points of the BZ simulta-
neously. For better clarity, in addition to their nu-
meric values ±1, we also use the following labels to 
distinguish the quantum numbers

σ ϵ {+1, –1} = {↑, ↓} spin,

τ ϵ {+1, –1} = {+, –} valley,

ℓ ϵ {+1, –1} = {C, V} band.
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Appendix B  
Dielectric function of silicon oxide 

Using the measured dielectric function of SiO2 ob-
tained by Fei et al.  [9, 43] we performed the  least 
squares fit for these data to the analytic form

 
(B1)

with ϵ∞ = 1.85. ϵstat = 2.27, and g1 = ϵstat – ϵ∞.

Table 1. Coefficients of Eq. (B1) for the SiO2 bulk sub-
strate (in spectroscopic units: cm–1 for ωi and Γi)

i 1 2 3
gi 0.029 0.034
ωi 1072 845 1237
Γi 29.9 49.8 147
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