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A new harmonic oscillator (HO) expansion method for calculation of the non-relativistic ground state energy 
of the Coulomb non-identical three-particle systems is presented. The HO expansion basis with different size para-
meters in the Jacobi coordinates instead of only one unique oscillator length parameter in the traditional treatment is 
introduced. This method is applied to calculate the ground state energy of a number of Coulomb three-particle sys-
tems for up to 28 excitation HO quanta. The obtained results suggest that the HO basis with different size parameters 
in the Jacobi coordinates could lead to significant increasing of the rate of convergence for the ground state energy 
than in the traditional approach.
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1. introduction

The consistent first principal theoretical descriptions 
of the  many-particle quantum systems are not yet 
able to perform calculations with a  larger number 
of particles due to the  space and speed limitations 
of current computational facilities. The well-known 
representatives of the  methods that provide a  uni-
versal way of describing the many-particle quantum 
systems are based on the  Faddeev  [1], Faddeev–
Jakubovsky  [2], functional-differential equations 
approach  [3], and quantum Monte Carlo calcula-
tions [4] or on the expansions in an appropriate basis, 
like the harmonic oscillator (HO) functions  [5–7]. 
The principle of translational invariance is particu-
larly important for an adequate theoretical formal-
ism. For example, the bag model with the centre-of-
mass motion corrections that are taken into account 
can provide sufficiently good predictions for mag-
netic moments of baryons [8].

This paper is devoted to the  development of 
the HO expansion method which is widely used in 
the  nuclear  [9] and hadronic physics  [10] calcula-
tions. The main advantage of the HO expansion is to 
allow systematic computations of all matrix elements 
of interest [11]. Another distinct feature of the HO 
basis that greatly reduces the complexity of calcula-
tions is its exceptional property to ensure transla-
tional invariance in finite subspaces (i.e. complete 
Nћω spaces) formed with transition to intrinsic co-
ordinates [12]. On the other hand, one of the major 
drawbacks of the HO expansion method is its slow 
rate of convergence for Coulomb-type long range in-
teraction potentials. Therefore, the further progress 
in application of the HO expansion method for cal-
culation of the many-particle quantum systems and 
particularly taking into account the Coulomb-type 
interactions should be supported by development 
of new significantly more effective calculation 
techniques.
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The purpose of the present paper is to consider 
the  first-principles approach, based on an expan-
sion of the  wave function in the  HO functions 
with different size parameters (oscillator lengths) 
in the  Jacobi coordinates for handling the  non-
relativistic ground energy calculation problem of 
the  Coulomb three-body systems of three distin-
guishable particles. By contrast, the traditional ap-
proach actually provides only one unique oscillator 
length for all Jacobi coordinates. Recently, the HO 
basis with two intrinsic scales has been applied for 
evaluation of the ground state energy of a number 
of Coulomb three-body systems with two identical 
particles for zero HO excitation energy and shows 
a  significant advantage over the  traditional HO 
basis expansion [13]. It seems that intrinsic coor-
dinates accompanied with individual variational 
size parameters are more adapted to better grasp 
the physical contents of the quantum systems.

The three-particle systems subjected to the Cou-
lomb interaction are very abundant in the  nature 
and are of great interest in many branches of phys-
ics: molecular, atomic, nuclear and hadronic phys-
ics among others. For example, μ−d+t+ is known to 
catalyse nuclear fusion at room temperature  [14]. 
Another important example is about the recently ob-
tained discrepancy between different determinations 
of the proton radius, which initiated consideration of 
the weakly bound three-particle systems such as e–μ–p+ 

and μ–p+p+  [15]. The  investigation of the  three-par-
ticle Coulomb systems are of topical importance to 
the quantum chemistry community as well [16, 17].

It should be noted that there exists a lot of differ-
ent techniques for non-relativistic calculations of 
the  three-particle Coulomb systems. The  analyti-
cal methods are acknowledged for their predictive 
character and yield simple wave functions (usually 
possessing some of the correct functional proper-
ties), but, on other hand, demonstrate a rather mod-
est accuracy (see, e.g. [18] and references therein). 
The exponential expansion based variation meth-
ods may produce highly sophisticated wave func-
tions, built with a large number of basis functions, 
and lead to very accurate energies the precision of 
which may exceed 35 significant digits, i.e. yield 
numerical solutions to the  Schrödinger equation 
hereafter named “exact” [19]. However, in spite of 
very accurate results, the  wave functions in these 
types of calculations are constructed mostly by in-
tuition and have to be optimized each time for eve-

ry particular system of particles. This circumstance 
severely restricts the perspectives of this approach 
in application to systems with a  larger number of 
particles. Accurate solutions of the  Schrödinger 
equation are therefore only available for the  sys-
tems with up to six particles [20].

This paper focuses particularly on the Coulomb 
interactions. The  motivations behind this choice 
from the  numerical point of view are twofold. 
First, since the convergence of the HO expansion 
for Coulomb-type potentials is extremely slow, 
the consideration of Coulomb systems may provide 
a  sensitive test of the  efficiency of the  proposed 
method. Another reason for choosing this type of 
potential is the  presence of essentially “exact” so-
lutions to the  Schrödinger equation of the  three-
particle Coulomb systems. Thus, the  accuracy of 
the method may be easily evaluated. To our knowl-
edge, the expansion method on the HO functions 
with different size parameters in the Jacobi coordi-
nates for calculation of the Coulomb non-identical 
three-particle systems has not been previously ap-
plied. The efficiency of the theoretical formulation 
has been illustrated by calculation of the  ground 
state energy of a number of Coulomb three-parti-
cle systems with non-identical particles. The results 
obtained in the basis with different sizes are com-
pared with the  ones calculated in the  traditional 
basis with the same oscillator length for each Jacobi 
coordinate and with those given in the literature.

The structure of this paper is as follows. The de-
tails of the formalism are presented in the next sec-
tion. In Section 3 we present the results of the ground 
state energy calculations for a number of three-par-
ticle atomic and molecular systems. Finally, the con-
cluding remarks are given in Section 4.

2. method

The non-relativistic Hamiltonian for the confined 
Coulomb non-identical three-particle system, with 
masses m1, m2 and m3, and charges equal to Z1, Z2 
and Z3, can be written in terms of single-particle 
and two-particle operators
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where α is the  fine structure constant, and →ri 
is the  ith particle radius vector in the  labora-
tory reference frame. For correct treatment of 
the internal dynamics of a three-particle system, 
the translational invariant Jacobi coordinates are 
introduced:
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The reduced masses for these Jacobi coordinates 
will be defined by
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In this method, we introduce individual size 
parameters, one for each Jacobi coordinate (ex-
cept for the centre of mass coordinate) instead of 
only one unique size parameter in the traditional 
approach:

. (4)

Here bi are the dimensionless harmonic oscillator 
length parameters indicated with the index i = 1, 
2 of the reduced masses (3). These size parameters 
are defined by the usual expression

, (5)

where ωi are the  alternative well-used harmonic 
oscillator parameters with a dimension of angular 
frequency. Instead of these parameters it is con-
venient to introduce two new variational para-
meters γi allowing us to rewrite the intrinsic Ham-
iltonian in the dimensionless energy quantities:

. (6)

Finally, the  intrinsic three-body Hamiltonian 
can be represented in terms of the  dimensionless 
Jacobi coordinates, and in ћω2 energy units (these 
units provide the greatest simplification) as
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(7)

where ν12 = ν1/ν2. It should be noted that no simpli-
fying assumptions or approximations are made in 
the derivation of this Hamiltonian.

In order to avoid unnecessary recoupling of an-
gular momenta, we introduce the HO basis func-
tions of a three-particle system with the inner order 
of the vector coupling specified by the ket vector

|(η1λ1, η2λ2)λ12mλ12
〉. (8)

In this notation ηi is the  number of harmonic 
oscillator quanta and λi is the orbital angular mo-
mentum of the HO function depending on the ith 
Jacobi coordinate →ρi, here i = 1, 2. The λ12 and mλ12

 
are the  total orbital angular momentum and the 
magnetic quantum number of the vector coupled 
state, respectfully. It should be stressed that due to 
the Coulombic character of the interaction poten-
tial the formulae for calculation of ground state en-
ergies could not depend on the spins of particles. 
Therefore, spin functions are absent in the vector 
coupled basis functions of Coulomb three-particle 
systems. This circumstance significantly reduces 
the dimensions of Hamiltonian matrices and facili-
tates the computations.

The matrix element of the first kinetic energy term 
of the Hamiltonian (7) between the coupled three-
particle HO functions (8) may be evaluated applying 
the usual Racah technique [21] (see details in [13]):

 (9)

The matrix element of the second kinetic ener-
gy term of the Hamiltonian (7) may be derived in 
a similar way:
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(10)

Eventually, the  matrix elements of the  single-
body Coulomb term of the Hamiltonian (7) may 
be calculated along the  same lines as for kinetic 
energy terms:
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(11)

Here the integral on normalized radial HO wave 
functions is denoted by
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This integral may be computed most easily by 
direct numerical integration.

For calculation of the  expectation values of 
the  two-body Coulomb operators of the  Ham-
iltonian (7) we choose to express them in a  sin-
gle-body form. This may be accomplished by 
the orthogonal transformation to new Jacobi co-
ordinates:
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The same transformation to the new Jacobi co-
ordinates should also be performed for the  cou-
pled three-particle HO functions (8) in the matrix 
elements of the  two-body Coulomb operators. In 
the case of orthogonal transformations such a type 
of transition between wave functions may be ac-
complished by means of Talmi–Moshinsky brack-
ets [22]
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where εi and σi are the oscillator quanta and angu-
lar momentum quantum numbers for the ith Jacobi 
coordinate →yi, and i = 0,1. The first two-body Cou-
lomb operator of Hamiltonian (7) will depend only 
on one variable in the basis of new wave functions 
if the parameter d of the Talmi–Moshinsky brack-
ets assumes the form

. (15)

Then, the  denominator of the  first two-body 
Coulomb operator may be reduced:
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Here, the factor C1 is introduced:

. (17)

Now, the  matrix element of the  first two-body 
Coulomb operator may be simplified similarly as 
the single-body terms of the Hamiltonian (7) and 
finally takes the form
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where the  summation parameters are under 
restrictions: ε1  =  η1  +  η2  –  ε0; ε'1  =  η'1  +  η'2  –  ε0; 
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|σ0  –  σ1|  ≤  λ12  ≤  σ0  +  σ1; mλ12
  may take any al-

lowed value for the given λ12; (–1)η1 + η2 = (–1)η'1 + η'2; 
the  step of the  summation indices σ0 and σ1 is 
minus two due to the  relation ε  =  2n  +  σ be-
tween the number of harmonic oscillator quan-
ta ε, the  principal oscillator quantum num-
ber n  =  0,  1,  2... and the  quantum number of 
the  orbital angular momentum σ; (–1)λ1  +  λ2  = 
(–1)λ’1 + λ’2 = π =(–1)Nmax. The last relation contains 
the  parity π of the  coupled three-particle HO 
function (8), and the parameter Nmax that mea-
sures the maximal allowed HO excitation ener-
gy (the model space truncation parameter). In 
the computation of the Hamiltonian matrix we 
always consider all the basis states with a num-
ber of quanta less or equal to the given number 
Nmax (Σηi ≤ Nmax and Σεi ≤ Nmax). Actually, this is 
a usual prescription of the HO expansion meth-
ods. Similarly, the  second two-body Coulomb 
operator of the  Hamiltonian (7) will depend 
only on one variable in the new basis if the pa-
rameter d of the  Talmi–Moshinsky brackets 
will be

. (19)

Then the denominator of the second two-body 
Coulomb operator takes the form

 (20)

where the factor C0 is introduced:
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Finally, the matrix element of the second two-
body Coulomb operator acquires the form
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where ε0 = η1 + η2 – ε1 and ε'0 = η'1 + η'2 – ε1. The re-
strictions of other summation parameters coincide 
to that of (18).

3. results

In the  presented method the  ground state energy 
calculation process consists of a sequence of diago-
nalizations of the Hamiltonian (7) for different sets 
of the nonlinear parameters γ1 and γ2 while search-
ing for the set that minimizes its lowest eigenvalue. 
The  matrix of this Hamiltonian is calculated in 
the basis (8), truncated by a chosen maximal num-
ber of excitation HO quanta Nmax. Therefore, this 
minimum of the lowest eigenvalue with respect to 
nonlinear parameters obtained for each fixed Nmax 
will be called the ground state energy and denot-
ed thereafter as Emax. The  rate of convergence for 
the ground state energy will be evaluated as the rate 
at which the  sequence of Emax values approaches 
the  “exact” numerical ground state energy value 
with increasing of the  dimension of the  model 
space determined by the number Nmax.

Application of the  method developed in this 
paper for calculation of the  non-relativistic 
ground state energy Emax of the  Coulomb three-
particle systems with non-identical particles in 
the zeroth order approach, i.e. Nmax = 0, should be 
illustrated. In this case, the  Hamiltonian matrix 
has only one matrix element and the  variational 
procedure for the calculation of Emin is simplified 
to the minimization of a simple function with re-
spect to two nonlinear parameters. Due to the sim-
plicity of zeroth order computations they may be 
useful for a  quick evaluation of nonlinear vari-
ational parameters and the  ground state energy. 
The minimization procedure was implemented by 
our modified Golden section search method [23] 
alternatively for the  parameters γ1 and γ2. This 
method was chosen for its well-known stability 
and was applied for the  zero Nmax  =  0 as well as 
for higher excitations Nmax > 0. In the zeroth order 
approach, the single matrix element under mini-
mization takes the form
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It should be noted that in the zeroth order ap-
proach all quantum numbers of bra and ket states 
are equal to zero. 

The ground state energy for a  wide-range of 
the  Coulomb three-particle systems with distin-
guishable particles has been calculated. The  con-
sidered three-particle systems consist of the  fol-
lowing elementary particles: electron e, muons μ± 

and mesons  K±, proton  p, deuteron  d, tritium  t. 
We have used the  following internationally rec-
ommended masses of these particles as giv-
en by CODATA  [24]: me  =  0.510998918  MeV, 
mμ  =  105.65836668  MeV, mK  =  493.66  MeV, 
mp  =  938.272046  MeV, md  =  1875.612859  MeV, 
and mt = 2808.290906 MeV. The results of calcula-
tions for the zero order ground state energy Emin of 
the considered three-particle systems are presented 
in Table 1. It should be noted that in this method 
the  variational procedure splits the  partitions of 
particles into three groups concerning the  per-
mutation of their indices. For example, the  label 
m1{mi mj} denotes that in this formulae m1 should be 
equal to the mass of the lightest particle, m2{mi mj} 
means that m1 should be substituted by the mass of 

the middleweight particle, and m3{mi mj} assigns m1 
to the mass of the heaviest particle. In the case of 
a system consisting of a K meson, a deuteron and 
a  tritium, the  label m1{mi  mj} indicates that m1 is 
equal to the mass of K meson, m2{mi mj} means that 
m1 is equal to the mass of deuteron and m3{mi mj} 
designates that m1 is equal to the mass of tritium. 
The permutation of the second and third particles 
in the list does not have any influence to the vari-
ational procedure results. The charges on each par-
ticle were set as {Z1 = –1, Z2 = +1, Z3 = +1}, although 
reversing the  charges (in the  case of antiparti-
cles) would produce the  same eigenvalues due to 
the charge inversion invariance. According to this 
analysis, despite the highest values of the obtained 
ground state energies in the zeroth order approach, 
only the  partition m1{mi  mj} provides the  high-
est rate of convergence to the  “exact” values for 
higher excitations. The  calculation of the  ground 
state energy Emin with Nmax  =  0 for the  m2{mi  mj} 
and m3{mi mj} partitions produces the same mini-
mizing values of parameters γ1 = ∞ and γ2 = 182 
for all considered three-particle systems. This as-
ymptotic behaviour of the  energy when one of 
the nonlinear parameters is large may be used for 
a quick indication of an inadequate partition (not 
with the highest rate of convergence) in this meth-
od. The accuracy of the obtained zeroth order re-
sults for the  three-particle systems amounts only 
to 60–70% of the “exact” reference values [25–29]. 

Table 1. The ground state energies Emin (in eV) of the Coulomb three-particle systems with non-identical par-
ticles obtained for zero excitation HO energy (Nmax = 0). All ground state energies calculated for the m2{mi mj} 
and m3{mi mj} partitions of the particles have the same minimizing values of parameters: γ1 = ∞ and γ2 = 182. 
The “exact” numerical ground state energies of the three-particle systems are also indicated.

System
m1{mi mj} m2{mi mj}

Emin

m3{mi mj}
Emin

Eexactγ1 γ2 Emin

eμK [25] 189 6.66·104 –10.669 –11.537 –11.493 –16.035
epd [25, 26] 193 4.04·105 –10.274 –11.546 –11.543 –16.270
ept [25, 26] 191 4.85·105 –10.457 –11.547 –11.543 –16.271
edt [25, 26] 194 7.05·105 –10.184 –11.547 –11.546 –16.303
μKp [25, 27] 211 1.28·103 –1800.5 –2146.3 –1967.0 –2651.5
μKd [25, 27] 202 1.65·103 –1971.0 –2260.6 –1967.0 –2761.6
μpd [25, 28] 203 2.24·103 –1945.0 –2260.6 –2146.3 –2884.7
μpt [25, 28] 199 2.63·103 –2020.4 –2301.4 –2146.3 –2925.1
μdt [25, 29] 200 3.70·103 –1994.5 –2301.4 –2260.6 –3030.4

Kdt [25] 218 1.00·103 –7867.8 –9489.1 –8832.4 –11695
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This is significantly worse than in the case of two-
particle systems, where the accuracy of the zeroth 
order HO expansion results in about 80%  [30]. 
Since the least accurate mass value used is known 
to be 6 significant figures (K± meson), all energies 
are converged to the  same number of significant 
figures as well. The number of significant digits of 
nonlinear parameters was judged from the energy 
convergence behaviour and, due to its flat character 
at minimum, may contain only 3 significant figures 
to provide the chosen precision of energy conver-
gence.

The traditional approach based on the HO basis 
assumes that the  harmonic oscillator wave func-
tions have the same size (or the same scale) in all 
Jacobi coordinates. The proposed approach trans-
forms to the  traditional one with the  simple sub-
stitution γ1 = γ2 = γ. According to the obtained re-
sults, the minimal value of the zeroth order ground 
state energy of all considered three-particle systems 
calculated within the  framework of the  tradition-
al approach turns out to be infinitesimally small 
but positive. This illustrates a  distinct advantage 
of the  presented method over the  traditional ap-
proach for calculation of the  zero order ground 
state energy of the Coulomb three-particle systems 
with non-identical particles.

The performance of the developed method was 
examined by calculation of the  ground state en-
ergy of the chosen three-particle systems for up to 
Nmax = 28 excitation HO quanta. The rate of energy 
convergence for the m1{mi mj} partition is illustrat-
ed in Table 2 for the case of the Kdt system. The first 

two columns tabulate the  number of excitation 
HO quanta Nmax and the dimension of the corre-
sponding Hamiltonian matrix Hdim. The two col-
umns indicated by H(γ) present the ground state 
energies Emin calculated within the  framework of 
the  traditional approach and the  values of pa-
rameter γ chosen to minimize the corresponding 
ground state energy. Here the  dashes in the  row 
for the zero excitation HO energy indicate absence 
of meaningful physical results (the negative value 
of energy). The  next three columns indicated by 
H(γ1, γ2) display the ground state energies Emin and 
the values of nonlinear variational parameters, γ1 
and γ2, which give the lowest values of the corre-
sponding ground state energy.

The obtained results are in line with the well-
known fact that the  convergence of variational 
energy calculations of many-particle systems with 
Coulomb interaction in the HO basis is very slow. 
However, in general, the presented method dem-
onstrates an overall significant improvement in 
the  ground state energy calculation results com-
pared with the traditional approach.

As noted previously, our ground state energy 
calculation results depend on the chosen partition 
of the particles. The permutation of the particle in-
dices in the partition is equivalent to choosing dif-
ferent Jacobi coordinate sets for systems of three 
arbitrary particles [31]. So, the Jacobi coordinates 
introduced in this work (2) give a particular status 
to the first particle with respect to the other two 
particles. If the dimension of the basis would be 
infinite (Nmax = ∞), the choice of the partition would 

Table 2. The dependence of the ground state energy Emin (in eV) of the Kdt system for the partition m1{mi mj} on 
the number of excitation HO quanta Nmax. The minimizing values of parameters γ, γ1 and γ2, and the dimension 
of the Hamiltonian (7) matrix Hdim are also indicated. The “exact” numerical ground state ener’gy for the Kdt 
system is –11695 eV [25].

Nmax Hdim

H(γ) H(γ1, γ2)

γ Emin γ1 γ2 Emin

0 1 – – 218 1000 –7867.9
4 10 517 –4514.7 179 705 –10131
8 35 391 –7814.1 161 660 –10863

12 84 352 –9204.5 151 637 –11183
16 165 330 –9917.6 142 607 –11353
20 286 313 –10380 134 585 –11453
24 455 305 –10690 131 557 –11516
28 680 299 –10897 128 542 –11558
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be irrelevant. However, for the  truncated expan-
sion there exists a special partition (m1{mi mj} in 
our case), which gives better results. The  vari-
ational surfaces of the  ground state energy for 
each system also depend on the adopted partition. 
In Fig.  1 the  variational surfaces of the  ground 
state energy of Kdt system for the m2{mi mj} and 
m3{mi mj} partitions calculated with 16 excitation 
HO quanta (Nmax = 16) are shown. The obtained 
variational surfaces have the global minimum and 
the valley passing through the saddle point to an-
other valley that is sloping downward as the value 
of γ1 is increasing. Usually the global minimum is 

absent for these partitions if the number of excita-
tion HO quanta is not large enough. The depend-
ence of the variational surface of the ground state 
energy of Kdt system for the partition m1{mi mj} on 
the number of excitation HO quanta Nmax is shown 
in Fig. 2. The variational surface for the partition 
m1{mi mj} in general is similar to that for the parti-
tions m2{mi mj} and m3{mi mj}, except that γ1 and 
γ2 are swapping roles (the valley is passing along 
the  γ2 direction), the  global minimum is lower 
and the saddle point in this case is located signifi-
cantly higher and further away. For these reasons 
we chose to present the  variational surfaces for 

Fig. 1. Variational surfaces of the ground 
state energy of the  Kdt system at 
Nmax = 16 plotted against the nonlinear 
parameters γ1 and γ2 for the m2{mi mj} 
and m3{mi mj} partitions.

Fig. 2. Variational surfaces of the ground 
state energy of the  Kdt system at 
Nmax = 8, 12, 16 plotted against the non-
linear parameters γ1 and γ2 for the parti-
tion m1{mi mj}.
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the partition m1{mi mj} and the ones for the other 
two partitions in two different figures. The inves-
tigation shows that the variational calculation of 
the ground state energy of three-particle systems 
for different partitions gives converging ground 
state energy values when the dimension of the ba-
sis increases.

Table 3 illustrates the accuracy of calculations 
by computing the  ground state energy Emin for 
the  chosen Coulomb three-particle systems of 
non-identical particles with 28 excitation HO en-
ergy (Nmax = 28) and for the m1{mi mj} partition. 
The first column of this table indicates the symbols 
of the three-particle systems considered, the next 
two columns indicated by H(γ) contain the ground 
state energies Emin calculated within the  frame-
work of the  traditional approach and the  values 
of the  parameter γ chosen to minimize the  cor-
responding ground state energy. Here the dashes 
indicate absence of meaningful physical results 
(the negative value of energy). The next three col-
umns indicated by H(γ1,  γ2) tabulate the  ground 
state energies Emin and values of variable para-
meters, γ1 and γ2, which give the lowest values of 
the  corresponding ground state energy. The  fol-
lowing column shows the lowest energy threshold 
Eth of the  Coulomb three-particle systems under 
consideration (see below Eq.  (24)). The  last col-
umn presents the “exact” numerical ground state 
energies  [25–29]. The  obtained ground state en-
ergy calculation results for the considered three-

particle systems are on the average 1% higher than 
the “exact” reference values, however, significantly 
lower than in the traditional approach.

According to these calculation results, all 
the three-particle systems presented in Table 3 sat-
isfy the stability condition [16, 32], i.e. their ground 
state energy is below the  lowest energy thresh-
old defined as the  lowest ground state energy of 
the separate two-body subsystem

, (24)

where m1 denotes the  lightest particle and m3 is 
the heaviest particle of the three-particle system. 
Therefore, the  proposed method correctly gives 
the  bounding of the  ground state for these sys-
tems. The obtained results indicate that this meth-
od may be applied to the  studies of the  stability 
of the  three-particle systems except the  weakly 
bound ones.

The analysis of the bound state problem of Cou-
lomb three-particle systems with non-identical par-
ticles with the presented method shows its distinct 
advantages over the  traditional approach. First, 
the  ground state energies calculated with differ-
ent sizes in the  Jacobi coordinates are significantly 
lower than those calculated with only one size pa-
rameter for all Jacobi coordinates. Second, the pro-
posed method correctly predicts negative values 
of the  ground-state energies of all the  Coulomb 

Table 3. The ground state energies Emin (in eV) for the Coulomb three-particle systems with non-identical par-
ticles calculated for the m1{mi mj} partition and 28 excitation HO quanta (Nmax = 28). The minimizing values 
of parameters γ, γ1 and γ2, the lowest energy thresholds and the “exact” numerical energies of the ground states 
are also indicated.

System
H(γ) H(γ1, γ2) Eth Eexactγ Emin γ1 γ2 Emin

eμK [25] – – 108 1.59·104 –15.929 –13.592 –16.035
epd [25, 26] – – 103 1.09·105 –16.179 –13.602 –16.270
ept [25, 26] – – 104 1.20·105 –16.180 –13.603 –16.271
edt [25, 26] – – 102 2.11·105 –16.212 –13.603 –16.303
μKp [25, 27] 334 –2393.2 122 7.10·102 –2623.8 –2528.5 –2651.5
μKd [25, 27] 364 –2413.9 128 8.61·102 –2733.5 –2663.2 –2761.6
μpd [25, 28] 468 –2253.1 119 1.11·103 –2859.3 –2663.2 –2884.7
μpt [25, 28] 503 –2172.6 123 1.19·103 –2898.3 –2711.2 –2925.1
μdt [25, 29] 730 –1484.6 110 1.60·103 –3008.1 –2711.2 –3030.4
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three-particle systems considered. This is not 
the  case for the  traditional approach which may 
produce the unphysical positive ground state en-
ergies in the “molecular” limit, i.e. when the mass 
ratios of the lightest particle and the heaviest par-
ticle of the system are small.

4. conclusions

The present work introduces a  new treatment of 
the HO basis expansion method. Instead of only 
one unique size parameter in the  traditional ap-
proach, the  basis of the  HO functions with dif-
ferent sizes in the  Jacobi coordinates is applied. 
The  method is based on construction of a  com-
plete set of orthogonal and translational invari-
ant states for a  given number of the  HO quanta 
for Coulomb three-body systems of three distin-
guishable particles, without any approximation 
calculation of the  non-relativistic Hamiltonian 
matrix elements. This ensures the convergence of 
the variational procedure result (an upper bound 
to the exact eigenvalue) as the basis is increased. 
In this method, we choose to calculate the  two-
body Hamiltonian matrix elements by means of 
Talmi–Moshinsky brackets. Their use greatly sim-
plifies the  derivation of expressions of the  two-
body Hamiltonian matrix elements and, besides 
that, now these brackets may be calculated by 
a very fast computation procedure [22]. It should 
be pointed out that this approach is more numeri-
cally involved than the  traditional one. In this 
method two nonlinear variational parameters 
(two different oscillator lengths) in the Jacobi co-
ordinates should be optimized instead of the only 
one parameter of such a type. Nevertheless, since 
in this method the degrees of freedom are more 
adapted to the  physical content of the  system, 
a better energy may be expected by solving an ei-
genvalue problem with a smaller dimension and, 
as a consequence, in less overall time it can be ob-
tained. In fact, due to the  more appropriate de-
grees of freedom the method may be applied to any 
Coulomb non-identical three-particle systems, 
irrespective of the masses of the particles – even 
for very asymmetric ones (for example, one light 
and two heavy particles). Another advantage of 
the method is that it is particularly well suited for 
numerical minimization with respect to nonlinear 
parameters, since in this method the  variational 

energy surface was obtained to have only a global 
minimum and no local minima.

The efficiency of the method has been illustrated 
by calculation of the ground state energy for a large 
set of the  Coulomb non-identical three-particle 
systems. It has been found that variational calcula-
tions of the  ground state energy of these systems 
using the proposed method converge much faster 
than the  traditional method with only one oscil-
lator length. For example, in the case of zero HO 
excitation energy this method correctly produces 
the negative value of the ground state energy for all 
considered systems in contrast with the traditional 
approach, which is unable to provide the negative 
energy in zeroth order calculations for any of these 
bound systems. For very asymmetric systems (with 
an electron as the  lightest particle) the  energy of 
the  ground state calculated in the  traditional ap-
proach remains positive even up to 28 excitation 
HO quanta. Therefore, for systems with a molecu-
lar character the second nonlinear variational pa-
rameter is vital for a reasonable convergence.

In this method only the systems of non-identi-
cal particles are considered. Hence in these calcu-
lations nonantisymmetrized basis (8) can be used 
unlike the previously published method, which was 
devoted to the development of the HO expansion 
method for the  Coulomb three-particle systems 
with two identical particles  [13]. From the  nu-
merical point of view, the  method for the  three-
particle systems with two identical particles results 
in more complicated expressions for matrix ele-
ments of the  intrinsic Hamiltonian as in the  case 
of non-identical particles. On the  other hand, 
the  intrinsic Hamiltonian for the  system of three 
non-identical particles has two two-body Coulomb 
terms instead of only one two-body Coulomb term 
in the method for the  three-particle systems with 
two identical particles. Actually, both methods are 
quite comparable in their convergence rate and in 
the  computation time of the  ground state energy 
for Coulomb three-particle systems. The formulae 
of the  presented method do not have any under-
lying assumptions related to Coulomb systems. 
The  Coulomb interaction potential may be used 
with virtually any two-body potential. This could 
greatly improve the  Coulomb interaction evalu-
ation results and considerably increase the rate of 
convergence of the HO basis expansion in hadron-
ic, nuclear and molecular physics applications.
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Naujos harmoNiNio osciliatoriaus bazės taiKymo galimybės 
sKaičiuojaNt KuloNiNės trijų NetapatiNgų dalelių sistemos 

pagriNdiNės būseNos eNergiją

A. Deveikis

Vytauto Didžiojo universitetas, Kaunas, Lietuva

santrauka
Pasiūlytas naujas harmoninio osciliatoriaus (HO) 

bazės taikymo metodas skaičiuojant kuloninės trijų ne-
tapatingų dalelių sistemos nereliatyvistinę pagrindinės 
būsenos energiją. Skirtingai nei tradiciniuose HO bazės 
taikymuose, naudojančiuose tik vieną variacinį oscilia-
torinį parametrą, įvesti skirtingi variaciniai parametrai 
kiekvienai vidinei Jakobi koordinatei. Pateikto metodo 
veiksmingumas pademonstruotas apskaičiuojant eilės 

trijų netapatingų dalelių sistemų pagrindinių būsenų 
energijas iki 28 HO sužadinimo kvantų skaičiaus. Re-
zultatai palyginami su įvertinimais, gautais naudojant 
tradicinę HO bazę, ir kitų autorių duomenimis. Mato-
me žymų siūlomo metodo privalumą, palyginti su tra-
dicinio HO bazės taikymo galimybėmis, skaičiuojant 
kuloninių trijų netapatingų dalelių sistemų nereliaty-
vistines pagrindinių būsenų energijas.
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