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We analyze the influence of high-frequency current stimulation on spontaneous neuronal activity and show that it may cause
a death of spontaneous low-frequency oscillations. We demonstrate the universality of this effect for typical neuron models such
as FitzHugh-Nagumo, Morris-Lecar, and Hodgkin-Huxley neurons as well as for the normal form of the supercritical Hopf
bifurcation. Using a multiple scale method we separate the solutions of the neuron equations into slow and fast components and
derive averaged equations for the slow components. The mechanism of suppression of neuronal activity is explained by an analysis
of the bifurcations in the averaged equations governing the dynamics of the slow motion. Our results may contribute to the un-
derstanding of therapeutic effects of high-frequency deep brain stimulation, the golden standard for the treatment of medically
refractory patients suffering from Parkinson’s disease. Furthermore, our study enables hypotheses concerning possible improve-
ments of high-frequency deep brain stimulation.

Keywords: neuron models, high-frequency stimulation, Parkinson’s disease, nonlinear dynamics, multiple scale meth-

od, averaging method

PACS: 05.45.Xt, 87.19.La

1. Introduction

The influence of high-frequency excitation on slow
dynamical systems is the subject of considerable in-
terest in the field of mechanics for more than one
hundred years. The first curious effect was discov-
ered by Stephenson [ﬂ, ], a mathematics lecturer at
Manchester University, in 1908. He showed theoreti-
cally and experimentally that it is possible to stabi-
lize a rigid pendulum in its inverted, or upside-down,
equilibrium position by subjecting the pivot to small
vertical oscillations of suitably high frequency. Later
on an important contribution to the theory of high-
frequency excitation was made by Kapitsa [E, H]. His
approach was based on the concept of direct separa-
tion of motions, which implies that the motion under
vibration can be presented as a sum of two compo-

nents — a fast, “vibrational” component and a “slow”
component which changes very little in one period of
the vibration. The problems of the modern field of vi-
brational mechanics [E] include a number of nontriv-
ial vibrational effects such as “flowing up” of a heavy
metal ball in a layer of sand, moving of a heavy body
or granular material upward along the slope, etc.

In the past two decades great therapeutic progress
has been made by applying high-frequency stimula-
tion (HFS) to biological systems [6-8§]. To avoid tissue
damage one uses biphasic electrical signals with zero
mean voltage such that in each period of the high-fre-
quency stimulation the charge induced in the system
is balanced. High-frequency (>100 Hz) deep brain
stimulation (DBS) is now recognized as the golden
standard for the treatment of patients with medically
refractory Parkinson’s disease and other movement
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disorders []. Unfortunately, the mechanism of
i

DBS action is still unclear [ ]. One possible ex-
planation is based on the assumption that the high-
frequency stimulation silences the neuronal firing
activity of a target area. This hypothesis arose from
the observation that the clinical effects induced by
lesions and deep brain stimulation of the same target
area are similar [[10]. Some experiments in vitro [@,
@], in animals [] and in humans [] sup-
port the hypothesis of the local inhibition, however,
a clear theoretical explanation of this effect is lacking.

The aim of this paper is to apply the ideas of vi-
brational mechanics to neuronal systems and provide
a possible explanation of inhibitory/blocking proper-
ties of high-frequency DBS formulated in terms of
this field. Note that typical problems of vibrational
mechanics are related to passive systems. By contrast,
here we deal with active neuronal systems, that spon-
taneously, i. e. without high-frequency stimulation
repetitively generate spikes. We show that the high-
frequency stimulation of sufficiently large intensity
can silence the repetitive neuronal spiking. The effect
is common for different neuron models and can be
explained in terms of the stabilization of the neuron
resting state, similar to the stabilization of the upside-
down position of a rigid pendulum with a vibrating
pivot. In a previous study we have applied a similar
vibrational mechanics based approach to investigate
the high-frequency stimulation-induced suppression
of sustained neuronal spiking in Hodgkin-Huxley
and isolated subthalamic nucleus model neurons [R7].

The paper is organized as follows. In Section 2 we
start our analysis with the generic model of the su-
percritical Hopf bifurcation extended by a high-fre-
quency excitation term. Here we present the details
of the mathematical treatment of the problem based
on a two-scale expansion. In the following Sec-
tions 3, 4 and 5 we analyze the influence of high-fre-
quency stimulation on the Fitzhugh-Nagumo [@],
Morris-Lecar [@] and Hodgkin-Huxley [@] neu-
ron models, respectively. We show that the stabiliza-
tion of the neuronal resting state may appear by dif-
ferent bifurcation scenarios, depending on a specific
neuron model. The paper is finished by conclusions
presented in Section 6.

2. Supercritical Hopf bifurcation

One of the common mechanisms that gives rise to
self-sustained oscillations in nonlinear dynamical
systems is the Hopf bifurcation. In order to gain in-
sight into the effect of suppression of low-frequen-
cy self-sustained oscillations by HFS we start from
a simple model of a forced limit-cycle oscillator that

describes the normal form of the supercritical Hopf
bifurcation:

z=[A+i+ (@ -1) |z lz + ae'“. (1)

Here z is a complex variable, A and f are real para-
meters characterizing the Hopf bifurcation. The pa-
rameters are normalized in such a way that the Hopf
frequency is equal to unity. The last term represents
the HFS with the amplitude a and frequency w. In
the free system (a = 0), the supercritical Hopf bi-
furcation appears at A = 0. For A < 0 the system has
a stable fixed point z = 0. For A > 0 it loses the sta-
bility and a stable limit cycle z = re®” of the radius
r=+/2 and the frequency w, = 1 + Br* emerges.

In the presence of HFS, Eq. (1) can be solved ap-
proximately by a multiple-scale method [EI], or
more precisely, by a two-scale expansion. We assume
the frequency w of the HFS to be a large parameter. In
other words, the time w™' is much less than all char-
acteristic time-scales of the system. Since the HFS
is non-resonant it provides an appreciable effect on
the system dynamics only for a sufficiently large am-
plitude a. In the following we suppose that a is pro-
portional to the frequency w, a = Aw, where the pa-
rameter A is independent of w. We introduce a fast
time 7 = wt (the time ¢ is respectively called a slow
time) and expand the solution in powers of a small
parameter w™":

Z() =z, (t, 1) + 0z (L, T) ... (2)

We suppose that the functions z, z ... are 27 peri-
odicin: z (£, T+ 2m) = z,(t, 1), z,(t, T+ 21m) = 2 (£, 1), ...
This means that the solution is periodic on the fast
time scale with the period equal to the period of HES.
We treat ¢ and 7 as if they were independent variables
and obtain

0z, 0Oz, Oz
= a)_+_+_...
or ot Ot

Substituting (2) into (1) using (3) and equating terms
proportional to w' and w° (recall that a = Aw) gives

3)

0z, <

—:A lT) 4
P e (4)
0z, Oz .
a—;’+a—;=[/1+(a+1ﬂ)]zo 2]z, )

The solution of Eq. (4) is
z,(t, T) = Z(t) - iAe", 6)

where Z(t) is any function of the slow time t. To derive
an equation for this function we substitute (6) into (5),
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dz 0z
JR— + —_—
dt or
and average it over the period of fast stimulation, i. e.

multiply it by 1/27 and integrate over the period of
fast time J.O dr---:

= [A H +(1 B -1)|Z -iAe"[](z, - iAe™), (7)

= -242+i(1+24°0) + B- DIEPIZ. (8)

Finally, an approximate solution of Eq. (1) can be
presented as a sum of the slow and fast components
(this result is in agreement with the Kapitsa’s concept
and is typical for the problems of vibrational mechan-

ics [H)):
2(t) = Z(1) - iAe. 9)

The fast “vibrational” component is -iAe™ and
the slow component z(¢) satisfies the averaged equa-
tion (8). The relationship between initial conditions
of Egs. (8) and (1) is z(0) = z(0) + iA. Note that Eq. (8)
is autonomous - contrary to Eq. (1), it does not con-
tain the HFS term ae“!. The solution z(t) of the aver-
aged equation (8) changes only slightly in one period
of HFS; it approximates the moving average of the so-
lution z(¢) of the original equation (1):

t+T/2

z0)= [ (e, (10)

The averaged equation (8) is equivalent to
the equation of the free oscillator that describes
the normal form of Hopf bifurcation. However, its
parameters are modified by additional terms propor-
tional to A% = (a/w)*. These terms are related to HFS.
In vibrational mechanics, such terms are referred to
as the “vibrational forces”. The supercritical Hopf bi-
furcation in system (8) is shifted in comparison to
the free system. It appears for A = 2A* and its Hopf
frequency is 1 + 2A%B. For A = 2A* the slow mo-
tion converges to the stable fixed point z = 0, while
for A > 2A? the fixed point is unstable and we have
the periodic slow motion around the stable limit cy-
cle Z = Fe“ of radius 7 =+ A —24" and frequency
@,=1+2A’f+ 7 =1+ B\ The frequency of the lim-
it cycle is independent of HES.

In Fig. m(a) we see that the increase of the inten-
sity A = a/w of HFS causes a reverse supercritical
Hopf bifurcation in the slow dynamics of the forced
oscillator. For 4 >+/1/2 the radius 7 of the limit cycle
vanishes and the fixed point zZ = 0 becomes stable. In
Fig. (b) we demonstrate the death of slow limit cycle
oscillations after switching on the HFS. The averaged
equation (8) describes well the transient dynamics to-
wards the death of slow oscillations.

|
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Fig. 1. (a) Bifurcation diagram of the averaged equa-
tion (8). With increasing intensity of the HFS the radius
of the limit cycle decreases according to 7 = 44 — 2(a/@)’,
The dashed (solid) horizontal line represents the unsta-
ble (stable) fixed point z = 0. (b) The death of low-fre-
quency oscillations in system (1) for A = 0.1, f =1 and
w = 15. For t < t = 8.6 the free system (a = 0) moves
along the stable limit cycle. For ¢ > t HFS with ampli-
tude a = 4.5 is switched on. The thin (blue online) line
shows the solution of Eq. (1). The bold (red) line shows
the solution of the averaged equation (8) for ¢ > . (All
quantities are in dimensionless units.)

This example shows that the dependence of bifur-
cation parameters on “vibrational forces” allows us
to control the slow dynamics of the system via HES
and even induce qualitative changes in this dynam-
ics. The total dynamics consists of a sum of the slow
and fast motions. The suppression of the slow motion
as opposed to the fast motion will be discussed from
a neuroscientific standpoint below.

3. FitzHugh-Nagumo model

One of the simplest neuron models is described by
the FitzHugh-Nagumo equations [@]. These equa-
tions conceptually isolate the essential mathemati-
cal properties of excitation and propagation from
the electrochemical properties of the sodium and
potassium ion flow. In the presence of HES a cos(wt)
the equations read

v=v-v/3-w+ I+ acos(wt), (11a)

w=elb+v-cw). (11b)

Here v is a membrane potential and w stands for
a recovery variable. We take the following values of
the parameters: b = 0.7, ¢ = 0.8, ¢ = 0.08. The behav-
iour of the free system (a = 0) depends on the DC
current I. For sufficiently large values of this current
the system generates periodical spikes. The phase por-
trait of the free system representing such a behaviour is
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shown in Fig. E(a). The nulclines W =0: w=v-13/3 +1
and w = 0: w = (v + b)/c) of the system intersect on
the increasing part of the N-shaped v-nulcline. As
a result, the system has an unstable fixed point and
a stable limit cycle. Due to the smallness of the pa-
rameter ¢ the phase point moves along the limit cycle
nonmonotonously and the system experiences relax-
ation oscillations.

Our aim is to show that HFS may suppress
the spontaneous oscillations of the system and explain
the mechanism of this suppression. In the Appendix
we present the derivation of averaged equations for
a general neuron model. Applying these general re-
sults to Egs. (11) we can write an approximate solu-
tion in the form

v(t) = ¥(t) + A sin(wt), (12a)

w(t) =w(t), (12b)

where A = a/w and the variables ¥ and w satisfy
the averaged equations (A.8). To write these equa-
tions in the explicit form we note that here the func-
tions f and g are flv, w) = v - v¥/3 — w + I and
gv, w) = &(b + v — cw). Averaging of these functions
over the fast time can be performed analytically:
(f(v + A sin 7, w)) = ¥(1 -A*2) - w’/3w + I and
(g(v+ Asin 7,w))_= &(b + v — aw). Then the averaged
equations take the form

For a = 0 the averaged equations (13) are equiva-
lent to the original system (3). Thus without HFS
the phase portraits of systems (11) and (13) coincide
(Fig. @(a)). With the increase of a the linear nulcline
w = (v + b)/c remains unchanged while the n-shaped
nulclinew = v (1 - A%/2) ¥*/3 + I varies due to the “vi-
brational force” A%*/2. As a result, the limit cycle in
the phase space of averaged equations shrinks and en-
gulfs the fixed point rendering it stable (Fig. @(b, c)).
After this, the stable fixed point is the only stable at-
tractor of the averaged system. Thus the increase of
HES intensity leads to the reverse supercritical Hopf
bifurcation similar to that described in the previous
section. This scenario explains the mechanism of sup-
pression of the low-frequency oscillations in the high-
frequency stimulated Fitzhugh-Nagumo neuron.

The transient dynamics of the system (11) to-
wards the death of spontaneous low-frequency os-
cillations after switching on the HEFS is shown in
Fig. . The averaged equations (13) describe the sys-
tem dynamics well even in the case of relaxation os-
cillations. Although the free system has two different
time scales (the slow w variable and the fast v vari-
able), the averaged equations are correct when w™
is less than the characteristic time scale of the fast
variable.

In Fig. E we see that HFS induces a relatively large
high-frequency component in the membrane poten-
tial v, while for the recovery variable w this compo-
nent is small. This is in agreement with the approxi-
mate solution (12). The reason is that HFS is applied
only to Eq. (11a) of the membrane potential and does
not directly influence the recovery variable w.

Fig. 2. Phase portraits of the averaged equations
(13) of the FitzHugh-Nagumo neuron for b = 0.7,
a=0.8,e=0.08,I=0.4and w = 5. The nulclines
are shown by dashed (blue online) lines, the limit
cycles are depicted by solid (red) curves, the stable
and unstable fixed points (the intersection points of
the nulclines) are presented by solid (red) dots and
open circles, respectively. (a) a = 0 (this phase por-
trait coincides with that of system (11)); (b) a = 4;

V=1 —AY2) - V3 —w+1, (13a)
w=e(b+v—cw). (13b)
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(c) a=5.7; (d) a = 6.3. (All quantities are in dimen-
sionless units.)
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Ii« For a sufficiently large frequency w an approxi-
0 mate solution of Egs. (14) is
(b) 0 100 ¢ 200 v(t) = ¥(t) + A sin(wt), (16a)
Fig. 3. (a) The death of spontaneous low-frequency os- w(t) =w(t), (16b)

cillations under HFS in the FitzHugh-Nagumo system.
For t <t =90 the free system (a = 0) moves along the sta-
ble limit cycle shown in Fig. 2(a). For ¢ > t_the HFS of
amplitude a = 6.3 is switched on. Other parameters are
the same as in Fig. 2. The thin (blue) lines show the solu-
tion of Egs. (11). The bold (red) lines show the solution
of the averaged equations (2) for ¢ > ¢ . The “vibrational”
component for the w variable is so small that the oscil-
lations are covered by the bold red line of the averaged
variable w. (All quantities are in dimensionless units.)

4. Morris-Lecar model

A more realistic neuron model than that described
in the previous section is given by the Morris-Lecar
equations [R9]. Historically, these equations were de-
rived from an experimental study of the excitability
of the giant muscle fiber of the huge Pacific barnacle.
In fact, these equations represent a two-dimensional
reduction of the four-dimensional Hodgkin-Huxley
neuron model that will be considered in the next sec-
tion. In the presence of HFS the Morris-Lecar equa-
tions are

Cv= —gCamw(v) (v- vCa) - & w(v - vK)

-g,(v-v) + 1+ acos(wt), (14a)

w=¢[w, (v)—wlt (v). (14b)

Here C is the membrane capacitance. The parameters
Ve Vi and v, are the equilibrium potentials of Ca?*,
K* and leak currents, respectively; g, g and g, are
the maximum conductance of the corresponding ion-
ic currents. The parameter ¢ defines the characteris-
tic time scale of the recovery variable. The voltage-
dependent functions are

m,(v)= %[1 + tanh(v ; ] H ,

(15a)

where A = a/wC and the variables ¥ and w satisfy
the averaged equations:

v=g A% A) + g w(@-v,)

g (F-v)+1, (17a)
w=a@,A4)- v, Hw. (17b)
Here we have introduced the functions
A(v, A) = (u(¥ + A sin 1), (18a)
a(v, A) = (a(¥+ Asin 7)), (18b)
B(v, A) = (B(¥ + A sin 7)), (18¢)

where
u) =m_(v) (v-vg), (19a)
o) = pw,(V)/z,(v), (19b)
pv) = ¢/t (). (19¢)

Unfortunately, we cannot derive explicit analytical
expressions for the averaged functions (18) in the gen-
eral case. An approximate analytical estimation of
these functions can be obtained by means of a Taylor
series expansion only for small values of A. However,
the effect of suppression of spontaneous oscillations
appears for rather large amplitudes A when the Taylor
series approximation fails. Therefore, the integration
of the averaged equations (17) requires a numerical
computation of the averaged functions (18) inside
the Runge—Kutta algorithm.

Depending on the specific values of the para-
meters the free (@ = 0) Morris-Lecar model may
demonstrate the behaviour typical of the so-called
type I or type II neurons [B2]. Such a classification
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is based on the difference of the onset of autono-
mous repetitive firing. By increasing the DC cur-
rent I the neuron with type I excitability starts to fire
repetitively with an almost zero frequency. Accord-
ing to the bifurcation theory, the firing results from
a saddle-node bifurcation on an invariant circle. In
contrast, the type II neuron starts to fire with a finite
frequency. Here the onset of firing can be caused by
a Hopf bifurcation.

We have analyzed the effect of HES for both types
of excitability and in both cases we observed the ef-
fect of suppression of the repetitive firing. Below we
present the results for the type I excitability. An evo-
lution of the phase portrait of the averaged system
(17) is shown in Fig. H for the fixed value of the DC
current I and the varying intensity of the HFS cur-
rent. The averaged dynamics of the Morris-Lecar
neuron experiences a reverse supercritical Hopf bi-
furcation similar to the Fitzhugh-Nagumo neuron.
Thus, the mechanism of suppression of the sponta-
neous firing is identical for these two different neu-
ron models.

The transient dynamics of the Morris-Lecar
neuron towards the death of spontaneous firing
shown in Fig. E is also similar to that observed in
the Fitzhugh-Nagumo neuron (cf. Fig. E). Again
the solution of averaged Eqs. (17) fits well to the av-
eraged dynamics of original Egs. (14).

|
J‘WMMWN”WUWWMMUWVMWHWWUW
.

100 200 300

100 200 300

t (ms)

Fig. 5. (a) The death of spontaneous firing under HFS
in the Morris-Lecar neuron. For ¢t < t = 150 ms the free
system (a = 0) generates spontaneous spikes corre-
sponding to the stable limit cycle shown in Fig. 4(a). For
t >t the HFS of amplitude a = 3 mA/cm? is switched on.
Other parameters are the same as in Fig. 4. Thin (blue)
and bold (red) lines show the solutions of Egs. (14) and
(17), respectively.

5. Hodgkin-Huxley model

As a last example, we consider the Hodgkin and
Huxley [@] model. The model was originally devel-
oped for the squid giant axon. In the presence of HFS
the model reads:

Fig. 4. The same as in Fig. 2 but
for the averaged equations (17)
w of the Morris-Lecar neuron.

O N —

The set of the parameters cor-
respond to the type I excitabil-
ity: g, = 44 m§/cm?, g = 8 m$/
cm?, § =2 mS/cm?, Ve, =120mV,
! v. = -80 mV, v, = -60 mV,
=—2mV,v2=18mV,v3=12mV,
/ v, = 174 mV, ¢ = 0.0667 ms™,
/ C = 20 pyF/cm?. The DC current
is I = 50 yA/cm? The frequency
of HES is w = 5 kHz and the am-
plitude is the following: (a) a =0
(this phase portrait coincides

K
1

with that of the system (14));
(b)a=2mA/cm?%(c)a=2.4mA/
cm? (d) a = 2.5 mA/cm?>
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Cyv = —gNam3h(v - vNa) - gKn4(v - vK)

—g,(v=v) +I+acos(wb), (20a)
m+a (v) (1-m) - B, (v)m, (20b)
h+a,(v) (1-h) - B,(Vh, (20¢)
A+ a (v) (1-n) - B (n. (20d)

Here C = 1 yF/cm? is the membrane capacitance and
v is the membrane potential measured in mV. The pa-
rameters v, = 115mV,v, =-12mV and v, =10.6 mV
are the equilibrium potentials of Na*, K*, and leak cur-
rents, respectively. ¢ =120 mS/cm?, g = 36 mS/cm’
and g = 0.3 mS/cm”* are the maximum conductance
of the corresponding ionic currents. 0 < m < 1 and
0 < h < 1 are the gating variables responsible, respec-
tively, for activation and inactivation of the Na* cur-
rent, and 0 < n < 1 is the gating variable represent-
ing activation of the K* current. The rate parameters
a, [Sx (x = m, h, n) measured in ms™" are the following
functions of the membrane potential:

a, (v) = (2.5-0.1v)/[exp(2.5-0.1v) - 1], (21a)
B,,(v) = 4 exp(-v/18), (21b)
a,(v) = 0.07 exp(-v/20), (21c)
B,(v) = 1/[exp(3 - 0.1v) + 1], (21d)
a (v) = (0.1-0.01v)/[exp(1-0.1v) - 1], (21e)
B,(v) = 0.125 exp(-v/80). (21f)

Here the voltage scale is shifted in such a way that
the membrane resting potential without external cur-
rents (I = a = 0) is zero.

In contrast to the previous neuron models,
the Hodgkin-Huxley neuron (20) is described by
four dynamical variables. In order to apply the gen-
eral theory presented in the Appendix, we note that
the last three equations (20 b-d) can be interpreted
as a one vector-equation for the three-dimensional
recovery variable w = (m, h, n). Then the approxi-
mate solution of Egs. (20) can be written as

v(t) = ¥(t) + A sin (wt), (22a)
m(t) =m(t), (22b)
h(t) = h(?), (22¢)

n(t) = n(t), (22d)

where A= a/wC and the slow variables 7,7, h and 7
satisfy the averaged equations:

v = —gNam3f1(V - vNa) - gKﬁ4(17 - VK)

~g(-v-v)+], (23a)
m=a,v,A(1-m)- B, v, Am, (23b)
h=a,, A(1-h) - B, Ak, (23¢)
n=a,v,A(1-n)-p,v,An. (23d)

These equations are equivalent to the original
Hodgkin-Huxley equations (21), but there is no
high-frequency stimulation current and the original
rate coeflicients (21) are replaced by the averaged co-
efficients o, /?x(x =m, h, n):

a (v, A) = <a (v + Asin 7)> (24a)

BV, A)=<B(¥+Asin1)>_ (24b)
If the stimulation amplitude is not very large,

the averaged rate coefficients can be estimated ana-

lytically by means of the Taylor series expansion:

a (v,A)=a (V) + A% " (v)/4, (25a)

B.(v, A) = B (V) + A’B " (V)/4. (25b)
Here a " and 8 " are the second derivatives of the cor-
responding functions.

In contrast to the Morris-Lecar model, here
the death of the spontaneous firing occurs at rela-
tively small values of the amplitude A, so that the ap-
proximations (25) give the adequate description for all
the effects considered below. Note that all functions
in Egs. (23), (25) and (21), that comprise a model for
the slow averaged dynamics of the Hodgkin-Huxley
neuron, are defined analytically.

For the given parameter values the Hodgkin-
Huxley neuron demonstrates the type II excitability.
When increasing the DC current I, the neuron starts
repetitive firing due to the subcritical Hopf bifurca-
tion. The bifurcation appears for I = 9.8 yA/cm®. Fig-
ure E(a) shows the two-dimensional projection (v, n)
of the phase portrait of free (a = 0) system (20) for
I =20 pyA/cm? i. e. above the threshold of the onset
of spontaneous firing. Without HES (a = 0) the same
result is obtained from the averaged equations (23).
The phase portrait is characterized by the unstable
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resting state and the stable limit cycle responsible for
the neuron repetitive firing.

The subsequent Figs. E(b—d) show the evolution of
the phase portrait of averaged Egs. (5) emerging with
increasing HFS intensity. Here the death of spontane-
ous oscillations is characterized by a more complicated
scenario as in the models considered in the previous
sections. Now the fixed point becomes stable through
a reverse subcritical Hopf bifurcation that appears for
A=A, ~11.16 mV. This bifurcation gives birth to
a small unstable limit cycle, which expands with a fur-
ther increase of HFS intensity. For A=A = 15.17 mV
the stable and unstable limit cycles collide and disap-
pear trough a double-cycle bifurcation. After this bi-
furcation, the stable fixed point is the only stable attrac-
tor of the averaged system.

Summarizing the described bifurcations, the be-
haviour of the Hodgkin-Huxley neuron under HES is
as follows. For small intensities A < A_, ; the neuron
remains in the regime of spontaneous firing. For large
intensities A > A the neuron definitely stops firing and
settles at a stable resting state. The moderate intensities
A, <A<A, lead to abistable regime — depending on
the initial conditions the neuron may approach either
the stable resting state or the stable limit cycle of spon-
taneous firing.

In Fig. B we show how the dynamics of the Hodg-
kin-Huxley neuron changes when HEFS is switched on
at moderate intensities A = 11.2 mV, which correspond
to the bistable regime. Although the resting state is sta-
ble for this value of A, the neuron remains firing after
switching on the HEFS. This result is independent of

the moment of switching on the HES. To explain this
result we note that in any moment of the switching on
the HFS the initial conditions are placed on the unper-
turbed (A = 0) stable limit cycle. Since the stable limit
cycle changes only slightly with an increase of A (com-
pare Figs. é (a—c)), the nearest stable state for the per-
turbed system is the perturbed limit cycle.

The suppression of spontaneous firing can always
be achieved by using HFS of a sufficiently large in-
tensity. Above the threshold of the double-cycle bi-
furcation A > A,_the system reaches the only stable
steady-state independently of the initial conditions.
In Fig. E we demonstrate that the stable resting
state can be reached even for moderate intensities
A <A <A,. The problem related to the bistabil-
ity is avoided by using a simple two-step algorithm.
In the first step, we switch on the HFS at a large am-
plitude A > A, and reach the stable resting state. In
the second step, we decrease the HFS amplitude to
moderate values A < A < A, where this state is
still stable. As a result, we can suppress the spontane-
ous firing and maintain the stable resting state using
the smallest permissable amplitude, slightly above
the threshold of the subcritical Hopf bifurcation.

6. Conclusions

We have shown that the neuronal spontaneous firing
can effectively be suppressed by a charge-balanced
high-frequency stimulation current. The universal-
ity of this effect is demonstrated by different neuron
models, namely, the two-dimensional FitzHugh-Na-



231

K. Pyragas and PA. Tass / Lith. ]. Phys. 56, 223-238 (2016)

100

v, v (mV)

50 -

20

40

0.3+
=021
0.1+

=~

) o

20

40

0.7}
<06
05}

100

20
t (ms)

40

>
E 50t
I>
Ny

LALLM

40

20

40

20

40

40

Fig. 7. The influence of HFS of moderate intensity
A u <A <A, on the Hodgkin-Huxley neuron
dynamics. The HES of amplitude a = 560 mA/cm?
and frequency w = 50 kHz (A = 11.2 mV) are
switched on at ¢ = £ = 15 ms. Thin and bold lines
show the solutions of Eqs. (20) and (23), respec-

tively.

Fig. 8. Suppression of spontaneous firing in
the Hodgkin-Huxley neuron with HFS of moderate
intensity via a two-step algorithm. For ¢ < = 15 ms
the free system (a = 0) generates spontaneous spikes
corresponding to the stable limit cycle shown in
Fig. 6(a). At t =t = 15 ms the HFS of a large ampli-
tude a =800 mA/cm’® (A = 16 mV >A ) is switched
on. At t =35 ms the amplitude is decreased to
the value a =560 mA/cm?, the same as in Fig. 7.
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gumo and Morris-Lecar neurons as well as the four-
dimensional Hodgkin-Huxley model. The generic
nature of this effect is further substantiated by our
previous findings in isolated subthalamic nucleus
model neurons [@]. This phenomenon is common
not only for neuronal systems, but it is typical for any
self-sustained oscillator. The analysis of the normal
form of the supercritical Hopf bifurcation extend-
ed by a high-frequency excitation term shows that
the bifurcation point can effectively be controlled by
the excitation intensity.

To analyze the neuron equations in the pres-
ence of high-frequency stimulation we have applied
a multiple-scale method. We have shown that the so-
lution consists of a sum of slow and fast components.
Similar separations of fast and slow motions is typi-
cal for many problems considered in vibrational
mechanics. In our case the fast “vibrational” compo-
nent has a significant amplitude only for the mem-
brane potential while for the recovery variables it is
small. The slow component changes only slightly in
one period of stimulation and describes the system
dynamics averaged over the period of the fast stimu-
lation. We have derived the averaged equations gov-
erning the slow dynamics of the system for a general
neuron model.

By means of analyses of the bifurcations in the av-
eraged equations we have explained the mechanism
of inhibition/blockage of the neuronal spontaneous
activity. The inhibition/blockage occurs due to a sta-
bilization of the resting state of the slow motion. With
an increase of intensity of high-frequency stimulation
the resting state can be stabilized by different scenarios,
depending on the specific model. For the FitzHugh-
Nagumo and Morris-Lecar models the stabilization
appears through a reverse supercritical Hopf bifurca-
tion. For the Hodgkin-Huxley neuron a more com-
plicated scenario was found. The system undergoes
two successive bifurcations, the reverse subcritical
Hopf bifurcation and the double-cycle bifurcation.
Between these two bifurcations the bistable regime
prevails where the neuron may generate stable peri-
odic spikes or be in a stable resting state.

The averaged neuron equations derived in this
paper are useful not only for understanding the ef-
fects of the high-frequency stimulation, but they are
also important for the simplification of the numerical
analysis. The solution of the original neuron equa-
tions with the high-frequency term varies on two
different time-scales. An accurate numerical analysis
of such systems requires special numerical methods
and large computation times. In contrast, the aver-
aged equations contain only the slow time-scale and
their numerical simulation is simple. The averaged

equations may be particularly convenient for prob-
lems where a numerical analysis of large neuronal
networks under the action of high-frequency stimu-
lation is required.

In this paper, we have restricted ourselves to
the analysis of the influence of high-frequency stim-
ulation on the single neuron models. Such mod-
els are obviously incomplete which might hinder
a thorough interpretation of experimental results in
the context of high-frequency deep brain stimula-
tion of parkinsonian patients. Nevertheless, already
this comparably simple one-neuron model repro-
duces relevant experimental findings. For instance,
it was shown that electrical deep brain stimulation
at frequencies greater than 100 Hz effectively sup-
presses essential tremor and parkinsonian tremor,
whereas low-frequency deep brain stimulation (at
frequencies below 50 Hz) does not induce a tremor
suppression and may even enhance the tremor when
delivered at frequencies around 5-10 Hz [E, @, @].
In a next step, our approach should be applied to
the analysis of neuronal networks subjected to high-
frequency stimulation in order to complement nu-
merical simulations [@, @] and provide a thorough
understanding of the differential effects of high-fre-
quency stimulation on physiologically relevant slow
and fast neuronal dynamics.

As shown in detail above, high-frequency stim-
ulation suppresses low-frequency oscillations,
but causes relevant high-frequency oscillations of
the membrane potential or corresponding variables
(see Figs. , E, and H).

In Parkinson’s disease synchronized neuronal
oscillations emerge in different frequency bands in
the basal ganglia. Synchronized local field potential
(LFP) oscillations in the beta band (13-35 Hz) are
a hallmark of Parkinson’s disease [@]. A medication
(levodopa) induced decrease of beta band LFP os-
cillations positively correlates with an improvement
of akinesia and rigidity, but not with a reduction of
tremor [@, @].

Parkinsonian tremor appears to be generated
by oscillatory neuronal activity in the theta band
(3-7 Hz) in segregated networks associated with dif-
ferent limbs shaking with time-varying phase and
frequency differences []. Tremor-related theta
band oscillations are typically no pronounced feature
in LFP recordings, presumably since different neu-
ronal subpopulations belonging to different limbs
oscillate with time varying phase and frequency re-
lationships [@, R g}, Nevertheless, with nonlin-
ear data analysis tools it was shown that theta band
(3-7 Hz) LFP oscillations drive the peripheral trem-
or [@].
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Apart from the pathological low-frequency os-
cillations in the theta and beta range, in the basal
ganglia of Parkinson’s patients there are also LFP os-
cillations at higher frequencies. LFP oscillations in
the gamma band (35-90 Hz) appear to contribute to
the generation of (physiological) movements [@, @].
In fact, gamma band LFP oscillations increase during
movement and following appropriate (dopaminergic)
medication [].

In addition, the so-called high-frequency oscilla-
tions (HFO, >200 Hz) were observed in the basal gan-
glia of patients with Parkinson’s disease []. HFO
are involved in the generation of voluntary move-
ments. The HFO power increases when movements
are initiated and decreases when the latter end [@,
@]. Accordingly, HFO power is negatively correlated
with the akinesia/rigidity of the corresponding (con-
tralateral) side [E].

In simple terms, the low-frequency (theta and
beta) oscillations contribute to pathological pro-
cesses, whereas the high-frequency oscillations
(gamma and HFO) are relevant for voluntary, physi-
ological movements. However, the low-frequency
and the high-frequency oscillations interact under
both physiological [@] and pathological [@] condi-
tions. For instance, physiological processes in motor
circuits may be perturbed by a coupling of the HFO
amplitude [E, é] to the phase of beta oscillations.

Based on the results obtained in our simple mod-
el presented here and in our previous study [@]
we may expect high-frequency stimulation to ef-
fectively suppress low-frequency oscillations, such
as theta and beta band LFP oscillations, and to in-
duce high-frequency oscillations (in the range of
the stimulation frequency) of the membrane po-
tential. The functional role of these high-frequency,
stimulus-induced oscillations in a neuronal network
still remains to be investigated. However, in the con-
text of DBS our results suggest the following test-
able hypotheses: (i) Standard DBS frequencies are in
the range of 100-150 Hz, often around 130 Hz. In
contrast, DBS at sufficiently high frequencies may
considerably attenuate the amplitude of gamma oscil-
lations and, hence, help to investigate the functional
role of gamma. However, this requires much greater
stimulation frequencies compared to the standard.
(ii) Currently, studies are performed to understand
fundamental, attenuating effects of high-frequency
deep brain stimulation on beta band LFP oscilla-
tions [@, @]. Nevertheless, the effects of DBS on
oscillations of higher frequencies may be significant
as well. DBS at standard frequencies (100-150 Hz)
may cause linear/non-linear resonance effects and,
thus, enhance neuronal oscillations at higher fre-

quencies not related to the physiological context,
e. g. to the onset and offset of voluntary movements.
Such resonance-like effects may be detrimental. Ac-
cordingly, it is desirable to reduce the overall stimu-
lation current. One approach aiming at this goal is to
perform closed-loop, demand controlled DBS. This
is to stimulate only when necessary and/or to adapt
the strength of stimulation to the amount of ab-
normal neuronal synchrony. Initially introduced in
computational studies with different types of specifi-
cally designed desynchronizing stimuli [], de-
mand-controlled DBS was experimentally tested by
means of conventional high-frequency stimulation
and denoted as adaptive DBS (aDBS) []. An
alternative approach to significantly reduce stimula-
tion current originated from computational studies
on desynchronizing stimulation techniques [
@, @] by incorporating spike timing-dependent
plasticity (STDP) [@, @ Computationally it was
shown that in neuronal networks with STDP coor-
dinated reset (CR) stimulation [@], a desynchro-
nizing stimulation technique reduces the rate of
coincidences and, hence, down-regulates abnormal
synaptic weights [, ]. CR stimulation moves
the neuronal population from a pathological attrac-
tor (with strong synaptic connectivity and neuronal
synchrony) to a more physiological attractor (char-
acterized by reduced synaptic connectivity and neu-
ronal synchrony), in this way inducing cumulative,
long-lasting, sustained desynchronizing effects [
]. These computational predictions were verified
both pre-clinically and clinically: long-lasting, sus-
tained and cumulative therapeutic effects of CR-DBS
were demonstrated in parkinsonian monkeys [@,

]. Long-lasting desynchronizing and therapeutic
effects of CR-DBS were shown in patients with Par-
kinson’s disease [@]. The goal of this approach is to
induce an anti-kindling, i. e. to reshape the networks
synaptic connectivity in a way that the network is
no longer able to produce abnormal neuronal syn-

chrony [].

Appendix: Derivation of averaged equations for
a general neuron model

We consider typical neuron models, such as
the FitzHugh-Nagumo, Morris-Lecar, Hodgkin-
Huxley or others under HFS. Generally they can be
presented by the following set of equations:

Cv=Afv,w)+a¢(wt), (A.1a)

w=g(v,w). (A.1b)
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Here Cis the membrane capacitance and v is the mem-
brane potential, ap(wt) is the HFS current, where a
is the amplitude and w is the frequency. We consider
a general case when ¢(wt) is any 27 periodic function
¢(wt + 2m) = ¢(wt), not necessary harmonic signal.
In order to provide a charge-balanced stimulation, we
require fg(p(wt)dt = 0, where T = 27/w is the period
of HFS. Equation (A.1b) describes the dynamics of
a recovery variable w that generally is a vector vari-
able, w = (Wpeots W), The length n of this vector as
well as the functions f and g are defined by a specific
neuron model.

The derivation of averaged equations for this gen-
eral case is similar to that described in Section 2.
We suppose that w™ defines the shortest time-scale
of the system and introduce the fast time 7 = wt. As-
suming that the amplitude a is proportional to w,
a = wCA, we expand the solution in powers of small
parameter w™:

v(t) =v(t, 1) + v (8, 7)., (A.2a)

w(t) =w (1) + 0w (¢t 7).... (A.2b)
Here functions v (t, 1), v,(t, 7), w(£, T) and w(t, )
are 27 periodic in 7. The time-derivatives of v and w
variables are

ov, Ov, Ov
=p—L 420 771,

SRR (A.3a)
or ot Or
:w8w0+6w0+6w1_“ (A.3b)
or ot or

Substituting (A.2) and (A.3) into (A.1) and equat-
ing terms proportional to ' we obtain

Mo — o), (A.da)
0

oWy _ 0. (A.4b)
or

Similarly for terms proportional to w” we get

ov, Ov 4

—_—t —= C , W 5 AS
o  or S (v, W) (A.5a)
ow, oW,

+—= LW, ). A.5b

or oz g(v,, W) ( )

The solution of Egs. (A.4) is

v,(t, T) = W(t) + Ay(), (A.6a)

w,(t, T) =W(t), (A.6b)
where V(t) and Ww(t) are any functions of the slow
time ¢ and y(7) = [p(r)d7. The equations for these
functions are obtained by substituting (A.6) into
Egs. (A.5)

v ov, . _

A A

5 5 —C Oy @), (A72)
dw ow, 2 _

—+—= A , A7
ot e Ay @) (A.7b)
and averaging them over the fast time 7:

Cv = (flv + Ay(1),W)),, (A.8a)
W = (g(-v+ Ay(1),W)).. (A.8b)

Here the angle brackets denote the averaging over
the period of the fast time, ((---)), =(1/27) L (--)dr.
Finally, an approximate solution of Egs. (A.1) is

v(t) = v(t) + Ay(wt), (A.9a)

w(t) =w(t), (A.9b)
where A = a/wC and the functions v(t) and w(t) sat-
isfy the averaged equations (A.8). If the HFS is per-
formed by the harmonic signal ¢(wt) = cos(wt), then

y(7) = sin(7).
References

[1] A. Stephenson, On a new type of dynamical sta-
bility, Mem. Proc. Manch. Lit. Phil. Soc. 52, 1-10
(1908).

[2] A. Stephenson, On induced stability, Phil. Mag. 15,
233-236 (1908).

[3] PL. Kapitsa, Dynamic stability of a pendulum
when its point of suspension vibrates, Sov. Phys.
JETP 21, 588-592 (1951).

[4] PL. Kapitsa, Pendulum with a vibrating suspen-
sion, Usp. Fiz. Nauk 44, 7-15 (1951).

[5] Selected Topics in Vibrational Mechanics, ed. 1. Blekh-
man (World Scientific, New Jersey, 2003).

[6] A.L.Benabid, P. Pollak, C. Gervason, D. Hoffmann,
D.M. Gao, M. Hommel, J.E. Perret, and J. de Rou-
gemont, Long-term suppression of tremor by
chronic stimulation of ventral intermediate tha-
lamic nucleus, Lancet 337, 403-406 (1991).

[7] G. Deuschl, C. Schade-Brittinger, P. Krack,
J. Volkmann, H. Schifer, K. Botzel, C. Daniels,
A. Deutschliander, U. Dillmann, W. Eisner, et al.,



235 K. Pyragas and PA. Tass / Lith. ]. Phys. 56, 223-238 (2016)

A randomized trial of deep-brain stimulation for
Parkinson’s disease, N. Engl. J. Med. 1355, 896-
908 (2006).

[8] P. Krack, A. Batir, N. Van Blercom, S. Chabardes,
V. Fraix, C. Ardouin, A. Koudsie, PD. Limousin,
A. Benazzouz, JE LeBas, A.L. Benabid, and
P. Pollak, Five-year follow-up of bilateral stimulation
of the subthalamic nucleus in advanced Parkinson’s
disease, N. Engl. J. Med. 349, 1925-1934 (2003).

[9] P. Limusin, P. Krack, and P. Pollak, A. Benazzouz,
C. Ardouin, D. Hoffmann, and A.-L. Benabid,
Electrical stimulation of the subthalamic nucleus
in advanced Parkinsons disease, N. Engl. J. Med.
339, 1105-1111 (1998).

[10]P. Limousin, P. Pollak, A. Benazzouz, D. Hoff-
mann, J.FE. Le Bas, E. Broussolle, J.E. Perret, and
AL. Benabid, Effect of parkinsonian signs and
symptoms of bilateral subthalamic nucleus stimu-
lation, Lancet 345, 91-95 (1995).

[11]M.C. Rodriguez-Oroz, A. Gorospe, J. Guridi,
E. Ramos, G. Linazasoro, M. Rodriguez-Palmero,
and J.A. Obeso, Bilateral deep brain stimulation
of the subthalamic nucleus in Parkinson’s disease,
Neurology 55(12 Suppl 6), S45-51 (2000).

[12] A.M. Lozano, J. Dostrovsky, R. Chen, and P. Ashby,
Deep brain stimulation for Parkinson’s disease:
disrupting the disruption, Lancet Neurol. 1, 225-
231 (2002).

[13]W.]. Marks, Deep brain stimulation for dystonia,
Curr. Treat. Options Neurol. 7, 237-243 (2005).

[14]C. Hamani, J.M. Schwalb, A.R. Rezai, ].O. Dost-
rovsky, K.D. Davis, and A.M. Lozano, Deep brain
stimulation for chronic neuropathic pain: Long-
term outcome and the incidence of insertional ef-
fect, Pain 125, 188-196 (2006).

[15]].L. Viek, Mechanism of deep brain stimulation:
excitation or inhibition, Mov. Disord. 17(3), S69-
72 (2002).

[16]A.L. Benabid, A. Benazzous, and P. Pollak,
Mechanisms of deep brain stimulation, Mov.
Disord. 17(3), S73-74 (2002)

[17]A.M. Lozano and H. Eltahawy, How does DBS
work? Suppl. Clin. Neurophysiol. 57, 733-736
(2004).

[18]C. Beurrier, B. Bioulac, J. Audin, and C. Hammond,
High-frequency stimulation produces a transient
blockade of voltage-gated currents in subthalamic
neurons, J. Neurophysiol. 85, 1351-1356 (2001).

[19] C. Magarinos-Ascone, J.H. Pazo, O. Macadar, and
W. Buno, High-frequency stimulation of the sub-
thalamic nucleus silences subthalamic neurons:
a possible cellular mechanism in Parkinson’s dis-
ease, Neuroscience 115, 1109-1117 (2002).

[20]A. Benazzouz, D.M. Gao, Z.G. Ni, B. Piallat,
R. Bouali-Benazzouz, and A.L. Benabid, Effect of
high-frequency stimulation of the subthalamic
nucleus on the neuronal activities of the substantia
nigra pars reticulata and ventrolateral nucleus of

the thalamus in the rat, Neuroscience 99, 289-295
(2000).

[21]T. Boraud, E. Bezard, B. Bioulac, and C. Gross,
High frequency stimulation of the internal Globus
Pallidus (GPi) simultaneously improves parkinso-
nian symptoms and reduces the firing frequency
of GPi neurons in the MPTP-treated monkey,
Neurosci. Lett. 215, 17-20 (1996).

[22] C.H. Tai, T. Boraud, E. Bezard, B. Bioulac, C. Gross,
and A. Benazzouz, Electrophysiological and meta-
bolic evidence that high-frequency stimulation of
the subthalamic nucleus bridles neuronal activity
in the subthalamic nucleus and the substantia ni-
gra reticulata, FASEB J. 17, 1820-1830 (2003).

[23]].0. Dostrovsky, R. Levy, J.P. Wu, W.D. Hutchison,
R.R. Tasker, and A.M. Lozano, Microstimulation-
induced inhibition of neuronal firing in human glo-
bus pallidus, J. Neurophysiol. 84, 570-574 (2000).

[24]M. Filali, W.D. Hutchison, V.N. Palter, A.M. Lo-
zano, and J.O. Dostrovsky, Stimulation-induced
inhibition of neuronal firing in human subthalam-
ic nucleus, Exp. Brain. Res. 156, 274-281 (2004).

[25]R. Levy, A.E. Lang, J.O. Dostrovsky, P. Pahapill,
J. Romas, J. Saint-Cyr, W.D. Hutchison, and
A.M. Lozano, Lidocaine and muscimol microinjec-
tions in subthalamic nucleus reverse Parkinsonian
symptoms, Brain 124, 2105-2118 (2001).

[26]M.L. Welter, J.L. Houeto, A.M. Bonnet, PB. Bejjani,
V. Mesnage, D. Dormont, S. Navarro, P. Cornu,
Y. Agid, and B. Pidoux, Effects of high-frequency
stimulation on subthalamic neuronal activity in
parkinsonian patients, Arch. Neurol. 61, 89-96
(2004).

[27]K. Pyragas, V. Novicenko, and PA. Tass,
Mechanism of suppression of sustained neuronal
spiking under high-frequency stimulation, Biol.
Cybern. 107, 669-684 (2013).

[28]R. FitzHugh, Impulses and physiological states in
theoretical models of nerve membrane, Biophys.
J. 1, 445-466 (1961).

[29]C. Morris and H. Lecar, Voltage oscillations in
the barnacle giant muscle fiber, Biophys. J. 35,
193-213 (1981).

[30]A.L. Hodgkin and A.E Huxley, A quantitative de-
scription of membrane current and its application
to conduction and excitation in nerve, J. Physiol.
117, 500-544 (1952).

[31]]. Kevorkian and ].D. Cole, Multiple Scale and
Singular Perturbation Methods (Springer-Verlag,
New York, 1996).

[32]W. Gerstner and W.M. Kistler, Spiking Neuron
Models. Single Neurons, Populations, Plasticity
(Cambridge University Press, 2002).

[33]A.L. Benabid, P. Pollak, A. Louveau, S. Henry,
and J. de Rougemont, Combined (thalamotomy
and stimulation) stereotactic surgery of the VIM
thalamic nucleus for bilateral Parkinson disease,
Appl. Neurophysiol. 50, 344-346 (1987).



236 K. Pyragas and PA. Tass / Lith. ]. Phys. 56, 223-238 (2016)

[34]A.L. Benabid, Deep brain stimulation for Parkin-
son’s disease, Curr. Opin. Neurobiol. 13, 696-706
(2003).

[35]D. Terman, J.E. Rubin, A.C. Yew, and C.]. Wilson,
Activity patterns in a model for the subthalamo-
pallidal network of the basal ganglia, J. Neurosci.
22,2963-2976 (2002).

[36]C. Hauptmann and P.A. Tass, Therapeutic rewir-
ing by means of desynchronizing brain stimula-
tion, Biosystems 89, 173-181 (2007).

[37]P. Brown and D. Williams, Basal ganglia local field
potential activity: character and functional signifi-
cance, Clin. Neurophysiol. 116, 2510-2519 (2005).

[38]A.A. Kithn, A. Kupsch, G.H. Schneider, and
P. Brown, Reduction in subthalamic 8-35 Hz os-
cillatory activity correlates with clinical improve-
ment in Parkinson’s disease, Eur. J. Neurosci. 23,
1956-1960 (2006).

[39]W.W. Alberts, E-W. Wright Jr, and B. Feinstein,
Cortical potentials and Parkinsonian tremor,
Nature 221, 670-672 (1969).

[40]H. Ben-Pazi, H. Bergman, J.A. Goldberg, N. Giladi,
D. Hansel, A. Reches, and E.S. Simon, Synchrony
of rest tremor in multiple limbs in Parkinson’s dis-
ease: evidence for multiple oscillators, J. Neural
Transm. 108, 287-296 (2001).

[41]]JM. Hurtado, C.M. Gray, L.B. Tamas, and
K.A. Sigvardt, Dynamics of tremor-related oscil-
lations in the human globus pallidus: a single case
study, Proc. Natl. Acad. Sci. USA 96, 1674-1679
(1999).

[42]].M. Hurtado, J.P. Lachaux, D.]. Beckley, C.M. Gray,
and K.A. Sigvardt, Inter- and intralimb oscillator
coupling in parkinsonian tremor, Mov. Disord. 15,
683-691 (2000).

[43]].M. Hurtado, L.L. Rubchinsky, K.A. Sigvardt,
V.L. Wheelock, and C.T. Pappas, Temporal evolu-
tion of oscillations and synchrony in GPi/muscle
pairs in Parkinson’s disease, J. Neurophysiol. 93,
1569—1584 (2005).

[44]R. Levy, W.D. Hutchison, A.M. Lozano, and
J.O. Dostrovsky, High-frequency synchroniza-
tion of neuronal activity in the subthalamic nu-
cleus of Parkinsonian patients with limb tremor,
J. Neurosci. 20, 7766-7775 (2000).

[45]P.A. Tass, D. Smirnov, A. Karavaev, U. Barnikol,
T. Barnikol, I. Adamchic, C. Hauptmann,
N. Pawelcyzk, M. Maarouf, V. Sturm, H.J. Freund,
and B. Bezruchko, The causal relationship be-
tween subcortical local field potential oscillations
and Parkinsonian resting tremor, J. Neural Eng. 7,
016009 (2010).

[46] P. Brown, Oscillatory nature of human basal gan-
glia activity: relationship to the pathophysiology
of Parkinson’s disease, Mov. Disord. 18, 357-363
(2003).

[47]F. Alonso-Frech, 1. Zamarbide, M. Alegre,
M.C. Rodriguez-Oroz, J. Guridi, M. Manrique,

M. Valencia, J. Artieda, and J.A. Obeso, Slow oscil-
latory activity and levodopa-induced dyskinesias in
Parkinson’s disease, Brain 129, 1748-1757 (2006).

[48]A.G. Androulidakis, A.A. Kuhn, C.C. Chen,
P. Blomstedt, E Kempf, A. Kupsch, G.H. Schneider,
L. Doyle, P. Dowsey-Limousin, M.I. Hariz, and
P. Brown, Dopaminergic therapy promotes later-
alized motor activity in the subthalamic area in
Parkinson’s disease, Brain 130, 457-468 (2007).

[49]M. Cassidy, P. Mazzone, A. Oliviero, A. Insola,
P. Tonali, V. Di Lazzaro, and P. Brown, Movement-
related changes in synchronization in the human
basal ganglia, Brain 125, 1235-1246 (2002).

[50] D. Williams, M. Tijssen, G. Van Bruggen, A. Bosch,
A. Insola, V. Di Lazzaro, P. Mazzone, A. Oliviero,
A. Quartarone, H. Speelman, and P. Brown,
Dopamine-dependent changes in the functional
connectivity between basal ganglia and cerebral
cortex in humans, Brain 125, 1558-1569 (2002).

[51]G. Foffani, G. Ardolini, B. Meda, M. Egidi,
P. Rampini, E. Caputo, G. Baselli, and A. Priori,
Altered subthalamo-pallidal synchronisation in
parkinsonian dyskinesias, J. Neurol. Neurosurg.
Psych. 76, 426-428 (2005).

[52]]. Lopez-Azcarate, M. Tainta, M.C. Rodriguez-
Oroz, M. Valencia, R. Gonzélez, J. Guridi, J. Iriarte,
J.A. Obeso, J. Artieda, and M. Alegre, Coupling
between beta and high-frequency activity in
the human subthalamic nucleus may be a patho-
physiological mechanism in Parkinson’s disease,
J. Neurosci. 30, 6667-6677 (2010).

[53]T.E. Ozkurt, M. Butz, M. Homburger, S. Elben,
J. Vesper, L. Wojtecki, and A. Schnitzler, High fre-
quency oscillations in the subthalamic nucleus:
a neurophysiological marker of the motor state in
Parkinsons disease, Exp. Neurol. 229, 324-331
(2011).

[54]H. Tan, A. Pogosyan, A. Anzak, K. Ashkan, M. Bog-
danovic, A.L. Green, T. Aziz, T. Foltynie, P. Li-
mousin, L. Zrinzo, and P. Brown, Complementary
roles of different oscillatory activities in the sub-
thalamic nucleus in coding motor effort in
Parkinsonism, Exp. Neurol. 248, 187-195 (2013).

[55]]. Wang, J. Hirschmann, S. Elben, C.J. Hartmann,
J. Vesper, L. Wojtecki, and A. Schnitzler, High-
frequency oscillations in Parkinsons disease:
spatial distribution and clinical relevance, Mov.
Disord. 29, 1265-1272 (2014).

[56]T. Yanagisawa, O. Yamashita, M. Hirata, H. Ki-
shima, Y. Saitoh, T. Goto, T. Yoshimine, and
Y. Kamitani, Regulation of motor representation
by phase—amplitude coupling in the sensorimotor
cortex, J. Neurosci. 32, 15467-15475 (2012).

[57] A.L Yang, N. Vanegas, C. Lungu, and K.A. Zaghloul,
Beta-coupled high-frequency activity and beta-
locked neuronal spiking in the subthalamic nucle-
us of Parkinson’s disease, J. Neurosci. 34, 12816-
12827 (2014).



237 K. Pyragas and PA. Tass / Lith. ]. Phys. 56, 223-238 (2016)

[58]B.C. van Wijk, M. Beudel, A. Jha, A. Oswal,
T. Foltynie, M.I. Hariz, P. Limousin, L. Zrinzo,
T.Z. Aziz, A.L. Green, P. Brown, and V. Litvak,
Subthalamic nucleus phase-amplitude coupling
correlates with motor impairment in Parkinson’s
disease, Clin. Neurophysiol. 127, 2010-2019
(2016).

[59]H. Bronte-Stewart, C. Barberini, M.M. Koop,
B.C. Hill, JM. Henderson, and B. Wingeier,
The STN beta-band profile in Parkinson’s disease
is stationary and shows prolonged attenuation af-
ter deep brain stimulation, Exp. Neurol. 215, 20-
28 (2009).

[60]E.J. Quinn, Z. Blumenfeld, A. Velisar, M.M. Koop,
L.A. Shreve, M.H. Trager, B.C. Hill, C. Kilbane,
J.M. Henderson, and H. Bronté-Stewart, Beta os-
cillations in freely moving Parkinson’s subjects are
attenuated during deep brain stimulation, Mov.
Disord. 30, 1750-1758 (2015).

[61]PA. Tass, Stochastic phase resetting: a theory for
deep brain stimulation, Prog. Theor. Phys. Suppl.
(Kyoto) 139, 301-313 (2000).

[62] P.A. Tass, Effective desynchronization by means of
double-pulse phase resetting, Europhys. Lett. 53,
15-21 (2001).

[63]P.A. Tass, A model of desynchronizing deep brain
stimulation with a demand-controlled coordinat-
ed reset of neural subpopulations, Biol. Cybern.
89, 81-88 (2003).

[64]S. Little and P. Brown, What brain signals are suit-
able for feedback control of deep brain stimulation
in Parkinson’s disease? Ann. N. Y. Acad. Sci. 1265,
9-24 (2012).

[65]S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo,
M. Hariz, T. Foltynie, P. Limousin, K. Ashkan,
J. FitzGerald, A.L. Green, T.Z. Aziz, and P. Brown,
Adaptive deep brain stimulation in advanced
Parkinson disease, Ann. Neurol. 74, 449-457
(2013).

[66] M. Rosa, M. Arlotti, G. Ardolino, F. Cogiamanian,
S.Marceglia, A. Di Fonzo, E. Cortese, PM. Rampini,
and A. Priori, Adaptive deep brain stimulation in
a freely moving Parkinsonian patient, Mov. Disord.
30, 1003-1005 (2015).

[67]S. Little, M. Beudel, L. Zrinzo, T. Foltynie,
P. Limousin, M. Hariz, S. Neal, B. Cheeran,
H. Cagnan, ]. Gratwicke, T.Z. Aziz, A. Pogosyan,
and P. Brown, Bilateral adaptive deep brain stimu-
lation is effective in Parkinson’s disease, ]J. Neurol.
Neurosurg. Psychiatr. 87, 717-721 (2016).

[68] P.A. Tass, Phase Resetting in Medicine and Biology
(Springer Verlag, Berlin, 1999).

[69]W. Gerstner, R. Kempter, ]J. van Hemmen, and
H. Wagner, A neuronal learning rule for sub-
millisecond temporal coding, Nature 383, 76-81
(1996).

[70]H. Markram, J. Lubke, M. Frotscher, and
B. Sakmann, Regulation of synaptic efficacy by co-
incidence of postsynaptic APs and EPSPs, Science
275, 213-215 (1997).

[71]P.A. Tass and M. Majtanik, Long-term anti-kin-
dling effects of desynchronizing brain stimulation:
a theoretical study, Biol. Cybern. 94, 58-66 (2006).

[72]P.A. Tass and C. Hauptmann, Therapeutic modu-
lation of synaptic connectivity with desynchroniz-
ing brain stimulation, Int. J. Psychophysiol. 64,
53-61 (2007).

[73]C. Hauptmann and P.A. Tass, Cumulative and
after-effects of short and weak coordinated reset
stimulation — a modeling study, J. Neural Eng. 6,
016004 (2009).

[74]P.A. Tass, L. Qin, C. Hauptmann, S. Dovero, E. Be-
zard, T. Boraud, and W.G. Meissner, Coordinated
reset neuromodulation has sustained after-effects in
parkinsonian monkeys, Ann. Neurol. 72, 816-820
(2012).

[75]]. Wang, S. Nebeck, A. Muralidharan, M.D. John-
son, J.L. Vitek, and K.B. Baker, Coordinated reset
deep brain stimulation of subthalamic nucleus
produces long-lasting, dose-dependent motor
improvements in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine non-human primate model of
parkinsonism, Brain Stimul. 9, 609-617 (2016).

[76]1. Adamchic, C. Hauptmann, U.B. Barnikol, S. Do-
vero, E. Bezard, T. Boraud, and W.G. Meissner,
Coordinated reset has lasting aftereffects in pa-
tients with Parkinsons disease, Mov. Disord. 29,
1679-1684 (2014).



238 K. Pyragas and PA. Tass / Lith. ]. Phys. 56, 223-238 (2016)

SAVAIMINIU VIRPESIU SLOPINIMAS AUKSTU DAZNIU ZADINAMUOSE
NEURONUOSE

K. Pyragas?, PA. Tass ¢
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4 Kelno universitetas, Kelnas, Vokietija

Santrauka

Nagrinéjame auksto daznio srovés jtaka savaimi-
niam neurony aktyvumui ir parodome, kad i srové gali
nuslopinti neurony savaiminius Zemo daZnio virpesius.
Sio reigkinio universalumg demonstruojame naudo-
dami standartinius neurony modelius (FitzHugh-Na-
gumo, Morris-Lecar ir Hodgkin-Huxley) ir normaline
superkrizinés Hopfo bifurkacijos forma. Taikydami
skirtingy laiko masteliy metoda, mes atskiriame greitus
ir létus neuroniniy lygc¢iy sprendinius ir létoms spren-

diniy komponentéms iSvedame vidurkintas lygtis. Neu-
roninio aktyvumo slopinimo mechanizmg aiskiname
remdamiesi vidurkinty lyg¢iy bifurkacijy analize. Gauti
rezultatai padeda suprasti giluminés smegeny auksto
daznio stimuliacijos (high-frequency deep brain stimu-
lation) gydomajj efekta. Siuo metu giluminé auksto
daznio smegeny stimuliacija yra standartiné procedi-
ra gydant Parkinsono ir kitas neurologines ligas. Miisy
tyrimai leidZia toliau tobulinti giluminés auksto daznio
smegeny stimuliacijos metoda.
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