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Correct use of the photoelastic effect for the description of thermally induced refractive index change is discussed and the an-
alytical relations between thermo-optic coeficients at zero stresses and zero strains are found for all classes of cubic crystals. These
relations may be useful for the investigation of thermal effects in very promising sesquioxide class m3 laser crystals. An accepted
set of elasto-optical coefficients of the YAG crystal and an alternative one found in the literature were used in numerical simula-
tions. Significant differences in the calculated thermo-optic coefficients and induced birefringence are found using different sets
of these coefficients. Misunderstandings related with the so-called photoelastic coefficients are resolved and new expressions for
these coefficients are found. It is shown that the incorrect use of these coefficients for different pump beam distributions can lead
to significant discrepancies for thermally induced birefringence. It is also shown that common use of the generalized thermo-optic
coefficients significantly overestimates the values of optical power of thermal lenses when they are applied to the laser rods with

lengths several times longer than their diameter.
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1. Introduction

The non-uniform temperature distribution in the active
element (AE) of solid-state lasers (SSL) under the op-
tical pumping causes undesirable thermal stresses,
deformations and end-face bulging of the AE. Then
the refractive index of AE is changing due to the joint
action of linear thermo-optic (TO) and photoelas-
tic (PE) effects. Different aspects of thermal effects in
SSL are studied in many laser monographs and re-
views [[I-13]. The thermal lensing (TL) problem was
first investigated for glass lasers [ ,E, E, Iﬁ when flash
lamps were used for pumping of a long AE. Therefore,
the plane strain (PSn) approximation for cylindrical
rods [@] was used for the description of thermally
induced stresses and deformations. In this approxima-
tion the initially plane faces of the AE remain plane
for axisymmetrical pumping. In the description of
the refractive index change with temperature the TO
coefficient B = (dn/0T)__, is commonly referenced in
the literature [, E], because it may be easily measured
experimentally using the free expansion of the speci-
men at zero stress. The TO coefficient 8 = (dn/dT)_ at
zero strain is used less often [E, E]. Unfortunately, TO
coeflicients are used more often without the specifica-

tion and are simply denoted as dn/dT [E, ﬁ, , @, B] ,
an/T [, [ L) or Sw/8T 1),

Koechner (see [[] and references therein to the origi-
nal papers) and Foster with Osterink [@] were the first
ones who developed a theoretical model for the ther-
mal lensing and birefringence in the Nd:YAG crystal
grown in the crystallographic direction [111]. The me-
chanically isotropic properties of YAG allowed the use
of the standard PSn approximation for the stress dis-
tributions with the general axisymmetrical tempera-
ture distribution. However, the investigations of these
authors were restricted to the uniform pumping. It
was shown that under the uniform thermal loading
of the cylindrical AE with temperature independent
thermal conductivity the quadratic radial dependence
of the temperature distribution is achieved and that ra-
dial dependences of stresses and deformations are also
quadratic for this case. The TO part of index change
was described using the coefficient B_and the fact that
Nd:YAG is a cubic crystal of symmetry class m3m
was used in deriving the expressions for the PE part
of index change. Nondimensional PE coefficients C ,
(in front of radially parabolic temperature terms)
were introduced in [[1§] for the description of the PE
part of the thermally induced refractive index change.
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Afterwards they were accepted in the first edition
of Koechner’s monograph [E] and have been widely
used till now, even in the graduate texts for students
[, ]. It should be noted that in the practically un-
known paper [@] both grown directions [001] and
[111] were considered for rod and disk shapes of AE
made from YAG and Al O,. The results of [[19] were
partly reproduced later in the monograph [[1]].

Around that time the studies of the TL in heat-
ed windows of a high-power laser have started [@,
@]. The plane stress (PSs) approximation was used
for the description of optical distortion in thin disk
shape crystal windows neglecting their mechanical
and photoelastic anisotropy. A new generalized pa-
rameter y = x, + X, + x, was introduced [@] for the de-
scription of the optical distortion effect in windows,
where y, = dn/dT is the temperature derivative of
the refractive index at zero stress, x, = (n,~1) a, (1+v)
is the thermal expansion (bulging) term in the PSs
approximation, and y, is the stress-optic term (#, is
the initial refractive index, «,is the linear expansion
coefficient, and v is the Poisson’s ratio). This approach
was further developed by Klein [E, @]. As will be
shown later, the expression for the polarization aver-
aged PE part of the refractive index change obtained
in [@] is not correct for the case of a long rod.

The generalized TO coeflicients , , were proposed
in [@]. These coefficients incorporated the TO coef-
ficient dn/dT, the bulging term y, and the PE part of
the refractive index expressed through the C , with
reference to [E]. Several inaccuracies were made in
this original proposal (see a detailed discussion later).
It was properly indicated in the review paper [8] that
the “PE constants” C , are different when using PSn
or PSs approximations. However, it was also claimed
in this review that “W. Koechner published incorrect
values of these coefficients in his reference book [ﬁ]
because the temperature term in the Hook law has
been omitted”. In spite of the above remarks, the co-
efficients C , and y , were widely used in the previ-
ous form, see as exafnples [, ]. It may be due to
the impression which has arisen from the widely refer-
enced works of Cousins et al. [@, @] that end-pump-
ing of SSL requires the obligatory use of the PSs ap-
proximation with the generalized TO coefficients y
incorporating the bulging term x, and the unspecified
on/dT and C ;. The main goal of a recent paper [@]
was to verify the existing analytical expressions due to
Koechner and Foster & Osterink using finite-element
simulations. The conclusion “that the Koechner and
Foster & Osterink treatments are correct, and that
Chenais et al. made mistakes in their derivation of
the thermally-induced strain” was made in this paper.
This confusion was resolved in papers [@, @] though

paper [@] was not known to us during the writing
of these papers. It was shown that different, but in
principle correct, expressions for the PE coefficients
C, , using the same PSn approximation were obtained
due to the use of different TO coefficients (TOC) and
different descriptions of the PE effect: (0n/0T),__, (and
the piezo-optic variant of the PE effect) was used in
[, ], just when (0n/0T)__, and the elasto-optic vari-
ant of the PE effect was used in [E].

In this paper, the correct use of linear thermo-
optic and photoelastic effects for the description of
thermally induced refractive index change is briefly
discussed and the analytical relations between TOC
at zero stresses and zero strains are found for all
classes of cubic crystals. It is shown that the use of PE
coefficients C , for different (not only for parabolic)
temperature distributions is invalid and leads to sig-
nificant discrepancies for thermally induced birefrin-
gence. The examples of inconsistent usage of the gen-
eralized TO coeflicients y , are discussed. It is shown
that the direct use of these coefficients significantly
overestimates the values of optical power of the ther-
mal lens when the PSs approximation is applied to
the laser rods with lengths several times longer than
their diameter.

2. Photoelastic effect and relations between
thermo-optic coeflicients

The constitutive equations of the linear theory of
thermoelasticity for homogeneous crystals have
very clear and short expressions if they are written
in a tensor form. The Hooke’s law [@, ] was ex-
tended by Duhamel and Neumann to include the first
order linear effect of thermal loading. This general-
ized Duhamel-Neumann law states that the total
strain g = (au/axj + au]/axi)/ 2 at the point of a solid
consists of the stress-induced elastic strain & = 5,0,
and the strain caused by the free thermal expansion
siJT.z o (T-T): €= &+ sif [@]. Here u, is the deforma-
tion (fisplacements, S, 1s the components of the 4th-
rank compliance tensor, 0, is the stress tensor and
a; is the coefficients of linear thermal expansion,
T is the temperature field at which the body is stress
free and strain free. The inverted form of the Du-
hamel-Neumann law is given in an indicial form by
T, = Cpuls where Cg 1 the components of the 4th-
rank stiffness tensor [B2]. The summation conven-
tion where repeated indexes indicate summation is
implied throughout this paper.

The change of the relative dielectric imperme-
ability tensor B, is commonly used for the phenom-
enological description of the optical effects induced
in crystals [@]. Unfortunately, the contributions of
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TO and PE effects to the thermally induced change

AB_ are generally treated separately as independent
ij

actions (see, for example, recent papers [@, é, @]).

The change of the refractive index due to the TO ef-

fect for the te%erature change AT = T-T is calcu-

lated first [@, @] as

An"® = (dn/dT)AT (1a)
without specifying dn/dT. Then, it is assumed in [@,
@, @] that the components of the optical indicatrix
can be calculated using the “equivalent” expressions

ABij = 11,,0,, Or AB,-]- = Py (1b)
where 7., and p,, are the components of the piezo-
optic and of the elasto-optic tensors with the follow-
ing comments: “Normally one chooses one or the oth-
er formulation for use in a particular problem but, if
done properly, the results will be identical” [@].

As explained in [@], if one wants to use stress or
total strains in the description of the thermally in-
duced photoelastic effect, the following expressions

should be used:

BIJ(T’ Ukl) = BSJO) + (aBi]/aT)Tr,(f:O AT

+(9B,/d0,),. Ot (2a)
B,(T,e,) = BY+ (3B,/T), _, AT
+(9B,/0g,),. o &t - (2b)

Here B is an initial impermeability tensor of the crys-
tal at the reference temperature T, and zero stresses
and strains, the second (different, in principle) terms
describe the change due to the linear TO effect and
the last terms (generally, also different) describe
the change due to the linear piezo-optic or elasto-op-
tics effects [@]. Thus, the final results will be identical
only if these differences will be carefully taken into
account.

In general, the piezo-optic T = (aBij/ale)Tr,a=0 and
the elasto-optic p,,, = (0B, /0e,), _,tensors are sym-
metric with respect to i and j, but not necessarily sym-
metric with respect to k and / [BJ], due to the con-
tribution of rotation of the volume element in an
optically anisotropic medium. This symmetry is valid
for cubic crystals only. A cubic crystal with an ini-
tial refractive index n; does not change its symmetry
during free expansion (0,, = 0) and remains optically
isotropic. Therefore, the change of an impermeability
tensor with temperature change due to the linear TO
effect can be expressed in this case as

BEo0 =8 [n,+ B AL, (3a)

and the total impermeability tensor can be presented as

— R(T, 0=0)
Bij(T, akl) = Bij + 71,0y

(3b)

If the full strain tensor ¢ is used [E], then an elas-
to-optic form of the impermeability tensor change
should be used [@]:

Bij(T, g,)= B;_T’ =0 4 P (3¢)
Here
ijT’ e=0) = 61,]./[710 + BATI (3d)

Finishing the discussion of backgrounds of TO and
PE effects, it is now appropriate, first, to note that it is
mistakenly assumed in papers [@, @] that the total
strains ¢, are expressed as ¢, = (Ju,/dx, + du/dx,)/2+e,
(Eq. (2) in [@, @]) with the redundant free expan-
sion term. Therefore, the constitutive Egs. (3) and (4)
in [@] are only valid if this additional term is switched
off. Second, it is especially strange that the authors of
[@], despite explicitly indicating difference between
elastic &7, and total ¢, strains, do not recognize that
Eq. (1b) will be actually equivalent if ¢,, were changed
to &, [é].

The cubic sesquioxide Sc,0,,Lu,0,, and Y,0, crys-
tals and their ceramics were used in the past decade as
host materials of SSL. These media have thermal con-
ductivity comparable with that of YAG, whereas a Yb-
doped gain bandwidth is significantly larger. This fea-
ture allows obtaining pulses with duration down to
50 fs at the oscillator output in the mode-locking re-
gime. Thermally induced depolarization and thermo-
optic properties of sesquioxide class m3 single crystals
and ceramics are studied in recent papers [].
Therefore, finding relations between S, and f3; is very
relevant for such sesquioxide class m3 single crystals.

It should be noted that the elasto-optic and pie-
zo-optic matrices of m3 and class 23 crystals are not
symmetric and have four independent components.
Using the method proposed in [@] and Eq. (3),
the required relation

[;0:/38—051713(]711"'}712*'1713)/2 (4a)
is easily found. Using the relation p =7 ¢, [@],
Eq. (4a) may be written as

B,=B. - (an/2) (m +m,+m,)(c,+2c,), (4b)

where ¢, is the components of the stiffness tensor.
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The previous result [@] follows easily from Eq. (4)
if the equality p,, = p,, is taken into account [@].
It is also seen that Eq. (4) does not depend on p,, or
m,,. It is due to the fact that only principal strains
and stresses exist during free expansion or hydro-
static pressure of a cubic crystal. Unfortunately, we
could not find in the literature any data concerning
the values of elasto-optic or piezo-optic components
of such crystals.

TO and expansion coefficients of YAG were mea-
sured many times and their values are widely ranged:
B,=(7.3-12.1) x 10°K" and a = (5.8-9.9) x 10° K!
at 300 K. Meanwhile, paper [BY] is the only one ref-
erenced in the literature [[1-13, ] for the val-
ues of measured elasto-optic coeflicients (EOC):
p, = -0.029, p_ = 0.0091, p,, = -0.0615. However,
different values p , = 0.060 and p,, = 0.022 were mea-
sured in [4Q]. To the best of our knowledge, there
are no papers in which the results of [@] were dis-
cussed or refuted. Moreover, it was noted in the later
work [@] that “Introduction of the ions Er**, Nd**,
Cr’**, Sc¢** into the garnet hosts significantly increas-
es the PE interaction parameter in comparison with
the original crystals” The following values were given
for the Er:-YAG crystal: p;, = -0.081, p;, = -0.035,
p,, = —0.082. The values of elasto-optic parameters
for other garnets from this paper are referenced in
(], but for the YAG crystal the previous data from
[BI] is presented. It is seen that the values of EOC
measured in these papers differ significantly not
only in their magnitude but also in signs. We do not
think that the doping can change so strongly the val-
ues of elasto-optic parameters, but if so, then new
measurements of EOC for YAG crystals and first
measurements for sesquioxide single crystals with
different doping ion concentrations are needed. In
a recent paper [@] the following values for polycrys-
talline YAG are obtained: Pe=-0.0627, ps= 0.0260,
P¢= —0.0444. These values do not fulfill the equality
p,,= (p,—p,,)/2 for isotropic solids [@]. We think
that this situation may be possible for polycrystal-
line aggregates, but it is hardly probable for poly-
crystals the grains of which are much smaller than
the wavelength at which Py is determined [@].

Thus, the difference .= .~ f,= a.n(p,, + 2p,,)/2
changes not only the value but also its sign when dif-
ferent values of p; from [] are used. The values of
the ratio | S, |/j3, are equal to 0.04, 0.4, and 0.6 if data
from [ﬁ] and the highest (for «,) and lowest (for
B,) values are used in calculations. However, the mi-
croscopic relation proposed in [E] between TOC for
YAG gives a very high value of .= 31.5 x 10° K™ as
compared with the value of f,= 9 x 10° K™ used in
that paper.

3. Plane strain and plane stress approximations in
thermal lensing

The PSn and PSs approximations of linear thermoe-
lasticity are widely used for the description of thermal
refractive index changes in an elastically isotropic AE
of SSL under axially symmetric pumping. In the po-
lar coordinate system the strain and stress tensors for
both approximations have only the diagonal compo-
nents and are expressed [[I4] through the local tem-
perature T(r) = T(r) - T and average temperature T
changes in the circles with the radius r and R, the rod
radius. PSn and PSs approximations are strictly valid
for the temperature distributions which do not change
along the axial direction. The expressions for stress
tensors [@] can be written in a particularly simple
symmetrical form [@] if the following definitions are
introduced:

2 fr o~
n _
TV = = .[0 T (r)rdr, (5a)

Fr) =T Fryo L 4T
T0)=T"-T(=— jo o (5b)
Then, simple expressions for the refractive index
in the plane strain (superscript j = 1) or plane stress
(superscript j = 2) approximations may be found [@]:

I’l(jé) =n, _Al(qi)T(R) +[ﬁa +A1(Qi)]TiA2(qi)T_ (6)

r’

Here upper (+) and lower (-) signs describe the radial
and tangential components of index change and

©h= 133((1%—16)(4”“ +87,-T,,), (7a)
o = l;q‘z(lx—if)(ﬂn—nlﬁ 2r,,), (7b)
A4 = %(Zn”+47r12+n44), (7¢)
AL ana—TE(ﬂ'“—ﬂ?lz-i- 2r,,), (7d)

12

where E is the Young’s modulus.

The above coefficients A"? may be easily ex-
pressed through the elasto-optic coefficients [@].
A superscript o in these coefficients means that they
should be used together with the TO coefficient 8 in
Eq. (6). If Egs. 3(c, d) with B_are used in the deriva-
tion of expressions for the refractive index, then for
these coefficients A"? a superscript ¢ is used [@].
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As shown in [@], the equality B, + A = B+ A% is
valid.

It is obvious that ceramic lasers [@] will be very
widely used in the near future. Therefore, a short re-
view of the formulae used previously for the descrip-
tion of the PE effect in isotropic solid media is appro-
priate. Using Egs. (6) and (7) it is easy to get explicit
expressions for the constants B” and B, used in [@F@]:

3
n
B, =—(8n/d0));_= 7% "

3

B, =—~(an/da). = ’;—07112. (82)

Using the relations between 7 and p_ for isotropic
ij ij
solids [é], these constants can be expressed through
the EOC:

B|| = (n)/2E) (p,,-2vp,,)s
(8b)
B, = (n,/2E) [(1-v) p,,-vp,,].

In Russian literature the constants C, = —B|| and
C, = -B, with the opposite sign were used more often.
So, the widely used [IE, E, H] constants

W= +(n-1a, (9a)
_p %k ; (9b)
P=B, 2 —v)(C‘ +3C,)
o E 3
Q= 2(1-v) (€ -G) (9¢)
are simply expressed as
P=p + A", Q=-A. (9d)

Then the thermally induced refractive index for
isotropic solids in the plane strain approximation
may be presented as

W (p) = R)
nrﬂ(r) =n,+ B T

+ P(T-TW) + Q(T-T™). (10a)

Taking into account that the longitudinal com-
ponent of the strain tensor in this approximation is
el = o TW [@], the local change of the optical path
(without taking into account the end-face-bulging)

may be expressed as [El, E, H, @]

OP®(r) = [((W-P)T® + PT+Q(T-T")]L.  (10b)

The authors of [@] incorrectly assumed that these
expressions can be used for mechanically anisotropic
cubic crystals (LiF, KCI, Can) if their anisotropic PE
properties are taken into account. The details of ana-
lytical simulations of the TO characteristics of the cy-
lindrical and disk AE are absent in [E, @]. Therefore,
the validity of the presented expressions was checked
by comparing the formulae in [E, @] with our expres-
sions (6) and (7). It can be shown that for the rod type
AE QW = A and the TO coefficient 8 = B should
be changed to f, in the expressions for W and P®. It
should be also noted that the bulging term x;? = (n,-
1) (1 + v)a_ in the PSs approximation is introduced
into P® [é, ].

In a long series of papers (see, for example, [23,
24]) Klein promoted the idea that the (111) plane for
all cubic crystals has isotropic elastic and PE prop-
erties. Therefore, it was assumed (by analogy with
Eq. (8)) that optical path distortion may be described
by introducing two new piezo-optic coeflicients
M, = (m, +m,+m,)/2and n, = (7, + 57, - m,,)/6 for
stresses applied parallel and perpendicular to the po-
larization axis, respectively. Then, thermal lensing co-
efficients y, for “thick” windows

3
1 =B+ :(Ola_rf) (m +3m,)> (11a)
 _ ngaTE (EH ) (11b)
4(1-v)
and for “thin” windows
X2 =p + Xé?*L (nya, E/4)(m +m.), (12a)
¥ = (nget, E/4)(m~m,) (12b)

were introduced. The coefficients y!" combine TO co-
effients (TOC), bulging terms (Xé;) = 0) plus the aver-
age PE effect for two polarizations. The coefficients
x¥"? characterize the stress-induced birefringence.
Comparing with our expressions it is easy to see that
P = A and y® = A, Unfortunately, the sec-
ond term in x" does not equal A{". The reason of
this mistake is the impossibility to present, in general,
the change of the impermeability tensor for cubic

crystals in the same form as for isotropic solids when

m,,=m, —m,and =T, L=, Therefore, Eq. (11))
can only be used for isotropic solids, as in [47] for
glasses.

It should be noted that the general expressions for
thermal stresses and strains in the plane strain ap-
proximation for hollow and bulk rods were described
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in detail in the little-known monograph [ﬂ] and pa-
per []. The piezo-optic version (2a) of the PE effect
and piezo-optical coefficients were used consistently
in those works. Therefore, relations between _and 3,
were not needed for the accurate description of ther-
mal optical distortions in YAG crystals. It has also been
understood for a long time that the use of the standard
PSn approximation for isotropic solids for the descrip-
tion of thermoelastic stresses in mechanically aniso-
tropic crystals is incorrect and that search of new so-
lutions is required [@]. This hard task was solved in
the PSn approximation for cubic [#9] and generally
anisotropic [pQ] crystals for parabolic temperature dis-
tribution only. The last solution was recently used in
the series of papers (see, for example, [@]).

4. Refractive index change for special pump beam
distributions

In the previous section the PSn and PSs approxima-
tions for general axisymmetrical temperature distribu-
tion were analyzed. However, the parabolic tempera-
ture distribution has been mainly used [ﬂ, @]. For this
case the PE coeflicients C , were introduced [16] which
were later attacked in review [E].

A particularly simple solution of the heat transfer
equation can be found [@] for the polynomial radial
heating distribution where the normalized thermal
loading on the rod axis is expressed through the full
loading power P, of a cylindrical AE with radius R
and length L. The known results for uniform and par-
abolic pump beam distributions follow from this so-
lution. The solutions for top-hat and Gaussian pump
beam distributions can also be found [@].

The radial temperature distributions for these four
pump distributions with the same P, = 60 W for a cy-
lindrical YAG rod with R = 2 and L = 10 mm are pre-
sented in Fig. E] The following parameters were used
in numerical simulations: thermal conductivity coef-
ficient k, = 0.105 W/(cmK), coefficient of the New-
ton’s law of heat transfer & = 2 W/(cm?K), the radii of
top-hat and Gaussian pump beams r, = w_=1 mm. It
is seen that the temperature at the rod e(fge does not
depend on the pump beam distribution inside the rod;
it depends on the full thermal load P, and the coeffi-
cient h only. It is also obvious that transverse tempera-
ture distribution is parabolic for a uniform pump only.
The radial temperature gradients are very different.
Therefore, the thermally induced stresses, strains and
refractive index changes are also very different.

The refractive index distributions for radial and tan-
gential directions are presented in Fig. P. They were cal-
culated using Eq. (6), EOC from [E,%, | and the val-
ues B, = 8.4 ppm/K and &, = 6.4 ppm/K at T, = 300 K

T(r) (K)

r (mm)

Fig. 1. Radial temperature distribution for uniform (up-
pointing triangle, blue online), parabolic (square), top-
hat (circle, red online) and Gaussian (down-pointing
triangle, green online) thermal loading with the same
total power.

(a)

n ()

r (mm)

(b)

—
~
N
)
<

r (mm)

Fig. 2. Radial distribution of the radial (a) and the tan-
gential (b) refractive index for uniform (up-pointing
triangle, blue online), parabolic (square), top-hat (cir-
cle, red online) and Gaussian (down-pointing triangle,
green online) thermal loading with the same total power.
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from [@]. It is seen that both induced indices are
higher than the initial index n, = 1.8147 used in the nu-
merical simulations. Therefore, the standard presen-
tation of thermal index variation as n(r) = n (1-yr’)
(see, for example, || ﬁ m 16-1§)) is not valid even for para-
bolic temperature distribution. It is necessary that at
the optical axis the stresses and strains in radial and
tangential directions would be equal as 7 (0) = 1,(0).
Sometimes, in the literature numerically obtained re-
sults do not satisfy these requirements for an axially
symmetric case. It is also seen that, in general, index
variation is not proportional to radial temperature
variation as it is often assumed [[, ] where the local
change of temperature AT(r) = T(r)-T, or the refrac-
tive index An',?(r) = n,?(r) - n is not clearly distin-
guished from the nonlocal temperature 0T(r) = T(0)-
T(r) or the index difference

6n'y (r)=ns> (0)-n'? (r)

=[B, + A PIST(r) F AT 2T (r).

(13)

It is also clear that the generalization of the simpli-
fied formula

On{7 ()= B,
+2n50,,C G VST (r),

(14)

which is valid for parabolic temperature distribution
to the general temperature distribution, is incorrect
in the general case, C'7"” is the so-called photoelastic
coefficients (PEC) in Wthh a superscript (1) desig-
nates the use of the PSn approximation, (2) is the use
of the PSs approximation and a superscript 0 means
that this PEC should be used together with §3,. If the 3,
is used in calculations, then another set of PE coef-
ficients C'*/? should be used in Eq. (14).

The dlfference between consistent and simplified
approaches can be seen more clearly if instead of
looking at Egs. (13) and (14) overwhelmed by a high
enough TO coeflicient ,, expressions 6n§j6)(r) and
on’).(r) without it are used in the PSn approxima-
tion (Fig. E). It follows from these results that the use
of a simplified formula for the Gaussian pump beam
leads to significant differences with the results ob-
tained when the PSn approximation is used consist-
ently. The positive temperature difference §T(r) > 0
increases monotonically with r. Therefore, én)(r)
and 6n)"(r) increase monotonically with r (Fig. B(a),
(b)) because C"(r) = 0.0176 for standard values of
EO coefficients (EOC) [B9] and CV*(r) = 0.0086 for
an alternative set of p; [#1]]. Slmllarly, the tangential
components of dn; (r) and on{*(r) decrease mono-

(a)

1.6

(-)
14 om? p =-0.029

on()  p,,=0.0091
12 ont) Pu=-00615
1.0
0.8
06
04
0.2
0.0
-0.2

©)
6”9(]

(Snfe)(r)xlo4

r (mm)
(b)
0.5
0.0
-0.5
-1.0

-1.5 o

n" pr=-0.081
ont” p,,=-0.035
oniy  Pu=~0.082

ont)(r)x10°

-2.0
-2.5
-3.0

r (mm)

Fig. 3. Radial distribution of the radial (square) and
the tangential (circle) refractive index difference due to
the photoelastic effect calculated from the simplified
formula (hollow) and the full formula (solid) using (a)
standard elasto-optic coefficients and (b) alternative ones.

tonically with r due to the negative values of PE coefhi-
cients C{" = -0.0025 and C{"V" = -0.0179. At the same
time, the variation of dn{’(r) is non-monotonical
with 7, even the sign of its value is changed. This be-
haviour is caused by the nonlocal nature of T(r) which
depends integrally on the temperature gradient.

The difference between consistent and simplified
calculation of the induced thermal index change af-
fects mainly the value and radial behaviour of the in-
duced birefringence dn(r) = n"(r) - n{"(r) (Fig. H)
It is seen that for the standard set of p, the simplified
calculation of the birefringence

Sn.(r)=2n0 . (CV —C )T (r)
(15)
= —dnjo, CPST(r)

gives higher values as compared with the consistent
use of Eq. (6); here C{ = (C{V-CV)/2. The situation
changes inversely when the alternative set of p; is used.
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on’
on;
on
on

on(r)x10*

r (mm)

Fig. 4. Radial distribution of induced birefringence
calculated using the simplified formula (hollow) and
the full formula (solid) with standard (circle) elasto-
optic coeflicients and an alternative set (square).

Itis seen that using different sets of EOC and different
approaches to the calculation for the same Gaussian
pump the obtained values of induced birefringence
in the YAG rod can differ significantly (~3 times) at
the rod edge (Fig. H) It should also be mentioned
that due to Eq. (4) the C,¥ = (C,>V-C )2 [pd]
is not “coincidentally the same formula obtained by
Koechner from incorrect expressions” | E p. 146].

5. On the use of generalized TO coeflicients

As mentioned in the Introduction, the generalized TO
coefficients y , were first proposed in EE] for top-hat
pumping of AE: “The optical path difference is given
by OPD = ATLy (2*) where AT is the temperature
difference from center to edge, and y is the TO coef-
ficient. y contain terms for refractive index changes,
axial expansion, and stress-induced changes in refrac-
tive index y = dn/dT + (n-1) (1+v)a, + r’a, C , (3%).
Here dn/dT is the thermal coefficient of the index of
refraction, v is Poisson’s ratio, «, is the coefficient of
thermal expansion, and C , is the photoelastic coef-
ficient [E] 7

Several inaccuracies were made in this original
proposal. First of all, two coefficients x , (not one y)
need to be defined. Second, the OPD and AT are not
clearly defined. Therefore, the definition of the opti-
cal path OP(r) should be clearly stated. Let z, and z,
be reference planes on the opposite sides of the laser
rod [@] Then, the opncal path is defined as the inte-
gral OP(r,z, — zl)—J n(r,z)dz at the constant r from
plane z, to plane z, 1nclud1ng intervals in the air and
in the thermally exc1ted AE. There are several possi-

bilities to define the optical path difference. We will
use in this paper the definition OPD(r) = OPD™(r) =
OP(0) - OP(r). Often the opposite definition OPD)(r) =
-OPD™(r) is used. It seems that in paper [@]
the temperature difference and optical path dif-
ference were defined as AT =6T = T(r) - T(R) and
OPD = OPD*(r) = OP(r) - OP(R), respectively, that is
OPD*(r) = —OPD(r) + OP(0) — OP(R). Further, the co-
efficient dn/dT was not specified, the expression for
the bulging term was obtained using the PSs approx-
imation which is valid for very thin disks only, but
the stress induced PE term with the Koechner’s PE
coefficients C_ valid forlong rods (and missing factor
of 2 before them) was used. Besides, as follows from
the previous discussion, the generalized TOC can be
introduced for only parabolic temperature distribu-
tions. For the top-hat pump temperature distribu-
tion differs significantly from that of the parabolic
one (Fig. ). Thus, it was assumed in [@] that the TO
coefficient y may be used for different temperature
distributions.

The definition of y , was updated in the review
paper ( [E] p. 115): “We would like to point out two
important clarifications... Only the plane strain case
was considered by Koechner. However, we saw that
the plane stress case is closer to reality in end-pumped
rods. Here we denote C and C, as the photoelastic con-
stants valid for long and thin rods (the “Koechner case”,
that is when the plane strain approximation is valid),
and C’ and C as the photoelastic constants derived
within the framework of the plane stress approxima-
tion. Since we are only interested in end pumping, we
only consider the C’, constants in the following”

Thus, the expressmn OPD, (r) = X(C)L(ST(r) where

X6 =B+ X + 2npe,Cl, was recommended by Ché-
nals et al. for the use in,the end pumped case in spite
of the AE length ([E] p. 119). Taking into account
the relation between 8 and 8, the equality x) =x% =
B, + Xo + X follows from this recommendation,
where ){2") 2n a,C?is the PE part. Thus, the opti-
cal path dlfferences in the PSn (superscript 1) and PSs
(superscript 2) approximations are given by

OPD{(r) = x4PLOT(r), (16)
where the generalized TOC are introduced: ;> = 8, +

Cogley” + X2 Using Eq. (4) and the definition

C,= C%, itis easy to get the new expressions

C(az) rA=-3V)+p,3-5) (17a)
16
Cd_ GC=w)p+ (T =1TV)p, + 80+ V) puy, (17b)
102 =
48
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Now, using two sets of EOC [@, @], the fol-
lowing values of PEC are obtained: C‘r"z) = 0.0033,
C = ~0.0116 and C" = 0.0329, C™" = 0.0133. It
is easy to show that C? = (C{*»? - C*?)/2 = (1-v)C{",
that is the birefringence parameter in the PSs approx-
imation, is 26% lower than that in the PSn approxi-
mation. It also follows that for the alternative set of
EOC the induced birefringence is 30% higher (C{"*"/
C{ = 1.32) keeping other parameters the same.

The value of the bulging coefficient C,_in Eq. (16)
depends on the approximation used: C,_ = ZCY=0in
the PSnand C = C*¥ = 1.0 in the PSs apprommatlons,
Cog = C® = 1/(1+v) if the free longitudinal expansion of
the whole rod is assumed [E] C,,=C®=2R/[L(1+v)]if
the Koechner assumptlon is use(f ﬁ C =C"=1/(1-v)
if the term VXxVx i in a steady state equ111br1u qua-
tion is neglected (# is a displacement vector) | g

To evaluate more precisely the contribution of
the bulging term direct calculations of face bulg-
ing were performed using COMSOL Multiphysics
for parabolic temperature distribution and different
rod lengths with the rod radius R = 2 mm (Fig. H(a))
The use of COMSOL Multiphysics software was vali-
dated [@] by reproducing the known numerical re-
sults for the so-called cubic cylinder with L = 2R for
the case of parabolic temperature distribution (see
(B, pp. 223-239).

The face bulging w(r) was normalized to the maxi-
mum sag w?(0) = (1 + v)a, |Té2 which is predict-
ed by the PSs approximation [#3]. The calculations
showed that the bulging is close to the PSs predic-
tion at L/R < 0.5 and saturates if L > 2R. Therefore,
the ratio C® = w(0)/w?(0) is close to 1 for a thin disk
only if L/R < 0.5 (Fig. H(b)). Thus, the bulging coef-
ficient C, = C* obtained by direct numerical calcula-
tions diminishes very quickly with increasing the rod
length, even faster than was proposed by Koechner.
It is also seen that the value of C, = = C™ proposed in
[@] is far from reality.

For the parabolic temperature distribution T(r) =
T, + T,(r/R)* the optical path difference is also parabolic
OPDSG’Z) (r) =12 2;2), where ff,};z) is the focal lengths
for radial and tangential polarizations. Thus, the op-
tical power of a thermal lens is given by D{{» = 1/
f§? = (-2LT,/R*)x'}?, that is proportional to the gen-
eralized TOC. In order to evaluate the value of optical
power the numerical values of all other parameters of
x'5” should be known.

The ratio of the focal lengths for tangential and ra-
dial polarizations is given by

1+ag (ng = D(1+V) Gy, +052C
140t (= D(14V) Cog +065213C 27

fé(ll)

f(l’z) - ( 18)

()

w(r)/w®(0)

(b) r/R

o

L/R

Fig. 5. Normalized bulging of the end faces for various
lengths of the AE with the same radius R = 2 mm (a)
and dependence of bulging coeflicients on the length of
the AE according to various approximations (b).

where the values of &, = &,/ liein the range 0.48-1.36
as follows from the literature known to us. It is easy
to see from Eq. (18) that this ratio is maximal for
the PSn approximation when the bulging term is ne-
glected (C, g = =0) and it is minimal for the PSs (C, bg = =1).

Obviously, for a rod shape AE the coefficients C("l)
should be used. The ratios (18) for AE with R =2 and
L =10 mm (Cbg = 0.23) are presented in Fig. H(a) and
(b) when EOC from [@] or [#1] were used, respec-
tively. It is seen that these ratios are slightly higher for
the alternative set of p; It is seen (Fig. E(a)) that for
the standard set of p_ this ratio does not exceed 1.34
in the whole range of «,.

It follows from Eq. (18) that a significant error may
be made when the PSs approximation is used for the cal-
culation of values of the focal length of the TL instead
of using a more correct formula with the correcting pa-
rameter C(B) derived in this paper. It is seen from Fig.
that the focal length determined in the PSs approxi-
mation (le; = 1.0) may be twice or even more shorter
than the length determined by using the appropriate
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Fig. 6. Ratios of radial and tangential focal lengths
for various approximations depending on the ratio of
the thermal expansion coefficient to the thermo-optic
coefficient at zero stress for (a) a set of standard elasto-
optic coeflicients and (b) an alternative one.

parameter C{?. There are many papers in the lit-
erature (see, for example, [@]) where the above
discussed incorrect approach is used. With refer-
ence to [E] the generalized TO coefficient y® is used
for the Nd:YAG crystal with the radius R = 1.5 mm
and the length L = 8 mm. For these rod parameters
the coefficient Cé? =~ 0.2 is even lower than the one
used in the numerical calculations (Fig. E). The au-
thors of [@] neglected the contribution of the PE
term x{") = 1.8 ppm/K to "’ = (7.3 + 8.0 + 0) though
the value C' = 0.0195 was pointed out in the text.
Then, instead of (0n/0T), = 31.5 x 10°° K! recom-
mended in [H] they used (without any comments) dn/
dT = 7.3 ppm/K and «, = 7.5 ppm/K. Thus, the value
of ¥ used in [@] is equal to 15.3 ppm/K instead of
X9=(31.5+8.0+0.3) ppm/K that follows from the rec-
ommendation of [E] and y""=(7.3+8.0+ 1.6) ppm/K
ifthe PSs approximation is consistently used. The value

¥ = (7.3 +0.2 x 8.0 + 1.6) ppm/K follows from our
calculations with C!¥ = 0.2 and C'V = 0.0176. There-
fore, the optical power used in [57] is 1.5 times higher
and would be even 3.8 times stronger than the one
obtained in this paper if the recommendation of [E]
were used.

6. Conclusions

Consistent application of the photoelastic effect and
the plane strain or plane stress approximation for
the description of a thermal change of the refractive in-
dex in the case of axisymmetric heat loading is analyzed
in detail. The analytical relations between thermo-optic
coeficients of the refractive index at zero stresses and
zero strains are found for cubic crystals of all classes.
These results may be interesting for researchers inves-
tigating thermal effects in very promising sesquioxide
class m3 single laser crystals. It is shown that the ratio
of the difference between thermo-optic coeflicients at
zero stress or zero strain to the thermo-optic coefhi-
cient at zero stress is significantly larger for alternative
sets of YAG elasto-optic coeflicients known in the lit-
erature as compared with a standard set of elasto-optic
coeflicients which is the only one used in the descrip-
tion of thermal lensing.

A detailed analysis of the analytical expressions for
thermal radial and tangential changes of the refractive
index in the [111] cut YAG crystal for general axisym-
metric thermal loading is carried out. Misunderstand-
ings related with the so-called photoelastic coefficients
are eliminated. It is shown that the use of these coef-
ficients for various pump beam distributions may lead
to significant discrepancies for thermally induced bire-
fringence as compared with the consistent use of plane
strain or plane stress approximations.

The contribution of the bulging term into the gen-
eralized coefficient is analyzed numerically. It is noted
that the usage of photoelastic and generalized thermo-
optic coefficients is not as useful as it is widely assumed.
It is also shown that the common use of generalized
thermo-optic coefficients significantly overestimates
the value of optical power of thermal lenses when
the plane stress approximation is applied to the laser
rods with lengths larger than their diameter.
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FOTOELASTINIO EFEKTO, PLOKSCIU ITEMPIU IR DEFORMACI]Y ARTINIY
NAUDOJIMAS APRASYTI SILUMIN] FOKUSAVIMA

D. Brickus, A.S. Dementjev

Fiziniy ir technologijos moksly centro Lazeriniy technologijy skyrius, Vilnius, Lietuva

Santrauka

Naudojant tikslias iSraiSkas, aprasancias pjezo op-
tinius ir elasto optinius efektus visy klasiy kubiniuose
kristaluose, surasti analitiniai rysiai tarp lazio rodiklio
temperatiiriniy i$vestiniy esant nuliniam jtempiui ir
nulinei deformacijai. Sie ry$iai gali biti naudingi tir-
ti $iluminius efektus perspektyviuose m3 klasés tipo
lazerio kristaluose. Skai¢iavimuose naudojami daznai
cituojami standartinis ir literatiroje rastas alternatyvus
YAG elasto optiniy koeficienty rinkiniai. Parodyta, kad
termo optiniy koeficienty vertés randamos naudojant
$iuos rinkinius Zenkliai skiriasi. Rastos radialinio ir
tangentinio Siluminio lazio rodiklio pokycio analitinés
iSraiskos YAG tipo mechaniskai izotropiniams krista-

lams, naudojant ploks¢iy jtempiy bei ploksc¢iy deforma-
cijy artinius. Aptartos $iluminio lazio rodiklio poky¢iui
aprasyti literatiroje daznai naudojamos vadinamosios
termo optinés konstantos. Pasalinti nesusipratimai, su-
sije su fotoelastiniais koeficientais, ir rastos naujos jy
iSraiskos. Parodyta, kad $iy koeficienty panaudojimas
néra toks naudingas, kaip daznai manoma, ir kad esant
skirtingiems kaupinimo pluostams tai gali atvesti prie
dideliy $iluma indukuoto dvejopo lazio skirtumy, pa-
lyginti su nuosekliai naudojamu ploks¢iy deformacijy
artiniu. Taip pat parodyta, kad $iluminio le$io optinio
stiprio vertés gali bati labai pervertinamos, kai ploksciy
jtempiy formulés yra taikomos lazerio strypams su ilgiu,
kelis kartus didesniu nei jy diametras.



