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The functioning of the solar cells (and photoelectric phenomena in general) relies on the photo-generation of carriers in 
p–n junctions and their subsequent recombination in the quasi-neutral regions. A number of basic issues concerning the phys-
ics of the operation of solar cells still remain obscure. This paper reports on some unsolved basic problems, namely: a model of 
the recombination processes that does not contradict Maxwell’s equations; boundary conditions; the role played by space charges 
in the transport phenomena, and the formation of quasi-neutral regions under the presence of nonequilibrium photo-generated 
carriers. In this work, a new formulation of the theory that explains the underlying physical phenomena involved in the generation 
of a photo-e.m.f. is presented.

Keywords: photoelectric phenomena, solar cells, Dember effect, transport equations, recombination, nonequilibrium 
carriers

PACS: 72.20.Jv; 72.10.Bg; 78.56.-a

1. Introduction

Charge carrier transport underlies the electrical be-
haviour of any semiconductor device [1–4] and, in 
particular, of solar cells [5, 6]. Despite the  efforts 
made to correctly model such transport in semicon-
ductors over the years, many questions still remain 
open. These questions need to be addressed in order 
to correctly model future devices.

One of these open questions is how to model car-
rier recombination. The  mathematical expression 
routinely used to model the recombination rate [7] 
is basically incorrect. It has recently been demon-
strated that it contradicts Maxwell’s equations, and 
hence a  new corrected model must be developed 
[8]. This problem was partly addressed in previous 
works (see, for example, Ref. [9]). Recombination is 

a  key feature when describing carrier transport in 
semiconductors because it strongly affects the elec-
trical response of the semiconductor at all levels of 
external excitation. This phenomenon is not limit-
ed to pure electrical problems but is very general, 
since the nonequilibrium charge carriers created by 
several physical sources (photo-generation, for in-
stance) will lead to similar situations that need to be 
described using the same model [10–14]. The last re-
mark that must be made about the need for a correct 
modeling of recombination is that in devices operat-
ing under a strong excitation regime (the operation 
of solar cells lies in this regime) the  importance of 
a correct formulation of the recombination terms is 
even more important [15, 16].

Since in general the  set of Poisson and trans-
port equations cannot be solved analytically, some 
simplifications must be introduced if we are to 
achieve a closed form solution. One approximation 
commonly used to solve this system of equations is 
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the  assumption of quasineutrality (QN) [17–19]. 
The  use of the  QN approximation is acceptable if 
the sample’s and the diffusion lengths are both larger 
than the Debye length. Although QN has been rou-
tinely used in semiconductor device modeling for 
many years, the  role of space charge in the  forma-
tion of the  current–voltage characteristic (CVC) 
in a  semiconductor is still controversial. One of 
the main aims of this paper is to address the prob-
lems detailed earlier in the text.

The functioning of solar cells relies on the pho-
to-generation of carriers in p–n junctions and their 
subsequent recombination in quasi-neutral regions. 
A number of basic issues concerning the physics of 
the operation of solar cells still remain obscure.

A very important question is the  choice of 
boundary conditions used when solving the  car-
rier-transport equations. It should be noted that 
the  expressions commonly used are valid only for 
semiconductor devices operating in open-circuit 
conditions (see, for instance Ref. [20]). Since in 
normal operation a  current flows at the  terminals, 
a widespread use of boundary conditions for open-
circuit conditions is incorrect. For closed-circuit 
conditions, a  different set of boundary conditions 
needs to be derived. This problem has only been ad-
dressed in the last few years [21–23].

All the  abovementioned issues need to be ad-
dressed when modeling any semiconductor devices. 
Solar cells are one of the  strongest technologies in 
the steadily growing photovoltaic market [24].

This paper reports on some unsolved basic prob-
lems encountered when modeling solar cells.

Let us note finally that the  general theory [25–
28] of another photothermal effect, Dember effect, 
is erroneous, which was shown recently [29, 30]. 
The correct theory bases on the same ideas that are 
presented below. It is interesting that the  Dember 
photo-power induced by ultrashort laser pulses of-
ten significantly exceeds its steady-state value [31].

Other mechanisms of photoelectric phenomena 
based on the same physical conceptions are present-
ed in Refs. [32, 33].

2. Problem statement

The commonly accepted electrical model for the cur-
rent density–voltage characteristic (CVC) of an ideal 
p–n junction is [34]:

J = J0(eV/VT–1), (1)

where J is the  diode current density, V is the  bias 
voltage, VT is the  thermal voltage and J0 is the  re-

verse-saturation current density that for a  long 
abrupt diode is

 
. (2)

Here σ n
p  (σ np) is the  electron (hole) conductivity of 

minority carriers in the p-side (n-side) of a junction 
diode; LD

n and LD
p are, respectively, the  electron and 

hole diffusion lengths of minority carriers in n- and 
p- sides defined as

 (3)

where Dn (Dp) is the  electron (hole) diffusivity, and 
τn (τp) is the electron (hole) minority carrier lifetime.

Equation (1) may be rewritten for a solar cell un-
der illumination as [35]

–J = J0(eV/VT–1) + JI , (4)

where JI is the photocurrent, and J is additionally re-
lated to the generated voltage V through the external 
resistive load (R) in the circuit and the solar cell area 
(S) as shown in Fig. 1:

  
. (5)

For the sake of simplicity, let us examine the pho-
tocurrent generated in the slab of the semiconductor 
of thickness L with the incident light at x = 0. JI may 
be obtained as the integral of the light intensity across 
the device I(x):

. (6)

Here e is the absolute value of the electron charge, α is 
the absorption coefficient of light, and β is the quan-
tum efficiency,

Fig. 1. Solar cell diode with an external resistor load.
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, (7)

where α0 is the absorption coefficient on free carriers 
[36].

The light intensity inside the semiconductor slab 
will decrease following the law

I = I0e
–αx, (8)

where I0 is the  light intensity (number of incident 
photons per unit time and unit area) at the plane of 
the incident light (x = 0), and the carrier generation 
rate due to photon-absorption can be written as

g = (α – α0) I0e
–αx. (9)

The set of Eqs.  (4)–(9) may be extended or aug-
mented with other equations for a finer modeling of 
a real technology [37], but this set constitutes the fun-
damental framework to describe the electrical behav-
iour of any diode-based solar cell.

Let us assume a  one-dimensional problem for 
a single-diode solar cell such as the one given in Fig. 1. 
In this case from Eq. (4) we obtain the current–volt-
age characteristic (CVC) as shown in Fig. 2, left.

If we have a long structure or a strong recombina-
tion rate (LD

n,p → 0 and τn,p → 0),

ln,p << LD
n,p, (11)

according to Eq.  (2) J0  →  ∞ and, moreover, from 
Eq. (4) we obtain Voc = 0.

From the  above it follows that the  framework of 
basic equations conventionally used to model solar 
cells fails [39]. Regardless of its apparent simplicity, 
since this framework constitutes the  foundations of 
any electrical modeling of a  solar cell diode, the dis-
cussed problem will persist in any other model that one 
can build, therefore it is crucial to identify the origin 
of the problem and modify the basic model to build 
a new framework free from unphysical errors. In this 
work we will present a new model and we will analyti-
cally show in a  simple case that this new framework 
does not fail to correctly describe the solar cell.

3. Model description

The macroscopic description of the transport of non-
equilibrium charge carriers is done with the continu-
ity equations for the electron (jn) and hole (jp) current 
densities and the Poisson equation (PE) (see Ref. [20]):

 
, (12)

, (13)

, (14)

where n and p are the local electron and hole concen-
trations (n0 and p0 are the equilibrium values); gn and 
gp are the electron and hole external generation ratios; 
E is the electric field; ρ is the bulk electrical charge; e is 
the hole charge; ε is the permittivity; and Rn and Rp are 
the electron and hole recombination rates. The above 
system of equations must be solved self-consistently 
on both sides of the p–n junction of the solar cell.

Subtracting Eq. (13) from Eq. (12), we obtain

 . (15)

Unless otherwise indicated, and with no loss of 
generality, in this paper we shall refer to a semicon-
ductor that contains an impurity with a single energy 
level able to capture electrons. The charge conserva-
tion in this special case can be written as [40]

Fig.  2. J–V characteristic of an ideal solar cell with 
the short- and open-circuit expressions for the axis-inter-
cept points Voc and JSH, respectively (left). J–V characteris-
tic in the limiting case of a thin-film cell ln,p << LD

n,p (right).

According to the values of diffusion lengths in Si 
(in a c-Si thin-film solar cell or in a-Si ones of nano-
metre dimensions [38]), the following inequality will 
hold:

ln,p << LD
n,p. (10)

From Eq. (10) it follows that LD
n,p → ∞ and τn,p

 → ∞; 
therefore, recombination is negligible and according 
to Eq. (2) J0 → 0 and, moreover, from Eq. (4) the ba-
sic model leads to the  unphysical result (see Fig.  2, 
right): J ≈ –JI, i. e. the p–n junction behaves as a cur-
rent-source that translates photo-excitation into cur-
rent at any value of the diode-voltage independently 
of the p–n junction properties.

JSH = –JI JSH = –JI
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, (16)

where j is the total current and nt is the concentration 
of electrons captured by the impurities. From Eqs. (15) 
and (16) we obtain the following relationship [8]:

 . (17)

As it follows directly from Eq. (17), the deviation of 
the concentration of the electrons trapped in the impu-
rity level, δnt, from its equilibrium value, n0t, depends 
on the deviations of the electron and hole concentra-
tions from their own equilibrium values (δn = n – n0, 
δp = p – p0) through Rn and Rp, and on gn, gp and t.

Under stationary conditions, from Eq. (17) it fol-
lows that

Rn – Rp = gn – gp . (18)

In the  case of a  semiconductor that contains 
a concentration Nt of impurities, and assuming that 
the  impurities follow Shockley–Read–Hall statistics, 
[7], the recombination rates Rn and Rp can be calcu-
lated (we are implicitly assuming thermal equilibrium 
between electrons, holes and phonons):

Rn = αn(T)n(Nt – nt) – αn(T)n1nt, (19a)

Rp = αp(T)pnt – αp (T) p1(Nt – nt) . (19b)

Here αn(T) and αp(T) are the  electron and hole 
capture coefficients, and n1 (p1) is the electron (hole) 
concentration when the Fermi level matches the acti-
vation energy of the impurity.

Further the  temperature dependence of αn and 
αp will be omitted. Once Rn and Rp are available, nt 
can be obtained using Eq. (18). Replacing nt back in 
Eqs.  (19), the  recombination rates Rn and Rp are fi-
nally obtained in terms of n, p, gn and gp.

Assuming a  constant and uniform temperature 
across the sample, we obtain the following expression 
for nt:

 
. (20)

By substitution of Eq. (20) in Eqs. (19) we obtain

 
,       (21a)

 

.       (21b)

It should be stressed that this result is valid for any 
level of excitation.

Let us now consider that the  level of the excitation 
(generation) is weak, such that δn  <<  n0 and δp  <<  p0. 
In this case, the  recombination rates and the excess of 
the electron concentration on the impurities reduce to

 
, (22a)

 , (22b)

 , (22c)

where n0
t, p

0
1 and n0

1 are the equilibrium values of their 
respective magnitudes and nt = n0

t + δnt.
Despite the time dimensions of τn and τp, these pa-

rameters cannot be straightforwardly identified with 
the lifetimes of the non-equilibrium carriers, contrary 
to what is widely used in semiconductor modeling: 
Rn = δn/τn and Rp = δp/τp, where τn and τp are lifetimes 
[7, 20, 34].

In a non-degenerate semiconductor, the following 
relationship holds:

. (23)

From Eqs. (22) it becomes clear that, in principle, 
both Rn and Rp are functions of the generation rates. 
This points to a  strong coupling between the  gen-
eration–recombination rates and the carrier densities 
across the sample.

Because all the problems mentioned above exist in 
a linear region of CVC, too, we will study only the last 
region.

4. Model for low injection

From the previous section, it follows that by assum-
ing linear conditions (low generation), uniform tem-
perature (T  =  T0) across the  sample, and stationary 
conditions in the  region under study, the  system of 
Eqs. (12) and (13) can be rewritten as (see Eqs. (22))

 
, (24a)



I. Lashkevych et al. / Lith. J. Phys. 55, 342–351 (2015)346

 
. (24b)

We shall use the  variation in magnitudes, not 
the  magnitudes themselves, and in this way we can 
separate and remove the  equilibrium contributions. 
In a general case, for a non-degenerate semiconduc-
tor, in a linear approximation δn and δp can be written 
in terms of the variations in their respective chemical 
potentials as [41]

, (25a)

. (25b)

Both Eqs. (25a) and (25b) are related to the defini-
tion of the Fermi quasi-levels for electrons and holes. 
Let us consider, for the sake of simplicity, that the cur-
rent flux only takes place in the x direction. The cur-
rent densities can then be calculated as

 
, (26a)

 , (26b)

where σn (σp) is the electrical conductivity of electrons 
(holes), and δψn (δψp) is the variation in the electro-
chemical potential (or quasi-Fermi level) of the elec-
trons (holes):

 
, (27a)

 , (27b)

where ϕ = ϕ0 + δϕ is the electrical potential, and ϕ0 is 
the electrical potential in equilibrium (built-in poten-
tial). Using Eqs. (24a), (24b), and (26), we obtain

 , 

(28a)

 
. 

(28b)

Using Eqs. (23) and (25), system (28) becomes

 
, 

(29a)

  .
 

(29b)

Here τn
M is the  dielectric relaxation time for elec-

trons, and ln is the  Debye length for the  electrons 
[14]. It immediately follows from Eqs. (29) that since 
the sub-system of two equations for the electrochemi-
cal potentials is explicitly independent of the electrical 
potential, the PE is decoupled from Eqs. (29). The fact 
that the PE can be decoupled from the transport equa-
tions is very important.

Let us recall that the  calculation of current den-
sity in a  semiconductor only involves the  deriva-
tive of the  electro-chemical potential and no other 
magnitudes (see Eqs. (26)). The physical meaning of 
Eqs.  (28) is that under linear conditions the electro-
chemical potentials for holes and electrons can be ob-
tained, ignoring the spatial distributions of other rel-
evant magnitudes such as carrier concentrations and 
the electrical potential. From this it immediately fol-
lows that neither the Poisson equation nor its bound-
ary conditions (BCs) are necessary to obtain the elec-
trochemical potentials and, eventually, the  current 
density. It must be highlighted that this important re-
sult has been obtained without any additional hypoth-
esis such as QN. Evidently, to obtain the distributions 
of the quantities n, p and ϕ, the Poisson equation must 
be solved with appropriate BCs. All these quantities 
exhibit strong variations over distances of the order of 
the Debye length. Nevertheless, since the pairs n and ϕ 
or p and ϕ exhibit the same dependence on the Debye 
length, this dependence cancels out when calculating 
the electrochemical potentials. Since ψn and ψp do not 
depend on the Debye length, the current density and 
the resistance in a semiconductor sample may not be 
influenced by the bulk space charge on a distance com-
parable to the Debye’s length at the contacts. In fact, 
a  compensation of the  influence of the  bulk charge 
layer on the  electric and chemical potentials takes 
place through the cancellation of the drift and diffu-
sion currents originated by, on the one hand, the non-
equilibrium built-in electric field and, on the  other 
hand, the heterogeneity of the carrier concentration in 
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the bulk charge layer. This is in conflict with the re-
sults reported in Refs. [13, 14].

5. BCs for semiconductor structures

The challenge in elaborating boundary conditions for 
solar cells lies in the  fact that, on the one hand, BCs 
must be sufficiently universal, and, on the other, that 
they must comprise all fundamental effects introduced 
by the interfaces.

Let us consider the BCs widely used for a contact 
with surface recombination. It is a  common practice 
[20,42–44] to model at the contact the electric current 
flowing through it for electrons as jn = sn δns (where jn 
is the density of the electron current; sn is the surface 
recombination rate; and δns is the  concentration of 
nonequilibrium carriers at the  interface). These BCs 
are only physically correct in open circuits since there is 
no effective carrying of charge through the boundary; 
the total current is caused solely by surface recombina-
tion, as can be verified trivially if one sets sn = 0. How-
ever, as a matter of fact, the use of these BCs is extended 
to closed circuit conditions with no physical support 
[44, 45]. As a result, the equations obtained for the CVC 
characteristic of solar cells as well as the value obtained 
for the photoelectromotive force appear to be incorrect.

A significant step towards addressing this issue can 
be found in Ref. [21], where a method for construct-
ing BCs that correctly takes into account the recombi-
nation in the transition layer when an electric current 
flows (closed circuit condition) is offered. Actually, 
the  boundary between two media of the  structure is 
the transition layer 3 of the thickness δ, where the pa-
rameters of sample 1 continuously turn into the para-
meters of sample 2 [46]. One can consider the thick-
ness of this layer 3 to be zero if one is not interested 
in the microscopic processes in the layer. In this case, 
the scattering mechanisms in this layer become surface 
scattering mechanisms.

The experimental proofs of these surface scattering 
mechanisms [47, 48] make it possible to suggest the oc-
currence of the surface kinetic coefficients, which are 
different from the bulk ones.

However, in that paper BCs were formulated only 
for the continuity equations, and the BCs to the Pois-
son equation were not discussed at all. This aspect 
was explored in the  papers [22, 23]. Each paper was 
tracking how the BCs change depending on whether 
the  QN approach was invoked. A  general system of 
BCs was formulated that is suitable for research into 
stationary transport processes in any structure of semi-
conductors and metals in various combinations within 
the  framework of the  continuity equations. BCs are 
presented for the  general case of a  contact between 

a  solid (this contact is considered as a  “free-surface” 
in a broad sense) and the vacuum under nonequilib-
rium conditions. Finally, the case of a hetero-contact 
between two conducting media under a current flow 
is addressed and it is found that BCs for open-circuit 
conditions are a  limiting case when the  current flow 
is set to zero. In all the considered cases the changes 
occurring in the  BCs if the  QN approach is invoked 
are carefully studied. Since these BCs were obtained 
based on the fundamental physical features of carrier 
transport, the suggested BCs can also be successfully 
used in other methods of the theoretical treatment of 
carrier transport; for example, while modeling physical 
devices with the Monte Carlo technique [45].

6. New model for thin-film solar cells

Let us assume once again that inequality of Eq. (10) 
holds and, accordingly, in the  solar cell recombina-
tion is negligible. The  macroscopic description of 
the transport of non-equilibrium charge is done with 
the continuity equations for the electron (jn) and hole 
(jp) current densities (see Eqs. (12), (13)).

In a stationary case and one-dimensional problem 
along the  x-direction, normal to the  p–n junction 
plane as in Fig. 1, these equations become

, (30a)

 
. (30b)

Since volume recombination is negligible, Rn  = 
Rp = 0, and, accordingly, gn = gp = g(x); i. e. the gen-
eration is band-to-band and the continuity equations 
reduce to

 , (31a)

 . (31b)

Additionally, it can be shown that in the absence of 
recombination and under band-to-band generation 
the density of charge in any impurity level remaining 
constant [39], under all the above conditions the QN 
approximation reduces to δn  =  δp. Using the  QN 
approximation, the  following relationship between 
the deviations from the equilibrium of the chemical 
potentials holds (see Eqs. (25)):

 

. (32)
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In order to further simplify the  mathemati-
cal problem, while ensuring no loss of generality of 
the physical one, we will assume a step-like profile for 
the light absorption instead of the model in Eq. (8):

. 
(33)

Using Eqs. (9) and (33) we may write the continu-
ity Eqs. (31) as

 (34)

Superscripts in current densities in Eqs. (34) indi-
cate the doping type of the region. The current densi-
ties may be written as [15]

 , (35a)

 , (35b)

 , (35c)

 , (35d)

where we introduced the electric potential φ. To solve 
the Eqs. (34) with Eqs. (25), (32) and (35), we need to 
determine and impose enough boundary conditions 
at the semiconductor interfaces [21–23]. We will as-
sume ideal metallic (ohmic) contacts placed at x = –lp 
and at x = ln, therefore the excess of carries is null:

δnp(–lp) = δpp(–lp) = 0, δnn(ln) = δpn(ln) = 0.     (36)

According to Eq.  (36), we obtain the  following 
four boundary conditions for the chemical potentials 
at the metal–semiconductor contacts:

δμn
p(–lp) = δμp

p(–lp) = 0, δμn
n(ln) = δμp

n(ln) = 0.   (37)

Two additional boundary conditions may be im-
posed on the  electric potential at the  same metal–
semiconductor contacts:

δφp(–lp) = 0, δφn(ln) = V. (38)

At the interface of the two semiconductor regions, 
since there is no recombination, we may write two ad-
ditional boundary conditions at x = 0 [23]:

jn
n(0) = jp

n(0),    jn
p(0) = jp

p(0). (39)

Two more boundary conditions are [21]

 , (40a)

 . (40b)

Using the  obtained boundary conditions from 
the continuity of the Fermi quasi-levels it is straight-
forward to solve the  linear system of equations for 
the  current densities (Eqs.  (34), (35)) and obtain 
the solution:

 
.
 

(41)

In the  third term of Eq.  (41) we may identify 
the photocurrent density created under illumination:

 . (42)

Since we are under a small voltage/current – linear 
approximation – with the aim of obtaining an analytical 
closed form for the CVC (Eq. (41)), we must compare 
the obtained equation with the linearization of Eq. (4):

 (43)

By rewriting Eq. (41) in a similar form we obtain

 . (44)

This is the main result of this model; identifying 
the second terms in the left-hand side of Eqs. (43) and 
(44) we obtain a new expression for the current den-
sity J0:

 . (45)

This new expression does not exhibit an unphysi-
cal behaviour (J0 → ∞) in thin-film solar cells (Fig. 2, 
right). Figure  3 gives the  two axis intercept points 
(Voc and JSH) of the  CVC, it can be trivially verified 
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that the x intercept point (Voc) will remain at a finite 
value independently of the minority carriers diffusion 
lengths at each side of the junction and the diode di-
mensions. Since the analytical model presented in this 
paper was obtained by a linearization of the full mod-
el and some other approximations have been used to 
simplify the  mathematical problem, the  large-signal 
CVC is not properly obtained (Fig. 3) but the frame-
work of transport equations and boundary conditions 
can be solved numerically to study any real solar cell 
diode.

on the electron and hole generation rates is presented. 
This result is of paramount importance for the correct 
modeling of solar cells.

It was shown that in the  linear approximation 
CVC depends on nonequilibrium carriers (J0).

In conventional solar cells, recombination of 
photo-generated charge carriers plays a major limit-
ing role in the cell efficiency. High quality thin-film 
solar cells may overcome this limit if the  minor-
ity diffusion lengths become large as compared to 
the cell dimensions, but, strikingly, the conventional 
model fails to describe the cell electric behaviour un-
der these conditions. A new formulation of the ba-
sic equations describing charge carrier transport 
in the cell along with a set of boundary conditions 
is presented. An analytical closed-form solution is 
obtained under a  linear approximation. In the new 
framework given, the calculation of the open-circuit 
voltage of the solar cell diode does not lead to un-
physical results.
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