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A Monte Carlo simulation of electron transport in In0.53Ga0.47As and InAs is performed in order to extract the main kinetic 
parameters: mean valley population, effective mass, drift velocity, mean energy, ohmic and differential mobility. Most of these 
quantities are crucial for the development of macroscopic numerical models. Moreover, for some calculated quantities, analytical 
interpolation equations are given in order to achieve easy implementation in numerical codes. A comparison between our Monte 
Carlo calculation and several experimental and theoretical calculations is also carried out in order to validate the results.
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1. Introduction

Nowadays nanoelectronics devices operating at ul-
trahigh frequencies have a huge number of applica-
tions in various domains: high-speed telecommuni-
cations, spectroscopy, imaging, security, THz-wave 
generation/detection systems [1].

Traditionally, the  frequency response of the de-
vices and their capacity of integration have improved 
by means of a progressive diminution of their size. 
Today the  progress of technology has allowed one 
to reach characteristic dimensions in the  nanome-
tre range [2–6]. The fact that the technology allows 
the  shrinking of the  device dimensions towards 
the nanometric scale is useful in reducing the car-
rier transit time, thus generally improving the speed 
performances of traditional devices.

In parallel, the achievement of high-speed elec-
tronic devices requires semiconductor materi-
als with excellent electron mobility and transport 
properties. Two examples of these materials are 
In0.53Ga0.47As and InAs. The  In0.53Ga0.47As has been 
suggested to have a  great potential for high-speed 
room-temperature devices due to high electron 
threshold velocities [7–9]. Moreover, recent studies 

showed that InGaAs transistors such as high electron 
mobility transistors (HEMTs) and metal–oxide–
semiconductor field-effect transistors (MOSFETs) 
can be used as emitters or detectors in the THz do-
main [10, 11]. In the same context, the InAs, due to 
its low effective mass and a  narrow gap, is a  good 
prototype of material for future electronic devices. It 
is often used in combination with AlGaSb or AlSb in 
a wide range of electronic and optoelectronic appli-
cations. For example, an intrinsic cutoff frequency as 
high as 250 GHz at a drain voltage of 0.6 V has been 
achieved with a 0.1 μm gate length HEMT. Different 
attempts have also been made to design heterojunc-
tion bipolar transistors (HBTs) with InAs. Simple bi-
polar junction transistors (BJTs) and HBTs with an 
InAlAs or InAsP emitter have been studied, as well 
as more sophisticated HBTs made with InAs/AlSb 
superlattices. An  InAs/AlSb quantum hot electron 
transistor (QHET) is another example of an innova-
tive high-speed transistor [2] having the potential to 
efficiently exploit the unrivaled transport properties 
of InAs in THz applications. Despite the  fact that 
InGaAs and InAs are very widely used in many dif-
ferent high frequency applications, a detailed study 
of their electronic transport is still limited [12–16].
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In particular, the input parameters of the widely 
used hydrodynamic (HD) and drift–diffusion (DD) 
approaches are difficult to find, which leads to the dif-
ficulty of studying the behaviour of In0.53Ga0.47As and 
InAs based devices using commercial or academic 
microscopic simulators. As a consequence, the first 
step to describe correctly both the  stationary and 
transient regimes in In0.53Ga0.47As and InAs is to 
extract the  unavailable parameters using a  micro-
scopic simulation of the  electronic transport. For 
this purpose, we perform a  comprehensive inves-
tigation of transport parameters in In0.53Ga0.47As 
and InAs at 300  K based on a  Monte Carlo (MC) 
simulation.

The paper is organized as follows. In Section 2, 
the theoretical model is described. Then the follow-
ing kinetic parameters are described: valley popula-
tion in Section 3, effective mass in Section 4, aver-
age energy in Section 5, drift velocity in Section 6 
and mobility in Section 7. The main conclusions are 
drawn in Section 8.

2. Theoretical model

In the  framework of our MC simulation of charge 
transport in InGaAs and InAs, only the  dynamic 
of electrons is taken into account. To investigate 
the transport properties of InGaAs and InAs at room 
temperature, we use a standard MC simulation [17, 
18] where the electronic properties of the bulk mate-
rial are directly related to the scattering mechanisms 
and the band structure. The input has been obtained 
interpolating the values of the corresponding bina-
ry materials [12, 19–22]. For the conduction band, 

we have used a  model with three non-parabolic 
spherical valleys (one Г, four equivalent L and three 
equivalent X). The scattering mechanisms which are 
included in the  physical model are the  following: 
collisions with ionized impurities (Brooks–Herring 
model), transitions due to absorption and emission 
of polar and non-polar optical phonons, collisions 
with acoustic elastic phonons, intervalley and alloy 
scatterings [23]. In particular, the impact ionization 
has been treated in the  framework of the  Keldysh 
approach [12, 24–27] where the probability per unit 
of time is given by

 (1)

where A is a coeficient which indicates the strength 
of the  scattering process and ϵth is a  threshold en-
ergy. The  parameter ϵth can be calculated using 
the Anderson and Crowell criteria [28] or following 
the procedure outlined by Quade et al. [29]. A is an 
adjustable parameter the value of which is chosen in 
order to reproduce the average ionization coefficient 
measured experimentally [30, 31].

Figure 1 shows the simulated impact ionization 
coefficient as a function of the inverse electric field, 
compared with several experimental and theoretical 
results available in the literature [30–36]. In the case 
of InGaAs, it can be clearly seen that the  existing 
results differ by more than one order of magni-
tude for the same electric field. In our MC simula-
tions, the input parameters have been adapted with 

Fig. 1. Impact ionization coefficient as a  function of inverse electric field in InGaAs (left) and InAs (right) with 
ND = 1016 cm–3. The continuous lines represent MC simulation, the full symbols show the experimental results, and 
the empty symbols show other simulations present in the literature [30–39].
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the  experimental data of Pearsall [30]. In the  case 
of InAs, because of the  lack of experimental data, 
we have adapted our MC simulation to the experi-
ments of Mikhailova [37]. Our MC results are also 
in good agreement with the simulations of Bude and 
Hess [32].

3. Valley population

We start the investigation of the bulk properties by 
calculating the  fractional valley population in Г, L 
and X valleys in steady-state conditions. The results 
are reported in Fig.  2 as functions of the  electric 
field, for an electron density ND equal to 1016 cm–3. In 
the same figure, we have reported the theoretical re-
sults of Choo [34] for InGaAs and we observe a good 
agreement for all considered values of the  electric 
field. For both materials, the  electron transfer into 
the L valley starts at 1 kV/cm. Then, a greater quan-
tity of electrons is found in the  L valley compared 
to the Г valley, starting at 11 kV/cm for InGaAs and 
7  kV/cm for InAs. The  transfers into the  X valley 
begin around 6  kV/cm and 4  kV/cm, respectively. 
The electron population in the X valley becomes not 
negligible in both materials for electric fields greater 
than 30 kV/cm. In Fig. 2 we observe that, for InAs, 
the settlement of higher valleys takes place for weak-
er electric fields than for InGaAs because of the dif-
ference in the effective mass and the non parabolic-
ity of the bands. The fractional valley population has 
been found to be practically independent of ND in 
the range 1015–1018 cm–3, which is the domain stud-
ied in this article.

4. Effective mass

Figure 3 reports the results obtained for the mean lon-
gitudinal electron effective mass versus the  electric 
field. This quantity is obtained by averaging the  in-
verse electron longitudinal effective mass 1/m*

x which, 
taking into account the non parabolicity of the bands, 
is deffined by

 
, (2)

where px is the component of the moment in the di-
rection of the electric field, α is the coeficient of non 
parabolicity, ϵ is the energy, and m* is the electron 
effective mass at the bottom of the conduction band, 
that is, for an energy equal to zero. The  longitudi-
nal effective mass depends on the  valley in which 
the electron is present.

Fig. 2. Average fractional valley population of electrons 
in Г, L and X valleys of InGaAs and InAs as a function 
of the electric field with ND = 1016 cm–3. The lines rep-
resent MC simulation. The symbols represent the theo-
retical results of Choo [34]. The lines between symbols 
simply connect the reported points.

Fig. 3. Average electron effective mass of InGaAs and 
InAs as a function of the electric field for ND = 1016 cm–3.
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We observe three main zones depending on 
the  electric field. The  first zone is for values lower 
than the threshold field, where the majority of elec-
trons are still in the Г valley with a low average effec-
tive mass. The second area corresponds to the field 
values for which a significant number of electrons is 
transferred from the first to the second valley. The av-
erage effective mass increases towards the  value of 
the  effective mass in the  L valley. Lastly, the  third 
zone corresponds to the  higher electric fields 
(E ≥ 30 kV/cm) for which a significant number of 
electrons is progressively transferred into the X val-
ley. The  electron transfer between Г and L valleys 
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is characterized by a larger electron mass difference 
than that between L and X valleys. This is the reason 
why the variation of the effective mass is higher for 
low electric fields.

Regarding the effective mass, in Fig. 4 we report 
our MC results compared with the experiments of Ke-
samanly [40] for InAs. A good agreement is found for 
the values of the electron density lower than 1017 cm–3 
and a difference of about 20% is noted for higher elec-
tron densities around 1018 cm–3.

than 20 kV/cm. The difference for higher fields re-
sults from the fact that Fischetti has used a full band 
model. Finally, for InAs we observe a  good agree-
ment with the theoretical results of Hori [42].

Fig. 4. Average electron effective mass of InGaAs as 
a  function of electron density. The  lines represent our 
MC simulation. The symbols represent the experimental 
results of Kesamanly [40]. The  lines between the sym-
bols simply connect the reported points.

Fig. 5. Average energy as a function of the electric field in 
InGaAs (above) and InAs (below) with ND = 1016 cm–3. 
The  continuous lines represent MC simulation and 
the  symbols show other simulations presented in 
the literature.

5. Average energy

Figure 5 shows the  average electronic energy as 
a  function of the  electric field, for ND  =  1016  cm–3. 
The  behaviour of the  average electronic density is 
dissimilar for lower and higher values of the electric 
field, for both InGaAs and InAs: the corresponding 
curves can be divided into two parts. The  former 
one corresponds to low values of the  electric field 
(<2 kV/cm), for which the electron mean energy re-
mains nearly constant and equal to the value at ther-
modynamic equilibrium. In the  latter one, corre-
sponding to higher electric fields, the average energy 
increases with the electric field. As a matter of fact, 
as the field increases, the collisions become less ef-
fective in dissipating the energy brought to the elec-
trons. Therefore, both the  energy and the  number 
of inelastic collisions increase until a  new equilib-
rium is obtained in the hot carrier regime [41]. In 
the  same figure, we have reported the  theoretical 
results of Fischetti obtained for InGaAs and we 
observe a  good agreement for electric fields lower 

6. Drift velocity

The results obtained for the  average electron ve-
locity are reported in Figs. 6 and 7 as a  function of 
electric field. The MC results are compared with dif-
ferent experimental and theoretical data present in 
the  literature [13, 14, 42–51]. For an electric field 
lower than about 0.15 kV/cm, the velocity increases 
linearly and the  carriers remain in the  same valley 
(Fig.  2). As the  electric field increases, carriers are 
transferred into higher valleys and the velocity be-
comes non-linear. In the  hot carrier regime phon-
ons are not able to thermalize electrons to the lattice 
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temperature; however, they limit the electron veloc-
ity. When the  electrons are transferred from lower 
to higher valleys, their average effective mass in-
creases (Fig. 3) and thus velocity starts to decrease. 

We notice that the  velocity peak in InAs is about 
3.5 × 107 cm/s for a threshold field of 2 kV/cm while 
it reaches a lower value of about 2.4 × 107 cm/s for 
a  threshold field of 3.7  kV/cm in InGaAs. A  de-
crease of the mean velocity can be noted for electric 
fields greater than 30 kV/cm due to the  transfer of 
the electrons into the X valley.

It is useful to ot the velocity using analytical ex-
pressions of the type

 
(3)

if E ≤ Ep, and

 (4)

Fig. 7. Average electron velocity as a function of the elec-
tric field for InAs compared to theoretical results [42, 50] 
present in the  literature, with ND = 1016cm–3. The con-
tinuous line represents MC simulation. The dotted lines 
simply connect the reported points.

Fig. 6. Average electron velocity as a function of the electric field for InGaAs (top) and InAs (bottom) 
compared to several experimental (top left) [13, 43–47] and theoretical (top right, bottom) results [14, 
46–49] present in the literature, with ND = 1016 cm–3. The continuous lines represent MC simulations. 
The symbols show the experimental and theoretical results. The dotted lines simply connect the re-
ported points.
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if E ≥ Ep, where vp is the peak velocity, Ep is the thresh-
old field, Ec is the critical field, and μ0 is the ohmic 
mobility. The  parameters a, b, c, d and e represent 
numerical coefficients. The results of the fitting are 
reported in Fig. 8. The parameters have been calcu-
lated on the basis of MC simulation and are given in 
Table  1. Instead of using a  single formula we used 
two formulas, one below and one above Ep, in order 
to better interpolate the  curves of the  mean veloc-
ity and the  chord mobility. However, this induces 
a  couple of spikes around Ep. We have also calcu-
lated the average drift velocity for different values of 
electron density. The results are reported in Fig. 9. 

When doping is higher, scatterings with ionized im-
purities are more frequent. As a  consequence, for 
a given value of the electric field, the electron veloc-
ity is higher when the electron density is lower. In 
the same figure the measurements of Hasse [43] are 
reported, and we observe a good agreement.

Table 1. Values of the parameters used to fit the drift 
velocity of In0.53Ga0.47As and InAs with Eqs. (3) and (4).

Parameters In0.53Ga0.47As InAs
Peak velocity vp, 107 cm/s 2.5 3.3
Threshold field Ep, kV/cm 3.75 2.0

Critical field Ec, kV/cm 1.2 0.6
Ohmic mobility m0, m2/Vs 1.0 2.2

a 1 0.9
b 2.5 2.5
c 1.02 0.15
d 2.01 2.02
e 0.51 0.56

7. Mobility

Figure 10 represents the  electron static chord mo-
bility as a function of the electric field for different 
concentrations of the  ionized impurities, for both 
InAs and InGaAs. We remark that the chord mobil-
ity decreases with the  electric field while remain-
ing positive. We can see that InAs is able to reach 
a higher velocity for a given electric field, and is thus 
characterized by a much higher mobility than that of 
InGaAs: the maximum ohmic mobility in the case of 
InGaAs is 10 000 cm2/Vs, whereas the ohmic mobility 

Fig. 8. Average electron velocity as a function of the elec-
tric field for InGaAs and InAs, with ND  =  1016  cm–3. 
The continuous line refers to MC simulation and the dot-
ted lines to the analytical formula.

Fig. 9. Average drift velocity as a function of the electric field in InGaAs (left) and InAs (right) for different values of 
electron density. The lines represent MC simulations, and the symbols show the experimental results of Hasse [43]. 
The dotted lines simply connect the reported points.

Electric field (kV/cm)Electric field (kV/cm)

Electric field (kV/cm)

Ve
lo

ci
ty

 (1
07  cm

/s
)

Ve
lo

ci
ty

 (1
07  cm

/s
)

Ve
lo

ci
ty

 (1
07  cm

/s
)

1015 cm–3

1017 cm–3

1018 cm–3

1015 cm–3

1017 cm–3

1018 cm–3



S. Karishy et al. / Lith. J. Phys. 55, 306–314 (2015)311

can reach 23 000 cm2/Vs in the case of InAs. The val-
ues of ohmic mobility for the other concentrations 
are reported in Table 2. However, as previously ob-
served for the velocity, the chord mobility decreases 
as the  density of ionized impurities increases. In 
Fig.  11 we have also compared our MC results of 
the ohmic mobility versus the electron density with 
those already present in the  literature [52, 53]. Fi-
nally, in Fig. 12 we have reported the electron static 
differential mobility versus electric field for differ-
ent electron densities. For low values of the electric 
field, mobility remains almost constant and equal to 
the chord mobility. For a greater electric field, a neg-
ative differential mobility appears due to inter-valley 
transfer and to the  fact that the  electrons in the  Г 
valley have a higher mobility because of their low ef-
fective mass, whereas carriers in higher valleys have 
a  higher effective mass and thus a  lower mobility. 

This negative differential mobility observed for high 
electric fields is one of the typical characteristics of 
III–V compounds.

Table 2. Ohmic mobility for InGaAs and InAs for differ-
ent electron densities.

Electron 
density, cm–3

m0, m
2/Vs, 

In0.53Ga0.47As
m0, m

2/Vs, 
InAs

1016 1.0 2.3
1017 0.75 1.8
1018 0.58 1.3

By dividing the velocity fitting formula by the elec-
tric field (see Eqs.  (3) and (4)) we obtain analytical 
expressions for the chord mobility. The results are re-
ported in Fig.  13 and show a  good agreement with 
the MC simulation.

Fig. 10. Chord mobility as a function of the electric field for different concentrations electron density 
in InGaAs (left) and InAs (right).

Fig. 11. Ohmic mobility as a function of electron density for InGaAs (left) and InAs (right). The conti-
nuous lines represent MC simulation and the points are different experimental results of Pearsall [52] 
and Karataev [53].
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8. Conclusions

After a description of the  theoretical model, we have 
presented a  review of stationary electron transport 
in In0.53Ga0.47As and InAs obtained by a Monte Carlo 
simulation of the bulk materials under stationary and 
homogeneous conditions. The  main transport para-
meters, i. e. valley population, effective mass, average 
energy, drift velocity and mobility (ohmic and differ-
ential), have been analyzed as functions of the applied 
electric field and electron density. When possible, our 
simulations have been compared to several experimen-
tal and theoretical results in order to estimate the dis-
persion of the data available in the literature. Addition-
ally, we have provided the parameters for an analytical 
fitting of the drift velocity and mobility to ensure an 
easy implementation in macroscopic simulations 
such as drift diffusion and hydrodynamic approaches. 
The obtained results confirm excellent transport prop-
erties of both materials for their implementation in 

modern electronic devices with a general improving of 
the performances expected in the case of InAs.
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