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To have a closed system, the Maxwell electromagnetic equations should be supplemented by constitutive relations which de-
scribe medium properties and connect primary fields (e, b) with secondary ones (D, H). J.W. Gibbs and O. Heaviside introduced 
the basis vectors {i, j, k} to represent the fields and constitutive relations in the three-dimensional vectorial space. In this paper 
the constitutive relations are presented in a form of Cl3,0 algebra which describes the vector space by three basis vectors {σ1, σ2, σ3} 
that satisfy Pauli commutation relations. It is shown that the classification of electromagnetic wave propagation phenomena with 
the help of constitutive relations in this case comes from the structure of Cl3,0 itself. Concrete expressions for classical constitutive 
relations are presented including electromagnetic wave propagation in a moving dielectric.
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1. introduction

The Maxwell equations are not complete. The so-called 
constitutive relations of the medium should be supple-
mented to determine the electromagnetic field (EM) 
properties from the Maxwell equations. These relations 
connect the pair of electric and magnetic fields (e, b) 
with the induced pair of fields (D, H) in material [1, 2, 
3, 4]. In general, the constitutive relations have an in-
tegral form [5, 6]. To simplify the problem, frequently 
the constitutive relations are assumed to have a form 
of linear transformation at a fixed EM wave frequency. 
Such approximation does not take into account mem-
ory and transient processes in the medium.

The constitutive relations may have either a mul-
tiplicative or an additive form, for example, the dis-
placement vector may be written as D  =  εe0 or as 
D = e0 + p, where e0 is the electric field in the vacuum 
and p is the electrical polarization of the material. The 
second case allows to include permanent polarization. 
Below only the multiplicative case will be considered.

Two linear forms for multiplicative constitutive re-
lations between the primary and secondary fields are 
used in the literature. In the so-called Tellegen form [7]

D = –ε e + –ξ H,    
(1)

b = –g e + –μ H,

the primary fields are e and H. The overbar indi-
cates that, in general, the coupling coeficients are ten-
sors. The Tellegen form is used mainly in electrical 
engineer ing [4]. The second form for constitutive re-
lations, also called the Post form [2], is

D = –ε e + –γ b,    
(2)

H = –β e + –μ–1b.

This form is frequently met in physics. Here the 
second rank tensors of permittivity –ε and permeability 
–μ are collectively called electromagnetic coupling coe-
ficients, while –β and –μ–1 are called magnetoelectric cou-
pling coeficients. The sets (1) and (2) can be relat ed 
by linear transformation except when the determi-
nant becomes zero. For an anisotropic and especially 
bi-anisotropic medium, however, it is rather difficult 
to compare and rewrite the intermediate and final 
formulae if different constitutive relations are used 
in setting the problem. It should be noted that the 
relation (2) is more general since it comes from pre-
metric electrodynamics, where no metric tensor of 
a spacetime is assumed beforehand. More detailed 
discussion on this subject can be found in the book 
[3] where physical arguments are given why in the 
modern physics the pair (e,  b) in the constitutive 
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relation (2) is preferred as a primary field and the 
pair (D, H), also called the excitation since it is re-
lated with sources, should represent the secondary 
fields. In this paper the Post form (2) will be used.

We shall consider linear and unbounded media in 
the frequency domain in terms of geometric algebra 
(GA). In a tensorial form, similar formulations are 
summarized in [2] and in the exterior p-form cal-
culus in [3], where it is shown that the constitutive 
relations are characterized by 36 scalar coeficients in 
the most general relativistic case. The dyadic analy-
sis of the problem can be found in [4].

The Clifford geometric algebra offers a different 
approach to the problem. Since the metric of a vec-
tor space and allowed involutions of multivectors in 
GA are predetermined, the main advantage of this 
algebra comes forth in a simple and clear structur-
alization of the physical space [8] and, consequently, 
of the constitutive relations. Furthermore, the co-
ordinate-free representation of physical objects by 
multivectors, relatively simple manipulations and 
geometric interpretation of the multivectors allow 
avoiding superfluous information in intermediate 
steps that are so characteristic of methods where co-
ordinate representation of physical objects is used, 
especially in the tensorial calculus, and therefore 
obscure the physical content of mathematical ob-
jects.

At present a number of books at different levels 
that explain electrodynamics in terms of GA have ap-
peared [9, 10, 11, 12]. In optics and electrodynam-
ics, two of all Clifford algebras are most important, 
namely, Cl3,0 which describes the Euclidean 3D space 
and Cl1,3 which describes the Minkowski 4D space. 
Respectively, the constitutive relations and optics that 
follow from these algebras will be called classical (or 
Galilean) and relativistic (or Minkowskian). The first 
attempts to construct the constitutive relations in 
terms of GA multivectors can be found in papers [6, 
13, 14, 15]. In [6] the general restrictions in the time 
domain are considered. In [14] the constitutive rela-
tions for isotropic material are formulated in a covari-
ant manner. In [13] the anisotropic medium in the 
nonorthogonal frame is considered. In [15], the addi-
tive relativistic equations are considered. In this paper 
the constitutive relations in a multiplicative form are 
presented in the most general form in terms of classi-
cal Cl3,0 algebra.

In the next Section  2 the Maxwell equations in 
Cl3,0 are summarized. In Section 3 the GA constitu-
tive relations for electromagnetic and magnetoelec-
tric couplings are presented. In Section 4 a compound 
coupling and its effect on electromagnetic wave 
propagation are analyzed. A summary of some GA 

definitions is carried over to Appendix. In the text ev-
erywhere the bold fonts will stand for GA vectors and 
calligraphic fonts for bivectors.

2. maxwell equations in Cl3,0

In Cl3,0 algebra, the electric field e is represented by 
the vector (1-grade element) while the magnetic field 
B by the bivector (2-grade element), which is an ori-
ented plane:

e = E1σ1 + E2σ2 + E3σ3,
B = B1Iσ1 + B2Iσ2 + B3Iσ3,    

(3)

where σi and Iσi, respectively, are elementary vectors 
and bivectors (orthogonal and oriented planes; see 
Appendix). Ei and Bi are the scalars. Since the basis 
vectors σi are perpendicular to the respective planes 
Iσi, it may be convenient to introduce the magnetic 
field vector b = IB = –B1σ1 – B2σ2 – B3σ3, where I is the 
pseudoscalar of Cl3,0 algebra (see Appendix). Thus, b 
is perpendicular to the plane B. We shall note that 
such equivalence between the vector b and the bivec-
tor B exists only in the 3D Euclidean space.

The Maxwell equations in Cl3,0 algebra read [9]

∇ · D = ρ,    (4a)
∇ · H + ∂tD = –J,   (4b)
∇ ˄ e + ∂tB = 0,   (4c)
∇ ˄ B = 0.    (4d)

Here the nabla ∇ operator is defined as a GA vec-
torial operator

.   (5)

In the basis {σ1, σ2, σ3} the excitations D and H 
can be expanded in a similar way as e and B in (3). 
It should be noted that equations (4a)–(4d) are writ-
ten without reference to any particular coordinates. 
In addition, the internal structure of GA which is 
represented by fundamental involutions (also called 
the automorphisms) includes space and time rever-
sals automatically [8]. In this reference it is shown ex-
plicitly that in the relativistic case represented by Cl1,3 
algebra the identity, inversion, reversion and Clifford 
conjugation operations are isomorphic to the group of 
four which consists of the identity operation, space P 
and time T reversals, including the combination PT. 
Thus, in GA the space and time symmetry operations 
{1, P, T, PT} are automatically satisfied.
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The classical Cl3,0 algebra is isomorphic to even 
subalgebra Cl (1

+
,
)
3  of Cl1,3, i. e. Cl3,0 - Cl (1

+
,
)
3 . The algebra 

Cl3,0 is used in the formulation of classical Newtonian 
mechanics (see, for example, “New Foundations for 
Classical Mechanics” by D.  Hestenes [16]), electro-
statics, magnetostatics and electrodynamics of slowly 
moving objects. However, the most important advan-
tage of the isomorphism Cl3,0 - Cl (1

+
,
)
3  is that the geo-

metric algebra clearly shows how classical and relativ-
istic descriptions of physics are related. In particular, 
all of the electromagnetic effects described by the 
even Cl (1

+
,
)
3  subalgebra may be attributed to classical 

electrodynamics, in contrast to those which require 
full Cl1,3 algebra for description. The latter effects may 
be named as true relativistic effects. In books of phys-
ics, especially where vectorial notation is used, there 
is frequently no clear-cut separation of electrodynam-
ics into classical and relativistic ones. This may lead to 
misunderstandings and interpretational paradoxes. 
The present article considers only those constitutive 
relations that are compatible with the classical physics 
and respective Cl3,0 algebra.

In the absence of sources, when current and elec-
tric charge densities are absent, J = 0 and ρ = 0, the 
Maxwell equations for plane and harmonic running 
fields {e, D, B,H} = {e0, D0, B0, H0} exp [I(k · r – ωt)], 
where I is the pseudoscalar, k = σ1kx + σ2ky + σykz is the 
wave vector, ω is the frequency, and {e0, D0, B0, H0} 
are respective amplitudes, can be reduced to the fol-
lowing system of multivector algebraic equations:

k · H = –ωD,   (6a)
k ˄ e = ωB,   (6b)
k · D = 0,    (6c)
k · B = 0,    (6d)

where the subscripts that denote amplitudes were 
deleted. The wedge and dot symbols denote the out-
er and inner GA products. The last two equations 
indicate that the wave vector k is orthogonal to the 
displacement vector D and lies in the B plane. In 
agreement with the arguments in [3, 17] the pair 
(e, B) is assumed to represent the primary fields. The 
fields of the second pair (D, H) will be called the ex-
citations because they are related with the properties 
of the medium. The relations between the pairs (e, B) 
and (D, H), as mentioned, are called the constitutive 
relations. Thus, to solve the multivector system (6) 
the constitutive relations should be assumed. 
For a linear and homogeneous medium they are 
the vector-valued functions of the primary fields: 
D = f1(e) + f2(B) and H = –IH = g1(e) + g2(B). At 
first, the anisotropy determined by simple linear rela-

tions D  =  f1(e) and H  =  g2(B) of electrostatics and 
magnetostatics will be considered.

Finally, it should be stressed that although the 
coordinate-free formulation of electrodynamics and 
constitutive relations in terms of Cl3,0 algebra and 
similar formulations found in the textbooks at first 
glance may appear just different mathematical de-
scriptions of the same object, however, in principle 
they are different. The standard vector notation of 
3-dimensional (3D) space by basis vectors {i, j, k} was 
introduced more than 100 years ago by J.W. Gibbs 
and O. Heaviside [18]. The characteristic objects of 
this space are polar and axial vectors. However, the 
notion of axial vector (which represents magnetic 
field) in principle cannot be extended to relativistic 
4D or higher dimension spaces. Modern represen-
tation of 3D space by GA basis vectors {σ1, σ2, σ3}, 
which are isomorphic to Pauli matrices, mathema-
tically and philosophically has deeper foundation. 
So the modern geometric algebra conception of 
3D classical vector space, in principle, is different 
from the old Cartesian geometry. The more so, Cl3,0 
algebra, due to isomorphism, is directly connected 
with the 4D relativity theory represented by larger 
relativistic Cl1,3 algebra. Thus, in the GA formulation 
of electrodynam ics we have a direct connection be-
tween classical and relativity physics.

3. simple constitutive relations

3.1. Electromagnetic relations
The displacement vector D induced in an anisotropic 
dielectric is not parallel to the applied electric field 
e. If fundamental axes of the dielectric ellipsoid are 
directed along the basis vectors {σ1, σ2, σ3}, then the 
displacement can be written as

Dε = ε1E1σ1 + ε2E2σ2 + ε3E3σ3,   (7)

which can be cast to form

Dε = ε1(e · σ1)σ1 + ε2(e · σ2)σ2 + ε3(e · σ3)σ3, (8)

where the inner product acts as a filter which selects 
the electric field components parallel to fundamental 
axes. In GA the ellipsoid can be parameterized by two 
spherical angles θ and φ [19], so the dependence of 
displacement as a function of angles can be written in 
a parameterized form as the vector-valued function 
ε : R3 → R3 that maps vectors to vectors:

Dε = |e|ε(θ, φ) ≡ |e|ε(tn),   (9)
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where |e| is the magnitude of the electric field, 
tn = e/|e| is the unit vector, tn2 = 1, parallel to e. The 
permittivity ellipsoid is

ε(tn) = sinθ(ε1 cosφσ1 + ε2 sin φσ2) + ε3 cosθσ3. (10)

Thus, in GA the permittivity ε(tn) is a vector-valued 
function of unit vector tn. The value of permittivity in 
the direction tn||E when D|| ̂m can be found from

εm̂n̂ =  tm · ε(tn).   (11)

where additional symmetry requirement should be 
imposed, εij = εji. In case when only fundamental axes 
of the dielectric ellipsoid are known, and one would 
like to have an arbitrary orientation of the ellipsoid 
with respect to the basis {σ1,  σ2,  σ3}, then one can 
address to rotation transformation of the dielectric 
vector (10) using the GA rotor R [11]:

ε'(tn) = Rε (tn) R–1,                
 (15)

R = exp(–ϕIσ3/2) exp(–ϑIσ2/2),

where ϑ and ϕ are spherical angles of rotation in the 
planes Iσ2 and Iσ3.

The outer product e ˄ D is a bivector. For an iso-
tropic dielectric, when e||D, it is zero. In the general 
case, if the product e ˄ D is multiplied by pseudo-
scalar –I and normalized, one gets the vector the 
module of which may be named the anisotropy factor 
of medium. If normalized, the length of this vector is 
equal to sin γ, where γ is the angle between the vec-
tors e and D. Figure 1 illustrates the character of the 
anisotropy factor e ˄ D/|e ˄ D| for uniaxial and bi-
axial dielectrics. For the isotropic medium when the 
permittivity surface is spherical, the anisotropy factor 
reduces to zero.

3.2. Magnetoelectric relations
There are materials, for example Cr2O3, where mag-
netic field induces electrical displacement [20] and 
vice versa the electric field induces magnetic displace-
ment. The coupling between electric and magnetic 
fields is called the magnetoelectric effect. A recent re-
view on the magnetoelectric effect, including history 
and extensive literature, is given in [20]. Till now the 
experimentally measured magnetoelectric effect has 
been observed to be much smaller than that due to 
the electromagnetic (ε and μ) coupling [20]. Here we 
will limit ourselves to the case when dissipation in the 
material is absent.

In Cl3,0 algebra, the electrical response of medium 
to primary magnetic field can be expressed by a three-
component vector wB. The linear transformation be-
tween magnetic field and excitation D in the medium 
can then be written in one of coordinate-free forms:

Dω = wB · B = wB · (Ib) = I(wB ˄ b),              (16)

where wB = ω1σ1 + ω2σ2 + ω3σ3 may be called the mag-
netoelectric coupling vector which, as mentioned, is 
the material property. In the SI system wB is measured 
in ohms. Figure  2 shows the geometric interpreta-
tion of Eq.  (16). In the Euclidean space represented 

Fig. 1. Shape of the anisotropy factor for uniaxial and bi-
axial dielectrics with respect to basis vectors {σ1, σ2, σ3} 
that are parallel to fundamental axes of the dielectric el-
lipsoid.

σ2σ2

σ1 σ1

σ3 σ3

From this expression it follows that the compo-
nents of dielectric matrix are

εij = σi · ε(σj).    (12)

In representation (7) the matrix εij is diagonal. If 
the dielectric ellipsoid has an arbitrary orientation 
with respect to the basis {σ1, σ2, σ3}, Eq. (9) must be 
generalized. The respective constitutive relation then 
reads

 
.             (13)

The inner product acts as a filter: it selects the jth 
amplitude e · σj = Ej of electric field with respect to the 
assumed basis {σ1, σ2, σ3} and then associates it with 
the ith component of the displacement vector. If e is 
replaced by the basis vector σk and Eq. (13) is inner-
multiplied by σk, one obtains the permittivity matrix 
with elements:

 

,              (14)
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by Cl3,0 algebra the magnetic field bivector B can 
be expressed through the axial magnetic field vec-
tor b = BI–1 = –BI that is usually introduced in the 
standard vectorial calculus [18]. In Fig. 2 the vector b 
is drawn as a vertical arrow. Thus, from Eq. (16) it fol-
lows that in the Euclidean space the magnetic field b 
induces the electrical displacement Dω that lies in the 
bivector plane B and is perpendicular to the vectorial 
parameter wB that characterizes the medium. Finally, 
it should be noted that within the context of Cl3,0 al-
gebra the transformation (16) is the unique one that 
connects linearly the vector with the bivector.

In a similar manner the magnetoelectric coupling 
that is responsible for appearance of magnetic excita-
tion in the presence of external electric field can be 
obtained from (16) and the duality property. The re-
sult is

Hω = –wE ˄ E.             (19)

The dimension of the coupling constant wE is 
[H/e] = [Ω–1]. It can be shown that in Cl3,0 the struc-
ture (19) for magnetoelectric effect is unique as well.

4. Compound constitutive relations and 
propagation equation

More general relationships between pairs of primary 
(D, B) and secondary fields (D, H) can be construct-
ed if one sums individuals terms of Eqs.  (13), (16), 
(18) and (19):

D = Dε + Dω,

H = Hμ + Hω,               
(20)

so that now the both fields, D and B, contribute to 
the excitation of the medium. The compound consti-
tutive relations (20) and Maxwell equations make up 
a closed system. As an example of application of (20), 
we shall consider Maxwell equations for an isotropic 
medium under the following compound constitutive 
relations of the form

 ,                 (21)

 ,              (22)

where H  =  –IH and  is the velocity of 
light. We shall assume that the electromagnetic cou-
pling is isotropic, i. e. ε = ε0εr and μ = μ0μr, where εr 
and μr are the relative permittivity and permeability 
(scalars). The upper and lower signs in (21) and (22) 
correspond to the dielectric slab movement in oppo-
site directions. It is seen that for propagating waves 
the magnetoelectric coupling has opposite signs, 
which means that cμwE  =  (cμ)–1wB ≡  w, where w is 
dimensionless. Equations (21) and (22) have the 
same structure as those for a moving dielectric with 
velocity much less than the light velocity (Fizeau 
effect). The equations equivalent to (21) and (22) 
were obtain ed earlier from relativistic electrodynam-
ics in [21] in the limit of small velocities of a di electric 
slab that carries the electromagnetic wave. Here we 

Fig. 2. Graphical representation of the vector-bivector 
product Dω = wB  · B which is a vector that lies in the  
B = Ib plane (grey circle) and simultaneously is perpen-
dicular to the material vector wB and external magnetic 
field vector b.

The constitutive relation for the permeability el-
lipsoid can be found from the already obtained results 
for the permittivity ellipsoid and the duality property
between the vectors and bivectors in Cl3,0, namely, 
H = IH and B = Ib.

So, in the basis {σ1, σ2, σ3} the magnetic excitation 
H can be decomposed: 

Hμ + μ1
–1B1Iσ1 + μ2

–1B2Iσ2 + μ3
–1B3Iσ3.          (17)

The magnetic terms that are the analogues of elec-
trical ones, Eqs. (9) and (10), now can be easily con-
structed:

Hμ =|B|μ–1(θ, φ) ≡ |B|μ–1(tn), 
μ–1(tn) = sin θ(μ1

–1 cos φ Iσ1 + μ2
–1 sin φ Iσ2)     (18)

+ μ3
–1 cos θ Iσ3,

where μi
–1 are the lengths of three fundamental axes of 

the impermeability (inverse permeability) ellipsoid.
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see that to get the respective constitutive relations 
it is enough to address to geometric algebra, iso-
morphism between Cl3,0 and Cl (1

+
,
)
3  algebras (which has 

not been used directly here), and to use the linearity 
of transformation. This allows writing the constitu-
tive relations at once, without any need to resort to 
the general relativity theory. In addition, the internal 
structure of GA and the linearity of transformation 
between the fields and excitations ensure that all pos-
sible coupling constants between electric and magne-
tic fields that are allowed by classical electrodynamics 
will be taken into account. As we shall see [22], the 
constitutive relations calculated with relativistic Cl3,0 
algebra are richer.

The dispersion equation for the plane EM wave 
will be calculated using the lower signs in (21) and 
(22). At first, Eq. (6b) is dot-multiplied by k and rear-
ranged to give (k ˄ e) · k = ωb · kI. If b from Eq. (22) 
is inserted into this expression, then one finds

(k ˄ e) · k = ω[μH ˄ k – c–1 I(w ˄ e) ˄ k]I.      (23)

From Eq. (6a) we have H ˄  k = ωDI. If, in addition, 
the property ((Iw ˄ e) ˄ k)I = –(w ˄ e) · k is used, we 
get

(k ˄ e) · k = ω[–μωD + c–1(w ˄ e) · k].              (24)

For the isotropic medium D = ε0εre and k · (k ˄  e) = 
k2e. Then the mixed product can be replaced by 
k  ·  (w ˄  e)  =  (k  ·  w)e  –  (k  ·  e)w  =  (k  ·  w)e (since 
k · e = k · Dε0

–1 εr
–1 = 0), and finally one gets

 . (25)

Any electric field e should satisfy this vectorial 
equation, therefore from Eq.  (25) the scalar disper-
sion can be obtained:

 
,                (26)

where k = |k|, w = |w|, and φ is the angle between k 
and w. Solution of this equation with respect to k,

 ,        (27)

shows that at w  ≠  0 the lengths of wave vectors k± 
are different for the wave propagating in opposite 
directions. If the vectors w and k are perpendicular, 
then k+ = k– ≡ kr, where . Therefore, 

the wave propagating in the direction perpendicular 
to w is not affected by magnetoelectric coupling at all.

Equation (27) can be rewritten in a form of the 
sphere shifted along the w axis (see Fig. 3)

 ,              (28)

where  is the wave vector in the absence 
of magnetoelectric coupling and kw  =  ωw/(2c). The 
radius K of sphere depends on |w| = w. In Fig. 3 the 
sphere is represented by a circle, where K can be found 
from the condition K = [k±(φ = 0) + k±(φ = π)]/2. The 
result is

 .                 (29)

Fig. 3. Constant frequency surfaces in the k space. The 
dashed line shows the sphere of radius kr when w = 0. 
The thick continuous line is a shifted circle of radius K 
at w ≠ 0, Eq. (28). k+ and k– are the wave vectors of waves 
propagating in opposite directions. The constant fre-
quency surfaces have rotational symmetry around the 
vector kw||w.

Thus we conclude that the wavelength of waves 
propagating in opposite directions is different. 
This is also characteristic of chiral media where the 
waves having clockwise and anticlockwise polariza-
tion propagate with different velocities. It should be 
noted that the magnetoelectric coupling in the gen-
eral case is the vector and therefore it should be de-
scribed by three scalar parameters (w1, w2, w3) with 
respect to permittivity and permeability ellipsoids 
which, respectively, are also characterized by three 
scalar parameters.

As it follows from the dispersion relation (27), the 
phase velocity υph = ω/k and group velocity υgr = ∂ω/∂k 
are the same:
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.    (30)

In metamaterials the velocities υph and υgr have 
opposite signs. Thus we have found that within clas-
sical 3D electrodynamics the moving dielectric can-
not transmute to a metamaterial. Expansion of (30) 
with respect to the coupling w up to linear terms gives 
υph = υgr ≈ (c/n) [±1 – w cosφ/(2n)], where plus and 
minus signs correspond to the opposite directions 
of EM wave propagation, and  is the index 
of refraction. We see that at a small magnetoelectric 
coupling the strength of light dragging by a dielectric 
slab depends on the ratio of strength of the magneto-
electric coupling and the refraction index.

In conclusion, the constitutive relations have 
been formulated in terms of Cl3,0 algebra which con-
nect the pair of primary fields e and B with the pair 
of secondary excitation fields D and H. In Cl3,0 the 
mixing within individual pairs in either primary or 
secondary fields is forbidden, since the fields belong 
to different grades, either to vectors or to bivectors. 
To include the mixing between different grade fields 
one must go over to relativistic electrodynamics [22]. 
In geometric algebra this can be achieved with Cl1,3 or 
Cl3,1 algebras, where the primary and secondary fields 
belong to the same grade, namely, to bivectors. In both 
algebras there are six basis bivectors which mirror the 
6×6 transformation matrix between the components 
of fields and excitations in relativistic electrodynamics. 
Thus, GA allows to make a clear distinction between 
classical or Galilean and relativistic electrodynamics, 
and to bring in an unambiguous classification between 
various physical effects. We have also shown that light 
dragging by a moving dielectric slab can be explained 
by classical (Galilean) electrodynamics too. However, 
to explain properties of metamaterials one should ad-
dress the relativistic electrodynamics, which, as men-
tioned, can be handled by Cl1,3 (or Cl3,1) algebra [22].

appendix: Cl3,0 algebra notation

Cl3,0 algebra is used for the description of classical 
physics in the 3D Euclidean space. This space is de-
fined by noncommuting and orthogonal basis vectors 
σi which are 1-grade elements that represent oriented 
lines and anticommute:

.
              (31)

There are three bivectors (2-grade elements or unit 
oriented planes),

Iσ1 = σ2σ3, Iσ3 = σ1σ2, Iσ2 = σ3σ1,               (32)

the squares of which are negative, (Iσi)
2 ≡  Iσ2

i = –1. 
The pseudoscalar I is a geometric product of all three 
basis vectors, I  = σ1σ2σ3, and represents an oriented 
volume element. It commutes with all basis elements 
and satisfies I2 = –1, I–1 = –I. The characteristic prop-
erty of Cl3,0 is that the number of elementary vectors 
and bivectors is the same, therefore, in principle, it is 
enough to employ one of them. By this reason, in the 
3D space the planes can be represented by a respec-
tive perpendicular to plane vectors and the standard 
vector (cross) product of two vectors a and b can be 
expressed through the geometric algebra outer prod-
uct a×b = –I(a ˄  b). For higher spaces this is not the 
case because the number of basis planes usually ex-
ceeds that of basis vectors. More of GA properties can 
be found, for example, in books [11, 23].
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sanDaros rYŠiai KlasiKinĖJe optiKoJe geometrinĖs algebros 
poŽiŪriu

A. Dargys

Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

santrauka
Kad Maxwello lygčių sistema būtų uždara, ją 

reikia papildyti sandaros ryšiais, nusakančiais terpės, 
kurioje sklinda elektromagnetinė banga, savybes ir 
susiejančiais pirminius elektromagnetinius laukus su 
antriniais. Straipsnyje pateikti sandaros ryšiai užrašyti 
Cl3,0 algebros, vadinamosios Cliffordo algebra, kalba. 
Nuo standartinio vektorinio skaičiavimo, plačiai taiko-
mo elektrodinamikoje, ši algebra skiriasi tuo, kad Euk-
lido erdvę sudarantys trys ortai joje tenkina tuos pačius 
komutacinius sąryšius kaip ir Paulio matricos. Kadangi 
Cl3,0 algebra yra izomorfiška reliatyvistinės Cl1,3 algeb-
ros lyginiam poalgebriui, manoma, kad Cl3,0 algeb ros 
matematinis aparatas teisingiau aprašo trimatę Euk-
lido erdvę nei daugiau kaip prieš 100 metų J.W. Gibbso 

ir O. Heaviside pasiūlyti ortai {i,  j, k} ir su jais susie-
tas vektorinis skaičiavimas. Be to, Cl1,3 ir Cl3,0 algeb-
ros aiškiau suskirsto elektrodinamiką į reliatyvistinę 
ir klasikinę. Straipsnyje nagrinėjami sandaros ryšiai 
klasikinės elektrodinamikos požiūriu, kai aplinkos at-
sakas yra tiesinis sužadinimo atžvilgiu ir be vėlinimo. 
Parodyta, kad tokiu atveju elektromagnetinių bangų 
sklidimo savybių klasifikacija išeina iš pačios Cl3,0 
algeb ros vidinės sandaros ir todėl sandaros ryšiams 
suformuluoti nėra reikalingi jokie kiti papildomi 
apribojimai. Pateiktos konkrečios sandaros sąryšių 
matematinės išraiškos Cl3,0 algebros kalba, taip pat jų 
pagalba išspręstas elektromagnetinės bangos sklidimo 
judančiame dielektrike uždavinys.


