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In this work we investigate the light patterns generated by paraxial radial and azimuthal polarization beams in type-II nonlin-
ear crystal. We show that in paraxial case the second harmonic intensity pattern generated by the radial / azimuthal polarization 
beams can be expressed similarly to the Hermite-Gaussian HG11 mode. In addition, numerical simulations were carried out taking 
into account diffraction, walk-off, and pump depletion. The numerical simulations have shown that even with pump depletion the 
resulting second harmonic beam consists of 4 maxima. Also, experimental results are presented, which confirm theoretical predic-
tions. Interference patterns indicate phase shifts of π between neighbouring maxima.
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1. Introduction

Polarization of light is one of the factors determining 
the character of lightmatter interaction. Convention-
ally, laser light can have linear, circular, or elliptical po-
larization. In these cases the polarization of light is ho-
mogeneous, i. e. the polarization of light is the same in 
a plane perpendicular to the propagation of the beam. 
Such beams are very easy to obtain by using conven-
tional optical elements (waveplates, polarizers, etc.).

However, it is possible to produce light beams with 
spatially inhomogeneous polarization. Such beams can 
induce very different effects when it comes to light-
matter interaction. One class of such spatially inhomo-
geneous beams are the cylindrical vector (CV) beams, 
which have cylindrical symmetry. For the first time CV 
beams were demonstrated in 1972 [1], when a radial 
polarization beam was produced inside a laser resona-
tor by use of a special mode selector. However, inten-
sive research of CV beams started only in 1999, when 
unique properties of CV beams were discovered and 
possible applications started to emerge.

It has been shown that under sharp focusing the 
beams with radial polarization can be focused into a 
smaller spot than conventional beams with homogene-
ous polarization [2–4]. In addition to that, it was also 
discovered that the sharply focused radially polarized 

beams have a large longitudinal electric field compo-
nent [2, 4], which leads to a new kind of light-matter 
interaction. These properties have been utilized in nu-
merous applications.

Peculiarities of laser material processing using CV 
beams have been investigated in [5, 6]. In [5] it was 
shown that the radially polarized beam was the most 
effective in cutting. The cutting speed and depth were 
increased by 1.5–2 times compared to beams with the 
conventional homogeneous polarization.

The use of CV beams in optical tweezers was in-
vestigated in [7, 8]. In work [8], the stable 3-dimen-
sional trapping of metallic particles was demonstrated 
by using CV beams. Metallic particles are difficult to 
trap using conventional optical tweezers due to strong 
scattering and absorption forces. Other, more exotic 
applications include interferometry [9] and electron 
acceleration [10].

However, little attention has been paid to nonlinear 
optics of CV beams. There have been some papers ded-
icated to harmonic generation of CV beams [11, 12]. In 
work [11], the second and third harmonics produced 
by CV beams are investigated theoretically. Work [12] 
deals with nonlinear interaction of CV beams in the 
sharp focusing regime.

This paper is dedicated to the second harmonic 
generation (SH) of CV beams in the paraxial regime, in 
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type-II nonlinear crystals. The SH generation pumped 
by a CV beam is analysed theoretically and investigat-
ed experimentally.

2. Theoretical part

In the paraxial limit, beams with radial and azimuthal 
polarization are a solution of the paraxial Helmholtz 
equation in the cylindrical coordinate system [13]. 
Their intensity distribution is identical to that of 
Laguerre-Gaussian (LG) 01 mode (1):
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where W0 is the radius of the Gaussian envelope and 
ld = πW 20 n/λ is the diffractive length, where n is the re-
fractive index. However, in our investigation it is more 
convenient to write them in the Cartesian coordinate 
system. In Cartesian coordinates, beams with radial 
and azimuthal polarization can be expressed as two or-
thogonally polarized Hermite-Gaussian (HG) 01 and 
10 modes:

→
Aρ = →x0AHG01 + →y0AHG10 ,                (2a)

→
Aϕ = →x0AHG01 +  →y0AHG10 ,                (2b)

where AHG10 and AHG01 are complex amplitudes of the 
corresponding HG modes:
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Next comes the propagation of a CV beam in a 
nonlinear crystal. Pump depletion and walk-off are 
neglected in this analysis. The type-II interaction is 
assumed. As initial conditions, we have chosen a CV 
beam with mixed polarization that has both radial and 
azimuthal polarization components. To express rela-
tive magnitude of radial and azimuthal components, 
we introduce “weight coeficients” α and β that are real 
and obey the relation α2 + β2 = 1. Using these coeffi-
cients, the amplitude of the beam that is superposition 
of beams with radial and azimuth polarization can be 
written as follows:
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where lH and lV are the difractive lengths of the ver-
tical and horizontal polarization components (since 
the beam propagates in anisotropic medium, they 
may not be the same).

Keeping in mind the assumptions that were made 
previously, we start our analysis with the following 
equation:
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where A2 is the complex amplitude of the SH beam, 
σ is the nonlinear interaction coeficient, and ∇ 2T is the 
transverse component of the Laplacian:
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and k2 is the wavenumber of the SH 

beam. To make equations less cumbersome, we intro-
duce the following quantities:

0W
xX = ,                  (6a)

0W
yY = ,                  (6b)
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ξ = αX + βY,                  (6d)

η = αY + βX,                  (6e)

κ = σ2ld2A0
2,     (6f)
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q = qH+ qV ,     (6i)

where ld2 = k2W0
2/2 is the diffractive length of the SH 

beam and k2 = 2πnSH/λSH is the wavenumber of the SH 
beam. By using Eqs. (4–6) and some mathemathical 
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operations, we obtain a modified propagation equa-
tion in the transformed coordinate system {ξ, η}:
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where ∇r 2T is the new transverse Laplacian in trans-
formed coordinate system:
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We seek the solution of Eq. (7) in the form

A2 = Q(Z) f (ξ, η) exp (–q(ξ2 + η2)).    (8)

The following derivatives appear in Eq. (7):
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Derivatives of q can be found from Eqs. (6g–6i):
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where

aH = ld2/(2lH),                (11a)

aV = ld2/(2lV).                (11b)

Eqs.  (11) reduce to aH  =  n2/nH and aV  =  n2/nV, 
where n2 is the refractive index of the SH beam and nV 
and nH are refractive indices of the vertical and hori-
zontal polarization components of the first harmon-
ics (FH), respectively. We will assume that the differ-
ence between the refractive indices is very small, so 

that the approximation aH ≈ aV ≈ 1 is valid. From this 
approximation it follows that qV ≈ qH. Using these ap-
proximations, we obtain the following relation (12):
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Since qV ≈ qH, the quantity (qH – qV) is very small. 
Keeping this in mind and inserting the derivatives 
(Eqs. (9)), we obtain the following equation:
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We can see that if we choose f = ξη, all members 
with ξ and η disappear from Eq. (13), since
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Therefore, what remains of Eq. (13) is just the lon-
gitudinal part:
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We introduce quantity U(Z) such that

Q(Z) = (qVqH)3/2U(Z).                 (16)

Remembering the approximation that aH ≈ aV ≈ 1 
and using Eqs. (10), we obtain the equation for U(Z):
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Eq.  (17) can be integrated numerically. It will 
not be integrated here. However, one should keep in 
mind that this equation was obtained using an as-
sumption that the FH beam is not depleted. There-
fore, it will not be accurate in case of the high con-
version eficiency.

To summarize our results, we looked for a solution 
of Eq. (5) in form of Eq. (8). We found the transverse 
part f(ξ, η) = ξη and derived the equation for quantity 
U(Z) that describes the growth of SH magnitude in 
the propagation direction. Putting it all back into the 
solution, we obtain the following result:
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This solution is given in transformed coordinate 
system {ξ, η}. The physical meaning of the coordinate 
transformation given in Eqs.  (6d, 6e) is rotation. In 
the beginning of this chapter “weight coeficients” 
were introduced that are real and obey the relation 
α2 + β2 = 1. It is known that cos2 ϕ + sin2 ϕ = 1 for any 
angle ϕ. Let us choose that α = cos ϕ and β = sin ϕ. In 
this case, the coordinate transformation can be writ-
ten in matrix form :
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We can see that the matrix in Eq. (19) is a rotation 
matrix. Therefore, the relative magnitudes of the radial 
and azimuthal components in the FH beam determine 
orientation of the SH intensity pattern. It can be seen 
from Eq. (18) that intensity pattern is equivalent to that 
of HG11 mode in rotated Cartesian coordinates {ξ, η}.

This result can be explained qualitatively, as shown 
in Fig. 1. A superposition of radial and azimuth polari-
zations gives a mixed CV beam, as shown in Fig. 1 (a). 
In the lower row (Fig. 1 (b–d)) vertical and horizontal 
polarization components of are shown. In the type-II 
interaction, SH is produced from two orthogonal po-
larization components. As we can see from Fig. 1 (b–
d), 6 due to the inhomogeneous polarization of the FH 
beam, one of the orthogonal components is missing in 
some areas. Therefore, SH will not be generated in those 
areas. It can be seen that there are 4 such areas. This ex-
plains the HG11 mode structure of the SH beam. Also, 

it can be seen that the radial polarization (Fig. 1 (c)) 
beam has both orthogonal polarization components in 
those places where the mixed polarization CV beam 
(Fig. 1 (b)) has only one, and vice versa. Therefore, the 
radial polarization beam will generate SH in those ar-
eas where the mixed polarization beam will not. The 
position of the areas where both orthogonal polariza-
tion components are present will depend on a relative 
magnitude ratio of radial and azimuthal components. 
This explains the dependency of the orientation angle 
of the SH beam on the initial magnitude ratio of the FH 
radial and azimuthal components.

Even though the theoretical analysis was carried 
out in the constant pump approximation, the qualita-
tive treatment of the problem suggests that the spacial 
structure of the SH intensity pattern should remain 
similar even in the presence of pump depletion.

SH generation from a radially polarized beam in 
the type-II KTP crystal was simulated numerically. 
Results are shown in Fig. 2. The FH wavelength was 

Fig. 1. Qualitative explanation of SH intensity pattern. 
The polarization of the beam is marked with thick black 
arrows and the orthogonal components are marked with 
thin gray arrows: (a)  radially polarized beam, (b)  azi-
muthally polarized beam, and (c) superposition product 
of the beams with radial and azimuthal polarization of 
equal amplitudes and zero phase difference.

Fig. 2. Numerical results in KTP crystal: (a) FH beam 
after the SHG interaction (regions of the beam where 
SH generation took place are depleted) and (b) SH beam 
(slight assymetry is due to walk-off). Ln is the nonlin-
ear length 

1–

02n 2/IL σ= where σ2 is the nonlinear 
coupling coeficient of the second harmonic and I0 is the 
maximum intensity of the first harmonic beam.

(a)

(b)
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chosen to be 1064 nm. The resulting beam has 4 max-
ima even in the presence of pump depletion.

3. Experiment

The experimental set-up is shown in Fig. 3. A Nd:YAG 
nanosecond laser STA-01 (Standa Ltd., wavelength 
1064 nm) with the TEM00 Gaussian profile was used 
in this experiment. The laser beam, collimated with the 
lens L1 and polarized with the polarizer P, was split in 
two branches : the signal beam (PP1, E, L2, SHC1, L3, 
F1, M1) and the reference beam (M2, PP2, L4, SHC2, 
L5, F2). At the end, the signal and reference beams 
were recombined and the intensity pattern was record-
ed with a CCD camera.

The radial polarization element (a.k.a. the S-wave-
plate) is a λ/2 waveplate with its principal axis de-
pending on the azimuthal angle. The S-waveplate was 
manufactured by the direct laser writing in silica glass 
[14]. By illuminating the volume of glass with ultra-
short laser pulses, sub-wavelength nanogratings are 
formed, which introduce optical anisotropy in material 
[15, 16]. By distributing these nanogratings with differ-
ent orientations in the volume of glass, it is possible to 
create complex polarization elements, which produce 
beams with inhomogeneous polarization, such as the 
S-waveplate. The same S-waveplate can generate both 
radially and azimuthally polarized beams from the lin-
ear polarization beam. The resulting beam depends on 
the polarization direction of the incoming Gaussian 
beam. For more details on nanograting and S-wave-
plate operation see references [14–16].

In the signal branch (the bottom branch, as shown 
in Fig. 3), the CV beam is generated by the use of a spe-
cialized polarization converter [14] manufactured by 
Altechna R&D. Then, the FH beam is focused with the 
lens L2, a SH beam is generated in the SH crystal SHC1. 
After filtering off the remains of FH, the SH beam is 
imaged on the CCD camera and the intensity pattern 
is recorded. In the reference branch (the top branch 
in Fig. 3), a SH is generated from an ordinary Gauss-
ian beam. The reference beam was used to produce 
the interference pattern between the Gaussian and the 
SH beam generated from the CV beam. The reference 
beam was used only to measure the intensity pattern 
and was not used in other parts of the experiment.

The experiment was carried out in three phases:
1) The reference beam was closed and SH was gen-

erated from the radially polarized beam. An intensity 
pattern of HG11 mode was observed. The recorded in-
tensity pattern is shown in Fig. 4 (a). For comparison, 
the intensity pattern calculated from Eq. (18) is shown in 
Fig. 4 (b). Although theoretical analysis was carried out 
using constant pump approximation, the spatial struc-
ture of the SH intensity pattern remains the same even 
with pump depletion. It can be seen from the azimuthal 
profile (Fig. 4 (d)) that the FH beam is depleted in those 
regions where the SH beam has the maximum intensity.

2) The reference beam was opened and the interfer-
ence pattern between the SH beam, generated from CV 
beam and an ordinary Gaussian beam was recorded 
with the CCD camera. The interference pattern is shown 
in Fig. 5. The shift of interference fringes indicates the 
phase shift of π between the neghbouring maxima.

Fig. 3. Experimental set-up: L1-L5 lens, BS1, BS2 beam splitters, M1, M2 mirrors, P polarizer, SHC1, SHC2 
SH crystals (KTP), F1, F2 filters for extracting SH, E the radial / azimuthal polarization element, PP1 λ/4 
waveplate, PP2 λ/2 waveplate, and CCD CCD camera.
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3) The reference beam was closed again and by 
rotating the polarization element E a mixed polariza-
tion CV beam was produced. The SH intensity pat-
tern from the mixed polarization CV beam was re-
corded with the CCD camera for several orientations 
of the polarization element E. Rotated intensity pat-
terns were observed with each orientation of the ele-
ment E (Fig. 6).

In addition, efficiency of the second harmonic 
generation was measured. The eficiency of second 
harmonic generation from the radially polarized 
beam was only 25%, while using the same system the 
eficiency of the second harmonic generation from 
HG01 mode was 50%. Drop in the eficiency is due to 
inhomogeneous polarization in the beam. In certain 
regions, only one polarization component is present, 
while in the type-II both orthogonal polarization 
components are required in order to produce the sec-
ond harmonic.

Fig. 4. (a) Experimentally obtained intensity pattern of the SH beam generated from a radially polar-
ized beam. (b) Theoretical result calculated from Eq. (18). (c) FH after interaction beam. (d) Radial 
profile of the SH (dashed line) and FH (solid line) beams.

Fig. 5. Interference pattern bewteen a SH gen-
erated from the radially polarized beam and an 
ordinary Gaussian beam. The shift of intensity 
fringes indicates a phase shift of π between the 
neighbouring maxima.

(a)

(c) (d)

(b)
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4. Conclusions

We have investigated the SH generation from a mixed 
polarization CV beam in the type-II nonlinear crys-
tal. We have shown theoretically that the intensity 
pattern of the SH beam generated from a CV beam is 
similar to HG11 mode, consisting of 4 maxima, with 
the phase differences of π between the neighbour-
ing maxima. This has been verified experimentally 
by registering an intensity pattern between the SH 
beam and the Gaussian beam. The shift of interfer-
ence fringes was observed, indicating the phase shift 
of π between the neighbouring maxima.

In addition, it was shown theoretically that orien-
tation of the SH beam depends on the relative mag-
nitudes of radially and azimuthally polarized compo-
nents. This fact has been confirmed experimentally. 
By rotating the polarization element, the rotation of 
the SH beam was observed.
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ANTROSIOS HARMONIKOS GENERAVIMO PARAKSIALINIAIS 
RADIALINėS / AZIMUTINėS POLIARIZACIjOS PLUOŠTAIS ANTROjO TIPO 

NETIESINIAME KRISTALE YPATUMAI
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Santrauka
Darbe ištirti antrosios harmonikos generavimo 

ypatumai antrojo tipo netiesiniame kristale žadinant 
ją radialinės / azimutinės poliarizacijos kaupinimo 
pluoštais. Teoriškai parodyta, kad paraksialiniu atve-
ju generuojamos antrosios harmonikos intensyvumo 
skirstinys, nepaisant kaupinimo pluoštų nuskurdinimo 
bei apertūrinio-diafragminio reiškinio, yra išreiškiamas 
Ermito-Gauso HG11 moda. Atlikus skaitinius modelia-

vimus, parodyta, kad antrosios harmonikos intensyvumo 
skirstinys, net ir įskaitant difrakciją, kaupinimo pluoštų 
nuskurdinimą ir apertūrinį-diafragminį reiškinį, su-
sideda iš keturių maksimumų. Eksperimentinių tyrimų 
rezultatai patvirtina teorinių skaičiavimų rezultatus. 
Remiantis užregistruotų interferencinių skirstinių ana-
lize nustatyta, kad fazių skirtumas tarp gretimų antro-
sios harmonikos intensyvumo skirstinio maksimumų 
yra lygus π radianų.
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