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Based on the modification of the convergence parameter μ in the Weisbuch-Deffuant (WD) model, we in-
vestigated the influence of the network structure on opinion dynamics by comparing the processes of opinion 
dynamics in the Watts-Strogatz (WS) small-world network and Barabási-Albert (BA) scale-free network. The 
simulation results present that the time evolution of opinions does not always end up with a consensus; the 
final number of opinion clusters depends on the value of the bounded confidence but compared with the situ-
ation in the original WD model the effect of the bounded confidence is different when dynamics happens in 
the small-world network and BA network. Furthermore, the structural cohesion of the network is strengthened 
by the rich nodes in the BA network, which make the opinions evolve at a much faster rate than those in the 
small-world network.
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1. Introduction

The opinion dynamics modelling, which is very 
popular in modern sociophysics researches, repre-
sents a challenging field where ideas from statisti-
cal physics and nonlinear science can be possibly 
applied to understand the emergence of collective 
behaviours, like consensus or polarization in so-
cial groups. According to the distribution of agents’ 
opinions, opinion dynamics models can be divided 
into two categories. One category includes discrete 
models in which agents’ opinion can only adopt 
a finite set of values, such as the Ising model [1], 
Sznajd  model [2], and voter models. Taking the 
Sznajd model, for example, individuals have to be 
in one of the two states which are represented by +1 
and –1 respectively at each time-step and change 
their own states by adopting that of their neigh-
bours according to some simple sets. The other 
category includes continuous models in which the 

opinion of an agent is expressed as a real number 
in a finite interval such as [0, 1]. The Weisbuch-
Deffuant (WD) model [3–5], and the Hegselmann-
Krause (HK) model [6] are two typical cases of this 
category. In these two models, opinion exchanges 
can only take place when the difference between 
the two agents’ opinions is below the confidence 
bound which can also be called the threshold [6–
8]. Though discrete models are useful to represent 
situations where binary choices are a good descrip-
tion of the problem, continuous models can be used 
more widely because people usually hold obscure 
attitudes towards a certain issue in the social world 
which is also the basic idea of fuzzy mathematics 
and fuzzy statistics. 

In continuous opinion dynamics models, re-
searchers usually suppose that opinion exchanges 
happen between two randomly chosen agents 
whose opinions are distributed between the range 
[0, 1] if their difference is smaller than the given 
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threshold. This kind of settings could simplify the 
establishment of mathematical models and reduce 
the amount of calculation work, but some rules of 
the models are improper, for example, one agent 
can exchange his opinion with anyone else in the 
group. According to the ideas of the complex net-
work theory, our society is a big network in which 
individuals are the nodes while the links between 
them are the edges. Information can only be trans-
mitted through the edges between every two nodes 
in the network and proliferated across nearly the 
whole network by this means. Therefore, using the 
ideas coming from the complex network theory to 
modify opinion dynamics models and analyse the 
effect of network topology is drawing attention of 
the researches in this field. For example, Weisbuch  
et al. suppose that individuals are restricted to a 
square lattice and interaction could happen be-
tween close neighbours only [3, 4]]. However, their 
hypotheticals on the social networks are questioned 
by some other researchers [9, 10] because they may 
be applied better to trees in an orchard than to hu-
man beings [9]. As an improvement to the WD 
model, Balazs and Alain investigated the consensus 
formation on adaptive networks and found that the 
scenarios of transitions between consensus and po-
larized states are more robust on adaptive networks 
[11, 12]. Social connections with different struc-
tures such as the Erdős Rényi random graph, small-
world network, and scale-free network are drawn 
into the opinion dynamics modelling [13–17]. 
Though some of their conclusions remain open to 
question, their perspectives are worth considering. 
In fact, comparative analysis and some key proper-
ties (rich-club phenomenon [18–20], for example) 
of complex networks are seldom involved in cur-
rent researches.

In this paper, we investigate the opinion dynam-
ics in complex networks by modifying the conver-
gence parameter μ in the WD model, so that it will 
be more in line with reality, and reveal the influ-
ence of the topological properties of the network 
by comparing the processes of opinion dynamics in 
the Watts-Strogatz (WS) small-world network and 
the Barabási-Albert (BA) scale-free network.

2. Opinion dynamics model

The WD model was first proposed by Weisbuch and 
Deffuant [3], and it is an agent-based model driven 

by repeated averaging under the bounded confi-
dence. The model supposes that all the agents in the 
group have an initial distribution of opinions, and 
the value of one’s opinion is limited in a finite in-
terval [0, 1]. In the WD model, individuals meet in 
random pairwise encounters in a given connectiv-
ity network at each time-step. They re-adjust their 
opinions when the difference of their opinions is 
smaller than the threshold. Because the statistics of 
the WD model is excellent [9], it has captured the 
interest of many researchers [21].

Consider a set of N agents. Each agent is con-
nected with others and has its own opinion which 
is represented by a real number between 0 and 1. At 
the time-step t, opinions of two randomly chosen 
agents i and j are denoted by xi(t) and xj(t), respec-
tively. The bounded confidence is usually denoted 
by ε. If |xi(t) – xj(t) | ≤ ε, which means the difference 
between i and j is smaller than the given threshold, 
their opinions will be adjusted according to the fol-
lowing rules:

  
(1)

In the WD model, μ is the convergence param-
eter whose value is normally restricted to the in-
terval [0, 0.5]. The value of μ can affect the conver-
gence time of all the opinions as well as the number 
of final opinion groups. When μ is small, individu-
als slightly change their opinions during the meet-
ing; while in an opposite situation, individuals may 
change their opinions mostly. In most studies, μ is 
usually given the value 0.5 [22], and the dynamic 
rules become

  
(2)

As is represented in the WD model, opinions of 
two randomly chosen agents will be the same after 
opinion exchange. In other words, interacting agents 
can always reach an agreement at any time-step. Ac-
tually, the situation where both agents hold the same 
opinion after their interbehaviour could happen only 
if the interbehaviour is deep enough. Because of nu-
merous participants in the spreading process of pub-
lic opinion and the heterogeneity of individuals, the 
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deep interbehaviour of each selected couple rarely 
happens. Therefore, the values of μ will be different 
for different agents, and it indicates how likely one 
agent could accept the perspective of another agent. 
For that matter, some researchers improve the model 
by assigning μ with a different value during the inter-
acting process from the other’s view, and they regard 
μ as a function of the degree of an agent with which 
one interacts [23, 24]. In this paper, we adopt an-
other strategy to make μ be more in line with reality 
from the agent’s own point of view. We set that the 
value of μ could be higher than 0.5, which is different 
from the classical WD model because one’s opinion 
could be changed significantly by other agents if he/
she is not confident. We suppose the value of μ obeys 
a certain type of statistical distribution, such as ran-
dom distribution and normal distribution. With μ 
increasing, one’s acceptance of others’ opinions will 
be enhanced. In this case, the new modes of opinion 
dynamics can be represented as follows:

 

(3)

where i and j are not randomly chosen from the 
group. As two nodes of the network, an edge be-
tween them is the basis of their opinion exchanges. 

In the network of opinion dynamics, one can only 
interact with the one who has an edge connect-
ing to him, so j is randomly chosen from the set of 
agents who connect to i directly.

3. Influence of convergence parameter μ on 
opinion dynamics

As an important parameter in the WD model, 
the value of μ determines the convergence time 
between individuals. We have suggested that its 
value ranges from 0 to 1; with μ increasing, the 
variation amplitude of one’s opinion changing 
will be strengthened. As expounded in Section 2, 
the convergence parameter μ is heterogeneous 
for the agents involved in the opinion evolution 
process. In order to investigate the influence of 
μ’s distribution on opinion dynamics, we analyse 
the model with it following two classical statistical 
distributions: random distribution (RD) and nor-
mal distribution (ND), and compare the simula-
tion results to the case where μ is fixed and equals 
0.5 as well.

Set that the total number of agents N = 200, it-
erations T = 1000, and the initial opinion of agent 
varies continuously from 0 to 1 randomly. We carry 
out simulations with different values of ε as shown 
in Fig. 1.

The results in Fig. 1 show the effects of the con-
vergence parameter μ on the diffusion of opinions. 

Fig. 1. Fluctuations of opinions’ number with the convergence parameter μ equalling 0.5 and obeying random dis-
tribution (denoted by μ~RD) and normal distribution (denoted by μ~ND). The bounded confidence ε in the two 
figures equals 0.2 (left) and 0.5 (right), respectively. Note that all the values have retained two digits after the decimal 
point for the convenience of calculating, so the maximum of the total number of opinions is 102.



Wei Zhang  et al. / Lith. J. Phys. 53, 185–194 (2013)188

It can be found that the final number of opinions 
equals 3 when ε = 0.2 and equals 1 when ε = 0.5. 
From this we can suppose that the final number 
of opinions will not change with the distribution 
of μ. However, it will affect the rate of opinion dy-
namics significantly. In this regard, individuals’ 
opinions are converging at the fastest pace when 
μ is given a fixed value 0.5, followed by μ obey-
ing normal distribution with the average value 
equalling 0.5, and the pace is the slowest when 
the value of μ is randomly distributed. Therefore, 
it makes sense for us to take the distribution of 
the convergence parameter μ into account in 
modelling opinion dynamics. During the prac-
tice, if we can only obtain the limited knowledge 
about the distributions of individuals, such as the 
mean value or variance, it is relatively a better 
choice to use normal distribution to simulate real 
distribution according to the maximum entropy 
theory [25]. Generally, most individuals in our 
real society are eclectic; donkeys, whose opinions 
are hard to be affected by others, and copycats, 
who always follow the opinion of others to a large 
extent, are few in numbers. Therefore, it is better 
to let μ obey normal distribution in the following 
simulations.

4. Influence of network structure on opinion 
dynamics

4.1. Opinion dynamics in small-world network

Small-world networks are the networks having 
both a small value of the average shortest path 
length like random graphs and a high cluster-
ing coefficient like regular lattices, and they have 
been introduced as an interpolation between or-
dered and random graphs to capture two specific 
features of real neural, social, and technological 
networks [26]. There are two approaches to con-
struct a small-world model: one is to reconnect 
the nodes with a probability in the nearest-neigh-
bour coupled network which is proposed by Watts 
and Strogatz [27]; the other is to add new edges 
to the nearest-neighbour coupled network which 
is proposed by Newman and Watts [28] subse-
quently. The nearest-neighbour coupled network 
here means the networks in which all the nodes 
form a ring and each node is linked to its 2k near-
est neighbours.

The models constructed by the two approaches 
are usually called Watts-Strogatz (WS) and New-
man-Watts (NW) small-world networks, respec-
tively, and the former one is used more frequently 
in building small-world networks. Specifically, 
it is built starting from an ordered lattice with a 
moderately high connectivity, which insures a 
high clustering of the network. Then, each edge is 
removed with probability p and reconnected be-
tween two randomly chosen nodes. This process 
creates a shortcut between two distant regions of 
the original network and makes the whole net-
work compacter than before. The probability p 
measures the degree of disorder or randomness 
of the resulting graph. For p = 0 the order is fully 
preserved, while for p = 1 a random graph is ob-
tained. However, the average connectivity of the 
network will not be changed because no other 
edges are added to the network during the con-
structing process.

Setting the group size N = 200, half of the near-
est neighbours linked to one node in the starting 
nearest-neighbour coupled network k  =  2, and 
the reconnecting probability p = 0.2, we can get a 
small-world network with the topological struc-
ture represented in Fig. 2.

It is obvious that the mean degree of the small-
world network 〈 k〉 is 4 (=2k) and the sum degree is 
800 (=2Nk). By analysing the statistical properties 
of this network we can find the average distance is 
4.926 (with the distance-based cohesion =  0.236) 
which means that 4.926 steps are needed if one 
agent wants to connect to any one of the network.

In order to understand the structure of the 
network, it is necessary to measure the central-
ity of the network which is an important content 
in complex network researches. Three indexes 
are used frequently in relevant researches: degree 
centrality, closeness centrality, and betweenness 
centrality [29]. Historically, the first and concep-
tually the simplest is degree centrality, which is 
defined as the number of links incident upon a 
node; closeness centrality is defined as the total 
graph-theoretic distance to all other nodes in the 
network; and betweenness centrality is defined as 
the number of geodesic paths that pass through a 
node. The three indexes can also be used to meas-
ure the centrality of a graph via some transition, 
and they can be calculated by the following three 
formulas:
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(4)

 

(5)

 

(6)

In the above formulas, v is the node with the 
highest degree, closeness, and betweenness cen-
trality, respectively. By calculating with UCINET 
we can get three values of the network: CD = 0.0152, 
CC =  0.0673, and CB =  0.0458. Therefore, the cen-
trality of the network is very weak. In other words, 
the network does not have a significant trend of 
centralizing, and the nodes in the network are 

decentralized. In addition, the overall graph clus-
tering coefficient is 0.254, which declares that the 
clustering characteristic is good in this network. 
According to the rules set in Section 2, we can get 
the simulation results of opinions dynamics as 
shown in Fig. 3.

As is shown in Fig. 3, the time evolution of opin-
ions starts from a uniform opinion distribution and 
ends up in gathering opinions into several clusters 
which are separated and which the agents in differ-
ent clusters will not exchange anymore. Because the 
above five processes are all based on the data with 
the same initial opinion profile and the same distrib-
uted μ, the results could well reflect the influence of 
the threshold ε on the opinion dynamics. By com-
paring the evolution processes of opinions with dif-
ferent ε, we can find that the threshold ε has a major 
impact on the final number of opinion clusters. It is 
easy to imagine that a higher value of ε always indi-
cates a higher tolerance to other people’s opinions. 
Therefore, individuals are more likely to interact 
with others, and the group is more likely to reach a 
consensus. Weisbuch and other scholars have pre-
viously argued that the final number of opinion 
clusters varies with the integer part of 1/2ε, which 
is usually called “1/2ε rule” [3]. According to our 
simulation results, we have found that the rules do 
not apply here. In fact, the final number is always 

Fig. 2. Topological graph of our constructed small-world network. The left figure shows a circular form of the struc-
ture with all the nodes in a ring, and the size of the nodes serves no real purpose. The right figure shows another 
form of the network structure in which the size of the node reflects the magnitude of its node degree (the number of 
its direct connections to other nodes). With a big node comes a big degree.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Opinion dynamics in our constructed small-world network: (a) represents variation of the number of opin-
ions held by all the agents, (b)–(f) describe opinion evolution with a given threshold ε = 0.1, 0.2, 0.3, 0.4, and 0.5.

bigger than 1/2ε in those cases in which individu-
als are connected as a social network with a certain 
structure in which one individual cannot exchange 
his opinion with anyone directly unless there is an 
edge between them. The result of consensus is hard 
to emerge, especially when the scale of the group is 
large, and a much more common case is that most 
agents are converging into a few opinion clusters. It 
has become a common cognition that people in the 
society are connected as a network in which they 
themselves are the nodes and their connections are 
the edges, and information is spreading through the 
path which is formed by chains of edges. Ignoring 
this fact in the modelling process will probably give 
rise to some inaccurate results. Opinion dynamics 
models are mostly agent-based models, so it is nec-
essary to take the network structure into account.

4.2. Opinion dynamics in BA network

A large amount of work on the characterization of 
the topological properties of real networks has mo-
tivated the need to construct graphs with power law 
degree distributions [30]. There are many examples 
of real networks in which the structural changes 
are ruled by the dynamical evolution of the system. 
The BA scale-free model is a typical one of this class 
whose primary goal is to reproduce the growth 
processes taking place in real networks, and it is 
based on two basic ingredients: growth and pref-
erential attachment [31]. The former indicates that 
networks expand continuously by addition of new 
nodes, and the latter means that new nodes attach 
preferentially to the sites already well connected. 
More precisely, an undirected graph GBA(N, K) can 
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be constructed as follows. Starting with m0 nodes 
(the number of links among them is k’), at each 
time-step t = 1, 2, 3, …, N – m0 a new node j with 
m ≤ m0 links is added to the network. The probabil-
ity that a link will connect j to an existing node i is 
linearly proportional to the actual degree of i:

 (7)

Because every new node has m edges, the net-
work at time-step t will have N = m0 + t nodes and 
K = k’ + mt edges, corresponding to an average de-
gree 〈 k〉 ≈ 2m for large time-steps and small initial 
nodes. Suppose the group scale N = 200, the num-
ber of initial nodes m0 = 4 which compose a glob-
ally coupled network, and m = 2. We can get a BA 
scale-free network as follows:

By some simple calculation we can obtain that 
the mean degree of our constructed BA network is 
3.910 and the sum degree is 782, which are basical-
ly the same as in our constructed small-world net-
work. The clustering characteristic is not obvious 
in this network because the overall graph cluster-
ing coefficient is very small (C = 0.106). But besides 
that, the properties of the two networks are very 
different. The average distance of the BA network 
is 3.355 (with the distance-based cohesion = 0.327) 

which is smaller than 4.926. This indicates that one 
agent could connect with any one of the network 
via 3.355 steps, and agents are more likely to es-
tablish relations with each other. From the three 
centrality indexes of the network (degree centrality 
CD = 0.1375, closeness centrality CC = 0.3102, and 
betweenness centrality CB  =  0.2275), we can find 
that the BA network has a more obvious central-
ity, which means that some nodes of the network 
have the power to attract other nodes to connect 
with them. As can be seen from the left topologi-
cal graph in Fig. 4, the edges on the left side of the 
doughnut are much more intensive than those on 
the right side. The right graph also indicates that 
several nodes are much bigger than others as there 
are many more edges connecting them with other 
nodes. They reveal a major property of power-law 
networks: a small number of nodes have a large 
number of links. These nodes can be called rich 
nodes [19]. They tend to be tightly interconnected 
between themselves and form a rich-club [20]. The 
connectivity of the rich-club plays an important 
role in the functionality of the network, for exam-
ple, in the transmission of rumours in social net-
works [32] or efficient delivery of information on 
the Internet [19]. The density of the connections 
between rich nodes can be quantified by the rich-
club coefficient:

Fig. 4. Topological graph of the constructed BA network. Compared with our constructed small-world network, 
it seems that there are more links in the doughnut of the BA network, but in fact the links of the two networks are 
basically the same. The reason why we have the illusion is that most links are in the middle of the doughnut but on 
the edge of the ring.
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   (8)

where L denotes the number of edges among rich 
nodes, r is the number of rich nodes, and r(r – 1)/2 
represents the maximum possible number of edges 
among the rich nodes. According to Eq. (8), we can 
calculate the rich-club coefficient of the network  
φ(r/N)  =  (2  ×  5)  /  (4  ×  3)  =  0.83, which indicates 
that the rich-club connectivity is good. Based on this 
network, we can get the following results of opinion 
dynamics:

As can be seen from Fig. 5(a), opinion dynam-
ics ends up in gathering opinions in some separated 
clusters, and as the threshold ε is increasing from 
0.1 to 0.5, the number of final opinion clusters is 

decreasing obviously. Figure 5(b–f) details the pro-
cesses of opinion dynamics with ε = 0.1, 0.2, 0.3, 0.4, 
and 0.5 in the constructed BA network. From the 
simulation results we can find that there are no sig-
nificant differences on the number of final opinion 
clusters between our constructed BA Network and 
small-world network. It indicates that the structure 
of the networks will have little or even no influence 
on the final number of opinion clusters in the case 
that the number of nodes and edges are basically the 
same. Therefore, we can draw the conclusion that 
the final number of opinion clusters depends on 
the value of bounded confidence in our models as 
it does in the WD model. However, compared with 
the evolution speed in the small-world network, the 
opinions of agents are converging at a much faster 
rate when dynamics happen in the BA network. The 

Fig. 5. Opinion dynamics in our constructed BA network: (a) represents variation of the number of opinions held by 
all the agents, (b)–(f) describe opinion evolution with ε = 0.1, 0.2, 0.3, 0.4, and 0.5.

(a) (b)

(c) (d)

(e) (f)
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evolution processes are all tending to be stable at the 
time-step t ≈  200 (in our constructed small-world 
network, the time-step t ≈ 400); when ε = 0.4 and 
0.5, the time-step that the evolution needed is much 
fewer (about 70 time-steps; in Fig. 3, the number is 
about 120 and 200). It happens because the central-
ity of the network can be strengthened by the rich 
nodes (they represent the special individuals that we 
can call opinion leaders) and their tight connection, 
which is shown clearly by the three centrality index-
es of our constructed BA network. In fact, the ego 
network of the four rich nodes whose degrees are all 
more than 20 in this BA network has covered 42 per 
cent of the total 200 nodes. The importance of these 
rich nodes for the spreading of information and the 
forming of consensus has been proved by the two-
step flow of communication and multistep flow the-
ory which was first introduced by a sociologist Paul 
Lazarsfeld et al. [33]. According to their theory, peo-
ple are all vertexes of a complex social network, and 
most people form their opinions under the influence 
of opinion leaders, who in turn are influenced by the 
mass media. It is because of the influence of opinion 
leaders that the structure cohesion [34] of the net-
work is well strengthened, and the structure cohe-
sion is one of the most important properties of the 
BA network what distinguishes it from the normal 
small-world network. Therefore, we can conclude 
that the existence of rich nodes (opinion leaders) 
and their tight connection in the BA network could 
accelerate the converging rate of people’s opinions 
significantly.

5. Conclusions

Many agent-based models which are used to simu-
late the formulation of opinion in a social system 
have been proposed in modern sociophysics re-
searches. In these models, including discrete and 
continuous models, the key feature is the interaction 
of individuals (agents). Generally, it is assumed that 
an individual is influenced by another one who is 
randomly chosen from the group. In this paper we 
propose a continuous opinion dynamics model by 
modifying the distribution of the convergence pa-
rameter μ in the WD model. We hold the view that 
the acceptance of others’ opinions is not the same for 
different individuals. For this consideration we set 
up a precondition that the convergence parameter μ 
is not a fixed value but a series of values which obey a 

certain type of statistical distribution. In our model, 
opinion dynamics is dependent on the ego network 
of individuals which means that opinion exchange 
can only happen between two connected individu-
als. By comparing the opinion dynamics in our con-
structed WS small-world network and BA scale-free 
network, we can find that the final opinion clusters of 
dynamics are basically the same, but the converging 
rate is much faster when dynamics happens in the 
BA network. The simulation results prove that the 
bounded confidence is also the major factor which 
decides the final number of opinion clusters as in the 
WD model. Besides, compared with the small-world 
network, the rich nodes in the BA network take up 
most of the edges in the network which would bring 
about a higher centrality of the network. This prop-
erty of the BA network gives an enormous impetus 
to push the opinions evolving at a much faster rate. It 
should be noted that the number of nodes and edges 
in our constructed networks remains the same dur-
ing the process of opinion dynamics for convenience 
because we concentrate on the influence of the net-
work structure on opinion dynamics in this paper. 
Further studies on opinion dynamics in an open 
network will be summarized in our following works.
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