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We have studied the dynamical decay of the autocorrelation function of the 3D Ising model for different 
sizes L = 20–52 of spin cluster-cubes. The behaviour of the longest, ergodic relaxation time, τe, of a finite domain 
below the phase transition temperature Tc was mostly considered for two types of phase transition dynamics. A 
study of the scaling properties of τe demonstrates a negligible difference between the types of dynamics used, 
but a considerable difference for different boundary conditions. In contrast to the known result for periodic 
boundary conditions (τe ~ Lz exp [const(Lєν)2], where z and ν are the dynamical and correlation length expo-
nents, respectively, and є = 1 – T/Tc), the ergodic relaxation time for open boundary conditions is proportional 
to Lz exp [const(Lєν)2k] with coeffcient k for lattices explored in this work slightly decreasing with L in between 
1.65 and 1.58. This result implies that only the lattices of sizes close to or exceeding L = 300 with open boundary 
conditions might have ergodic relaxation times similar to those with perodic boundary conditions.
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1. Introduction

The static critical properties of the 3D Ising model 
are well-known, and the corresponding critical 
exponents are numerically well estimated both 
above and below the phase transition point. The 
tabulated values of static critical exponents might 
be found in comprehensive reviews [1–3]. The 
dependence of the dynamical properties of this 
model on finite size effects was studied numeri-
cally in Refs. [4–7] mostly above the phase transi-
tion point. In particular, the value of the so-called 
dynamical (or critical slowing down) exponent z 
for the 3D Ising model was obtained in a range 
1.95–2.17 (see [7–9]) using different numerical 
techniques. Actually the discussion on the z value 
for systems belonging to the 3D Ising universality 

class continues up to now (most recent data on z is 
limited to 2.017–2.10, see e. g. [10, 11]).

However, the most interesting results are ex-
pected to occur below the phase transition point, 
where the response functions and the relaxation 
times of the magnetization [12, 13] are extremely 
sensitive to finite-size effects. Thus, the problems 
dealing with occurence of the so-called “ergodic 
relaxation time” [4], which is related to magneti-
zation reversals of a spin cluster below the phase 
transition point, might still be of considerable in-
terest.

In this paper we present the relaxation times of 
finite 3D clusters which were obtained by expan-
sion of the autocorrelation function of the 3D Ising 
model. This function is obtained by a single flip 
Monte Carlo (MC) calculation for temperatures 
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below the phase transition point, T < TC, for differ-
ent cluster-cubes of sizes L3 ranging from L = 20 to 
52. The spin interaction energy is calculated using 
the usual Ising Hamiltonian H = –∑i,j σiσj with spin 
variable σi  =  ±1 and the range of ferromagnetic 
interaction J  >  0 restricted to the nearest neigh-
bours (NN) only. Both periodic (PBC) and open 
boundary conditions (OBC) are employed. The 
magnitude of these relaxation times was shown 
[14] to be very different when PBC and OBC were 
employed: the system with PBC approaches ther-
modynamic equilibrium much faster. The lattices 
considered in Ref. [14] were quite small (L < 28). 
Therefore, here we expect that using a set of larger 
lattices might give the scaling relation for ergod-
ic relaxation time with OBC much closer to that 
[4, 5] obtained with PBC. The study might show 
at least the approximate sizes of 3D Ising lattices 
for which the scaling relation for 3D Ising lattices 
with OBC and PBC might be the same.

It is known that the type of dynamics does not 
affect the static properties of the Ising model as 
long as the detailed balance principle is preserved. 
However, it is not obvious whether it affects the 
dynamical properties or not. There are some limi-
tations on the choice of the MC algorithm dynam-
ics [15], and it is often chosen on physical grounds 
rather than simple computational effciency [16]. 
Therefore, here we use two types of single spin flip 
(or particle jump) dynamics for their mutual com-
parison. The first type considered here is the usual 
Glauber-type dynamics [17], when spin flip prob-
ability ω(Ei → Ef) = 1/[1 + exp(ΔE/kBT)] depends 
on a difference of energies ΔE = Ef–Ei after (Ef) and 
before (Ei) the local change of state. The second 
type is related to the fact that in some cases (e. g. 
considering barrier hopping in two minima poten-
tial characteristic for H-bond ferroelectrics, lat-
tice-gas models with Kawasaki-type of dynamics 
or models with more than two states) the particle 
has no a priori knowledge of its final energy – the 
depth of minimum to which it is hopping. Then it 
is reasonable to assume the jump probability to be 
proportional just to exp(–Ei/kBT), since the final 
energy might be important only when the particle 
overcomes the barrier, i.  e. for the next jump of 
the particle. The fact that one has no knowledge 
of the final energy is more a philosophical ques-
tion for a pure Ising spin flip (σi → –σi), since then 
Ei =  –Ej = –Jσi ΣNN σNN, where the sum is taken over 

NN spins of spin i, and ΔE = 2Ei can be anticipated. 
For the pure Ising model we describe this dynamics 
by the probability ω(Ei → Ef) = exp[–(E0 + ΔE/2)/
kBT)], with always existing barrier for hopping E0 
(equal to 6J in case of the 3D Ising model). In gen-
eral, we assume this type of dynamics to be appro-
priate to describe the real experiment; therefore, 
further (to distinguish it from the Glauber one) we 
call it “experimental dynamics”.

Here we calculated the time-delayed au-
tocorrelation function of magnetization, 

, where 〈σ〉 denotes 
spin average and σ(t) time-dependent value of 
the spin variable. We register time dependence of 
spin operator and its variation over a chosen time 
range which is equal to the largest chosen corre-
lation delay tmax. Then we collect the values of the 
time-delayed autocorrelation function at every 
MC step (MCS) for a set of delays (0 < t < tmax) and 
further move the time range of the system ob-
serving time evolution of this function. Eventu-
ally, the time-average of the correlation values is 
obtained and the autocorrelation function is nor-
malized by L3. The dynamic susceptibilities might 
be calculated from this response functions by 
Fourier transform of Ψ(t). To increase the speed 
of calculations we also used the n-fold algorithm 
approach [18].

With this approach we used to take 105 MCS/
site for calculations resulting in shorter relaxation 
times (smaller L and higher T < Tc). For lattices 
with larger L and lower T we increased the calcu-
lations up to 2.5 × 105 MCS/site.

Performing the fitting of Ψ(t) by exponential 
decays we have found that time dependence of the 
obtained autocorrelation function is best approxi-
mated by 4 relaxation times below and 2 relaxa-
tion times above Tc, i.  e. Ψ(t)  =  Σαaα  exp(–t/τα), 
where aα denotes the amplitudes, and τα is the re-
laxation times, and summation over α is from 1 
to 4 (T < Tc) and 2 (T > Tc). Due to different time 
scales of obtained relaxation times at T  <  Tc, we 
took just two longest relaxation times for further 
consideration: the longest one as ergodic (τe) and 
the second longest one as intrinsic (τi). The terms 
ergodic and intrinsic here and further are used as 
in Ref. [4]. The longest (ergodic) time, τe, is related 
to magnetization reversals of a finite system from 
one more or less uniform state to another through 
a non-uniform state with zero magnetization, and 
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these uniform states correspond to two minima 
of the free energy or two maxima of the magneti-
zation distribution. The intrinsic time, τi, which is 
due to local fluctuations of magnetization, is the 
second by magnitude time on a time scale. The 
typical fitting procedure of time dependence of the 
calculated autocorrelation function by two longest 
relaxation times is demonstrated in Fig. 1.

with OBC the increase is much more drastical as 
should be for a system which approaches its ther-
modynamic limit much faster.

As in previous computations [4, 5], we also 
tried to scale the ergodic relaxation time below 
the phase transition point using scaling argument 
x  =  Lєν, where є  =  1  –  T/Tc and ν is the critical 
exponent of the correlation length which for the 
3D Ising model has the value in between 0.62 and 
0.63 (see [19, 20] and references therein). Assum-
ing z = 2 and ν = 0.625 and using PBC we obtain 
that τe is proportional to Lz exp(const x2) (see 
Fig. 3(a)), i. e. the same result which was obtained 
[4–6] from calculations of interface free energy 
between two coexisting magnetization domains. 
It should be noted that our results do not depend 
on a type of dynamics used. At the same time the 

Fig. 1. Time dependences of the autocorrelation func-
tion for three lattice sizes and kBT/J = 4.41 using OBC 
and “experimental” dynamics.

Fig. 2. (a) Temperature dependences of ergodic relaxa-
tion time using OBC and PBC (inset) and both types of 
dynamics. (b) Temperature dependences of intrinsic re-
laxation time using OBC and “experimental” dynamics.

In Fig.  2(a) we present temperature depend-
ences of ergodic relaxation time obtained using 
OBC for both Glauber and “experimental” dy-
namics and L = 20–52 lattices both above and be-
low Tc. To show the difference in time scales of τe 
and τi, the intrinsic rexation times are presented 
in Fig.  2(b). It should be noted that dependence 
of both times on L is different: τe exponentially in-
creases, while τi saturates with increase of L. Their 
temperature dependences (Fig.  2) are also very 
different: below Tc with decrease of temperature, 
τe exponentially increases, while τi has a small 
rounded peak close to the phase transition point 
(implying some relation of this peak to Tc(L)). It 
should be noted that usually this peak is obtained 
at a bit higher values of temperature than the peak 
of susceptibility [12, 13]. In the inset to Fig. 2(a) 
the temperature dependence of ergodic relaxa-
tion time obtained using PBC is presented. As in 
the OBC case, this time also increases exponen-
tially, but contrary to the behaviour of τe obtained 
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function ln(L–z  τe) obtained using OBC demon-
strates nonlinearity with respect to x2 and in an in-
terval of lattice sizes studied here (L = 20–52) line-
arizes only with respect to x2k(L) with k ≈ 1.65–1.58. 
Again, this result does not change for both types of 
dynamics used.

Actually, first we explored the autocorrelation 
functions and τes of smaller OBC lattices, L = 16–
28, and obtained the scaling with k = 1.6 [14]. Of 
course, this could be the artifact of using too small 
a lattice. Since the PBC results for finite lattices ap-
proach the asymptotic thermodynamic equilibrium 
much faster, the idea was to see if the coefficient k 
stays constant or decreases with increase of a lat-
tice size (implying that for very large lattices the 
properties of the lattice with OBC might be closer 
to those with PBC). Unfortunately, due to lack of 
computational resourses we could not perform a 
systematic study of how the scaling relation chang-
es as the data for smaller L values are excluded from 
the analysis. Nevertheless, we managed to make the 
calculations up to L = 52 and noticed that the best 
scaling of results for 20–52 lattices is obtained for 
the set of k(L) values shown by open square symbols 
in the inset of Fig. 3(b) (scaling set 1). To evaluate 
what might be the approximate size of the OBC lat-
tice, when ergodic relaxation scales as in the PBC 
case (with k = 1), we performed the scaling of data 
points for all available lattices up to L = 52 assum-
ing the linear k(L) dependence as shown by the line 

of black squares in the inset to Fig. 3(b). The scal-
ing given by the scaling set 2 is quite satisfying. The 
linear k(L) dependence might be approximated by 
the line k ≈ 1.705–0.0025L which gives L ≈ 300 as 
the minimal OBC lattice for which the ergodic time 
might scale similarly as the PBC.

It should be noted that the indirect way to find 
the scaling properties of ergodic time from calcula-
tion of interface tension was proposed by Binder 
[4–6]. He has shown that τe is inversely proportion-
al to the magnetization distribution function P(〈σ〉) 
at its minimum, 〈σ〉 ≈ 0, and can be expressed as 
τe  ~ Lz  exp(2LD–1F/kBT), where F is the free ener-
gy of interface tension, and F/kBT ~ ξ–(D–1) close to 
Tc. This expression for the 2D case was later cor-
roborated by direct Monte Carlo calculations of 
the autocorrelation function using PBC [21]. The 
function F(є) was obtained from Monte Carlo cal-
culations of P(0) distribution, and for the 3D Ising 
model with PBC F/kBT ≈ 1.01є2ν, where 2ν = 1.26 
[6]. Using OBC, strong nonlinearity in the semi-
log plot of P(0) versus L2 was noticed [5], but F(є) 
dependence was not obtained.

To compare with the results obtained from 
calculation of the autocorrelation function, we 
also performed the calculation of magnetization 
distribution at T  <  Tc and obtained the expres-
sion for interface tension. Our results obtained 
using both Glauber and “experimental” dynam-
ics and PBC were very similar to those obtained 

Fig. 3. (a) Ergodic relaxation time τe as a function of (Lєν)2 obtained from calculation of the autocorrelation 
function for L = 20–52 using OBC and PBC for two types of dynamics. (b) Scaling 1: τe obtained using OBC 
linearized with values of parameter k(L) given by grey open squares (red in an electronic version) in the inset; 
scaling 2: the same linearized with values from the k(L) line (black squares in inset). For clarity, the data of 
scaling 2 is shifted by 20 along the horizontal axis.
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by Binder [6], i.  e. ln P(0) was linear with re-
spect to L2, and F/kBT ~ є2ν. The same tendency 
was found analysing the P(0) distributions of 
Ref. [20]. Using OBC, however, the logarithm 
of P(0) showed linear dependence only with re-
spect to L2k (see straight lines in Fig. 4, left). The 
surface tension function F/kBT in the OBC case 
was calculated using two fitting procedures (see 
[6]): linearization of ln P(0) vs L2k and extrapola-
tion of two surface tension functions (ln P(0)/L2k  

and ln[P(〈σmax〉)/P(0)]/L2k) linear in ln L/L2k to the 
unique F value by fitting an appropriate value of 
k. The latter procedure was possible to best per-
fom for k ≈ 1.6, since for this value the functions 
were linearized and easily extrapolated. The in-
terface tension function F/kBT obtained by both 
fitting procedures as a function of є2νk is present-
ed in Fig. 4 and data points fall into a similar line: 
F/kBT = 0.15є2νk.

It should be noted that k = 1.6 ≈ 1/ν and cor-
respondingly 2kν ≈ 2 for the 3D Ising model. Thus, 
our results using OBC, obtained from direct calcu-
lation of autocorrelation functions as well as from 
calculation of magnetization distribution, indicate 
that interface tension and correspondingly the er-
godic time in the OBC case for lattices up to L = 52 

are very weakly dependent on correlation length 
exponent. At the same time, the scaling properties 
of ergodic time for both types of dynamics used, 
despite obvious difference in absolute time scales, 
are very similar.

In conclusion, in order to explore the behaviour 
of ergodic relaxation time, related to magnetization 
reversals of a spin cluster below the phase transi-
tion point, we have studied the autocorrelation 
function of the 3D ferromagnetic Ising model for 
cluster-cubes of linear sizes L = 20–52. We used the 
Monte Carlo single flip technique and two phase 
transition dynamics. We also used OBC and PBC. 
Performing the scaling of ergodic relaxation times, 
we have shown that results do not depend on the 
type of dynamics, but are very different if PBC or 
OBC are used. By increasing the size of a lattice, 
we tried to find how the results obtained with OBC 
approach those obtained with PBC. Our results im-
ply that the ergodic relaxation time obtained with 
OBC might be described by the same relation as 
that with PBC [4, 5] only when lattices exceed the 
sizes L > 300.

References

 [1] K.  Binder and E.  Luijten, Monte Carlo tests of 
renormalization-group predictions for critical 
phenomena in Ising models, Phys. Rep. 344, 179–
253 (2001).

 [2] A. Pelisseto and E. Vicari, Critical phenomena and 
renormalization-group theory, Phys. Rep. 368, 
549–727 (2002).

 [3] Z.-D.  Zhang, Conjectures on the exact solution 
of three-dimensional (3D) simple orthorhombic 
Ising lattices, Philos. Mag. 87, 5309–5419 (2007).

 [4] K.  Binder and D.W.  Heermann, Monte Carlo 
Simulations in Statistical Physics (Springer-Verlag, 
Berlin, Heidelberg, 1988).

 [5] K.  Binder, Finite size scaling analysis of Ising 
model block distribution functions, Z. Phys. B 43, 
119–140 (1981).

 [6] K. Binder, Monte Carlo calculation of the surface 
tension for two- and three-dimensional lattice-gas 
models, Phys. Rev. A 25, 1699–1709 (1982).

 [7] S. Wansleben and D.P. Landau, Monte Carlo inves-
tigation of critical dynamics in three-dimensional 
Ising model, Phys. Rev. B 43, 6006–6014 (1991).

 [8] N.  Ito, Non-equilibrium relaxation and interface 
energy of the Ising model, Physica A 196, 591–614 
(1993).

 [9] F.-G. Wang and C.-K. Hu, Universality in dynamic 
critical phenomena, Phys. Rev. E  56, 2310–2313 
(1997).

Fig. 4. The results of calculation of interface tension 
with “experimental” dynamics using OBC: the straight 
lines ln P(0) as a function of L2k (with k = 1.6) for dif-
ferent values of T  <  Tc (left) and the surface tension 
F/kBT as a function of є2νk (right) obtained from the 
slopes of lines in the left (black stars) and from extrapo-
lation of two surface tension functions with respect to ln 
L/L3.2 (red asterisks). The dashed line is a guide to the eye.



R. Grigalaitis et al. / Lith. J. Phys. 53, 157–162 (2013)162

 [10] M.  Collura, Offequilibrium relaxational dynam-
ics with an improved Ising Hamiltonian, J. of Stat. 
Mech. Theor. Exp. P12036, 1–14 (2010).

 [11] A.S. Krinitsyn, V.V. Prudnikov, and P.V. Prudnikov, 
Calculations of the dynamical critical exponent 
using the asymptotic series summation method, 
Theor. Math. Phys. 147, 561–575 (2006).

 [12] W.  Koch, V.  Dohm, and D.  Stauffer, Order-
parameter relaxation times of finite three-dimen-
sional Ising-like systems, Phys. Rev. Lett. 77, 1789–
1792 (1996).

 [13] W. Koch and V. Dohm, Finite-size effects on criti-
cal diffusion and relaxation towards metastable 
equilibrium, Phys. Rev. E 58, R1179–R1182 (1998).

 [14] R. Grigalaitis, S. Lapinskas, J. Banys, and E.E. Tor-
nau, Simulation of relaxation times distribution 
for relaxors using distribution of three-dimension-
al Ising-type clusters, Ferroelectrics 415(1), 40–50 
(2011).

 [15] M.E.J. Newman, and G.T. Barkema, Monte Carlo 
Methods in Statistical Physics (Clarendon, Oxford, 
1999).

 [16] H. Jang, M.J. Grimson, and T.B. Woolf, Stochastic 
dynamics and the dynamic phase transition in 
thin ferromagnetic films, Phys. Rev. E 70, 047101 
(2004).

 [17] R.J. Glauber, Time dependent statistics of the Ising 
model, J. Math. Phys. 4, 294–307 (1963).

 [18] A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, A new 
algorithm for Monte Carlo simulation of Ising 
spin systems, J. Comput. Phys. 17, 10–18 (1975).

 [19] A.M. Ferrenberg and D.P. Landau, Critical behav-
ior of the three-dimensional Ising model: a high 
resolution Monte Carlo study, Phys. Rev. B  44, 
5081–5091 (1991).

 [20] R. Häggkvist, A. Rosengren, P.H. Lundow, K. Mark-
ström, D. Andrén, and P. Kundrotas, On the Ising 
model for the simple cubic lattice, Adv. Phys. 56, 
653–755 (2007).

 [21] A. Miyashita and H. Takano, Dynamical nature of 
the phase transition of the two-dimensional kinet-
ic Ising model, Prog. Theor. Phys. 73, 1122–1140 
(1985).

APIE ERGODINĘ RELAKSACIJOS TRUKMĘ TRIMAČIAME ISINGO MODELYJE

R. Grigalaitis a, S. Lapinskas a, J. Banys a, E. E. Tornau b

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lithuania

Santrauka
Tyrėme trimačio Isingo modelio autokoreliacijos funk-
cijos slopimo dinamiką skirtingų dydžių (kraštinės 
ilgis L  =  20–52) kubiniams sukinių klasteriams. 
Ilgiausios  –  ergodinės relaksacijos trukmės τe elgsena 
baigtinio dydžio domene, žemesnėse nei fazinio virsmo 
Tc temperatūrose, buvo tiriama dviem fazinių virsmų 
dinamikos būdais. Trukmės τe skaliavimo savybių 
analizė parodė tik nedidelius skirtumus naudojant 
skirtingą fazinių virsmų dinamiką, tačiau pastebėti gana 
akivaizdūs pokyčiai naudojant kitokias kraštines sąlygas. 

Skirtingai nuo žinomo rezultato, gauto naudojant perio-
dines kraštines sąlygas τe ~ Lz exp [const(Lєν)2], ergodinė 
relaksacijos trukmė, kai kraštinės sąlygos yra atviros, 
yra proporcinga Lz  exp  [const(Lєν)2k], o koeficientas k 
mažėja nuo 1,65 iki 1,58, didėjant gardelės dydžiui nuo 
L  =  20 iki L  =  52. Čia z ir ν yra atitinkamai krizinės 
dinaminė ir koreliacijos ilgio eksponentės, o є = 1-T/TC.  
Daroma išvada, kad ergodinės relaksacijos trukmės 
esant  atviroms ir periodinėms kraštinėms sąlygoms bus 
panašios, kai gardelių kraštinių ilgiai bus ne mažesni nei 
L = 300.


