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An explicit formula describing the branching of representations of $p(6) according to the reduction chain
sP(6) | sP(4) x sP(2) is given. This allows to classify the multiplicity free reductions and, moreover, obtain the
multiplicity for each sP(4) x $P(2) representation. We compare the method with the approach based on the
theory of S-functions, pointing out the strengths and weaknesses of the explicit formula. The branching rule is
used to construct an orthogonal basis of eigenstates for $P(6), where degenerations are solved using a scalar

instead of the standard missing label operator.
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1. Introduction

In most physical applications where groups play an
important role, we are usually encountered with the
problem of determining how the representations of
a symmetry group decompose as the sum of rep-
resentations of some internal symmetry subgroup.
For this reason, effective branching rules (BRs) for
Lie algebra representations play an essential role
in establishing approximate models and practi-
cal simulations, specifically in particle and nuclear
physics, where the corresponding states of a system
can be characterized by means of eigenvalues as-
sociated to invariant operators belonging to an ad-
equate chain of symmetry groups and subgroups
[]. While often the labelling problem can be
solved without major difficulties, sometimes the re-
quired reductions imply formidable computational
obstructions, and beyond certain specifical cases an
explicit general solution remains unknown [@].
In this context, extensive tabulations of branch-
ing rules, as well as specialized computer packages

to determine branching rules have been developed
through the years for various chains of Lie algebras/
subalgebras of physical interest [0-12].

The problem of branching rules associated to
semisimple (or reductive) Lie groups has been
analysed in detail by different authors, providing
a wealth of theoretical procedures useful for the
explicit construction of states, like recursion re-
lations, the boson realizations, the plethysm and
tensor operator methods or the Gelfand-Zetlin
formalism that implicitly provide the branching
rules with respect to the various subgroup chains
[]. Special mention for its effectiveness de-
serves the Littlewood expansion method in terms
of S-functions [@] that has provided general for-
mulae for the branching rules of many classical Lie
groups. Variations of this procedure have enabled
to obtain quite general expressions for the branch-
ing rules associated to maximal subgroups of Lie
groups ([@, @] and references therein), as well as
to determine the multiplicities of the correspond-
ing subgroup representations [@].



72 R. Campoamor-Stursberg / Lith. J. Phys. 53, 71-83 (2013)

Concerning the Gel'fand-Zetlin patterns [@,
@], while these are naturally adapted to the uni-
tary and orthogonal Lie algebras w(N) and $0(N),
they do not work properly for the symplectic group
Sp(2N), mainly due to the loss of quantum num-
bers in the reductions. The failure of the Gel'fand-
Zetlin approach for this class led Zhelobenko to
consider the branching problem for the Lie al-
gebras sp(2N) | sp(2N - 2)xu(1), whose solu-
tion was obtained by means of generalized pat-
terns [@]. The analogous problem for the chain
SP(2N) | sp(2N - 2) x sp(2) was solved in a simi-
lar way in [R§], where patterns were subjected to a
system of inequalities that contained the branching
rules in some implicit way. Although these solu-
tions are not as systematic as the original Gel'fand-
Zetlin patterns, due to degeneracy, they constitute
a structurally important result. The main practi-
cal inconvenience of this approach lies in the fact
that for a given representation of $p(2N), all states
must be computed explicitly in order to detect the
branching rule and further determine whether
the reduction is multiplicity free, i. e., if subgroup
representations appear more than once or not.
It must be mentioned that the BRs for the chain
sP(2N) | sp(2N - 2) x sp(2) were obtained in full
generality in [@] by means of the Littlewood-Rich-
ardson formalism and identities satisfied by the in-
finite series of S-functions, leading to remarkably
simple formulae that also described multiplicities.

The Lie algebras sp(2N) and the correspond-
ing non-compact forms appear in various physical
models, where specially the cases N = 2,3 have been
shown to be of current interest in applications. For
N=2thechainsp(4,R) | sp(2,R) x sp(2,R) hasbeen
used in the study of light nuclei, more specifically in
the simplification of the collective excitations of the
sp(6, R) o U(3) model [@, @], albeit for the case
of infinite dimensional (unitary) representations,
while the chain $p(6, R) | sp(4, R) x sp(2, R) has
recently been considered in the context of /= 8 su-
pergravity truncation to N = 2 theories with scalar-
vector minimal coupling [@]l, where branching
rules are used to reduce kinematically the su-
pergravity multiplets. These recent applications
serve as motivation to the problem of obtaining
branching rules in an explicit and consistent way.

! Actually in this frame the reduction chain is given by
E;5) 2P(6,R) X Gy | 5P(4, R) X SP(2,R) X Gyp).

In this work, as an alternative to other me-
thods developed in the literature, specifically to the
S-functions method, we construct an explicit for-
mula for the branching rules of arbitrary irreducible
representations for the chain sp(6) | sp(4) x sp(2).
These formulae allow to solve some questions that
are not immediate from the generic approach of
[@] and [@], namely the determination of the
multiplicity free representations and the exact
multiplicity of each $p(4) x sp(2) representation
appearing in the decomposition. In this context,
we will compare our results with the approach by
means of S-functions [] ,and comment on the
gains and losses of the direct method. As an appli-
cation of the latter we will consider, in combina-
tion with scalar inequalities, the construction of or-
thogonal bases of states for commuting operators,
avoiding the cumbersome step of determining an
additional missing label operator. Multiple repre-
sentations will be distinguished unambiguously by
a scalar arising from the branching rules.

2. The branching rule sp(6) | sp(4) x sp(2)

Following [@, @], for the reduction chain
sP(6) | sP(4) x sP(2) the branching rules for irre-
ducible representations (IRREPs) are contained in
the following generic pattern:

Q) 0 Q;
r L hy
Q] Q;
: ’ (1)
oh
Q
h]

where the different entries satisfy the system of in-
equalities and identities(2 < k < 3):

Qf>T}f >0 >T) >--->T}, >Qj,
>0 > >0 > =T} >Qf],

k-1 k-1
S(Q, +05 )2 42 3 T a=1,-,
p=a

p=a+l
k k-1 k=1
— k k-1 k
O _ZQP +ZQP erp’
p=1 p=1 p=l

h,=-0,,—0,+2,---,0,-2,0,.

k-1 ()

Given an IRREP [, O3, QO]] of 5p(6), equation
(1) provides all possible states within this multiplet.
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This implicit solution to the branching problem has
the practical disadvantage of requiring the deter-
mination of all states for each fixed representation
and can become quite cumbersome for represen-
tations of high dimension. It would therefore be
desirable to further analyse the properties of these
patterns in order to have an explicit formula giv-
ing the decomposition of an irreducible representa-
tion [Q’, 3, Q7] of sp(6) into a sum of irreducible
representations of the subalgebra sp(4) x sp(2),
without being forced to compute the entries for the
whole pattern (1). Such a formula would provide
an effective tool to analyse those representations of
sp(6) that are multiplicity free, i. e., such that no
representation of the subalgebra appears more than
once, and furthermore provide the exact multiplic-
ity for each component in the subalgebra. The ob-
jective of this Section is to determine such a for-
mula and its consequences.

For sp(6) the defining representation of dimen-
sion six decomposes as

[1,0,0] § (0) [1,0] + (1)[0,0]. 3)

Writing down explicitly the six states, it is
straightforward to verify that the sp(4)xsp(2)
representations are completely characterized by
the values of the pattern entries Q2?, (27, and o,. The
problem of branching rules therefore reduces to
determine the range of possible values for these en-
tries when [Q, Q2, (7] are fixed.

For our exp11c1t computations, it will be conven-
ient to introduce the following notation: For A > p
the representation (m)[A, u] of $p(4) x sp(2) will be

denoted by the pattern |4 M\,
m

In the first instance, we extract the precise de-
composition formula contained in the patterns (1):

Theorem 1. The BR for the reduction
sp(6) | sp(4) x sP(2) and the IRREP [k, [, m] is
given by

/cll)nlm+lj»11m+]+ﬁ l+]+a
33 S S

i=0,/=0 pB=0 o=0 (4)

Zifﬁ Jisem=sey )

6=0i=6+1;=0 y= l l+y

As observed before, the entries of the pattern
(1) determining the representations appearing

in the decomposition of [Q?, O, Q7] = [k, [, m]
are %, 2, and o, the latter indicating the high-
est weight of the $p(2) representation. Hence only
those inequalities of (2) where these scalars appear
will be relevant to determine the complete branch-
ing rule. The needed inequalities and identities are

k>T) >1>T; >m,
>0/ >T >0,
I+m+Q + Q>+ 2T, (5)
m+Q3>T3,
=k+l+m+Q]+Q) —2(F§ +F§).

From the first inequality we can easily deduce
the range for the auxiliary parameters I’ and I'3:

C=1L1+1, ..,k
Ffzm,m+1,...,l.

In order to obtain the possible highest weights
o, of sp(2), we must first compute, for each value of
I'? and I}, the possible values of the highest weights
Q} and Q: for sp(4) representations. We thus pro-
ceed stepwise, by fixing the value of I'} and I'; and
obtaining the representations of the subalgebra ap-
pearing for this particular choice.

LetI”=land [} =m +j, wherej=0, .., -m.In
this case, the first of the inequalities of (5) is trivi-
ally satisfied, while the remaining simplify to

1>Q>m+j>Q3,
Q+Qi>m+2,
m+Q§2m+j,

Oy =k—I1-m—-2j+Q]+Q..

As m 2 0, the first and third inequalities imply that
[>Q?>m+j> Q] >]. This enables us to determine
the range of values possible for Q> and Q2 that we

specify as

Q=m+j+p,4=0,.
QZZ—]+oc,oc 0,..,m

wl=-m-j,

According to (5), the value of o, is given by
o,=k-1+B+a
It follows that for a fixed value of j = 0, ..., m, the

IRREP [k, I, m] contains the following sp(4) x sp(2)
representations:
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I-m—j m

St = k—l+a+p

m+ j+p j+a>' ©6)

Now we sum over j to obtain the partial sum

I-m [-m—j m

Sp =

j=0 B=0 a=0

U)o

This sum specifies the $p(4) x sPp(2) representations
that we obtain for the value I’ = land I’} = m, ..., L
Following this procedure, the complete BR for
[k, I, m] will therefore arise from the sum over all
possible values of I'.

As the next case let I’ = [+ 1 and I} = m + j,
where again j = 0, ..., | - m. The conditions to be
satisfied here are

[+12Q3>m+ > Q3
Q1 +Q2>
Q3>

O, =k—1-m-2j-2+Q7+Q;.

m+2j+1,

(8)

At this point, two cases must be considered
carefully. If Q2 = j, then we easily deduce that
Q2 > m + j + 1, which means that Q? cannot take
the minimal value given by the first inequal-
ity of (8). We can write Q> = m + j + 1 + y with

y =0, ..., [ - j - m. This leads to the sum of patterns
@) & mjy j
S[/+] m+/] ZO k—l—l‘i‘y > (9)
=

Observe in particular that the second entry of
the patterns is always the same for fixed j. Now, if
Q2 >j,wewrite Q> =1+j+awitha=0,..,m-1.
It follows from the remaining inequalities that
Q}=m+j+ pforsomef=0,..,l-m+1-j The
minimal value j + m for Q? is therefore possible.
For a given fixed value of j we get the sum

l=m—j m

S [l+1 Wl+]] BZ z

=0 a=0

(10)

m+ j+f  1+j+a
k-l-1+a+B |-

Now we sum (9) and (10) over all possible val-

ues of j =0, ..., m, leading us to the partial sum
I-m l-m=j m m+j+ﬁ l+j+0!
S[’“] 2 2 k—I-1+a+p >
=0 B=0 a=0
; (1)
o T e m ey j>
= = k=I-1+y [

Formula (11) describes all sp(4) x $p(2) repre-
sentations obtained for the values I’ = I + 1 and
[=m,..,L

The general case works exactly like the last one,
where two cases must be separated, according
to whether Q7 can achieve the minimal possible
Value or not. Let I’ = [ + i and I’} = m + j, where
i=0,..,k-landj=0, .., - m. The first condition
of (5) is satisfied, whlle the remaining constraints
are given by

[+i>Q}>m+j>Q,

Q'+ Qi>m+i+2),

Q2 j,

Oy =k—1-m—-2j-2i+Q +Q].

(12)

The separation of cases is as follows: if QO > m + j
and the minimal value can be achieved, then by the
second inequality we must have Q) > i + j. Tak-
ingQ?>m+j+pBforf=0,.,l-m+l-jand
Q2 =i+j+awith,a=0,..., m - i, for any fixed value
of j we deduce the sum

I=m=j m . P
) m+ j+f i+j+o
S[l+zm+]]7 ﬁz:;) ;) k—l—i+a+ﬁ . (13)

The second possibility arises when the value
Q? > m + j cannot be achieved because of the sec-
ond inequality. In this case we have that Q7 = j + 4,
where 0 < § < m and additionally i > § + 1. For
these values we have O =m + j + i - § + y with

y=0,..,1-j-m+J, and summing these patterns
over y we get
I—=m+6—j
e - m+i+j—0+y j+0
[I+l m+/] Z | kil—l'i‘?}i J > (14)

Taking the sum over j = 0,..., [ - m and adding
the terms (13) and (14) results in the partial sum

S m+j+ B i+j+o N
k-1—-i+oa+p

(15)

\m+i+j-6+y j+6
k—1—i+y )

Like before, this formula provides the represen-
tations of the subalgebra that appear for the fixed
value I'’ = [ + i and the recurring values I'; = m,..., L.

The final step is to consider the sum over i of all
partial sums obtained previously, covering thus the



75 R. Campoamor-Stursberg / Lith. J. Phys. 53, 71-83 (2013)

whole range of values of I’ and I';. The branching
rule is therefore given by the finite sum

k=1
[kal,m] ‘LZ S[l+i]=
i=0

which coincides with (4) as claimed. We observe
that in the second series the index i begins with
0 + 1. This is a consequence of the constraints im-
posed in (14) on the values of Q2 and Q.

The dimension of [k, I, m] is easily recovered
from the decomposition (4). Let us denote the di-
mensions of the patterns as

kd,m _ s m+.]+ﬁ l+.]+a

dgpi; = dim k—l—i+a+l3>’
kiom _ g | M+ j=0+Y j+6
s d‘m| k—l—i+y >

Summing up these dimensions for all values of
the parameters we deduce

(16)

é (3+K) (1+k—1) 2+1) G+k +1) 2+k—m) (+1-m) x
(1+m)@+k+m)(B+1+m).

A practical advantage of the explicit formula
(4) over the patterns (1) is that we can now ana-
lyse whether the reduction of a $p(6) representa-
tion is multiplicity free or not, and further, that we
can predict the exact multiplicity of any component
intervening in this decomposition.

Theorem 2. Let T’ be an IRREP sp(6). Then T is
multiplicity free in the reduction I' | sp(4) @sp(2)
only if ' corresponds to one of the following cases:

i) T=[kkmlk=m
(i) T=[k LI, k=1
(iii) T =[k, 0], k>

We divide the proof into two parts. First we
show that the previous representations are actually
multiplicity free in the reduction to the subalgebra
sp(4) €sp(2), and then we show that these exhaust
the possibilities.

Consider first the IRREP [k, k, m] with k > m. In
this case the reduction reads

(R0 503 oAt N

We observe that the second sum in (4) is identi-
cally zero because it requires i to be greater than
or equal to 1 + &. If two (or more) terms were re-
peated, from the coincidence of two patterns

m+j+B j+ra\
oa+p

m+j +B'j'+o
o' +p

we deduce the following identities:
jtB=j+pBjtra=j+a,a+f=a+p.

Using the first two we obtain that S = (j' - j) + '
and a = (j' - j ) + &’ and inserting this into the third
equality and simplifying the expression we get
j'=j=0,hencej=j and a = o, = . Therefore,
all patterns intervening in the decomposition (17)
are different.

If T = [k, [, ], by formula (4) we obtain the de-
composition

k=1 i I-i l+ | +0O
[k, 3 poi
S k-l-ita+p
18
! kz-/:ii+l+y—5 5> (18)
o0 Smgmo| k—l-i+y -

If two patterns of the first sum coincide, then

I+ i+a
k—I1—-i+o +ﬁ’> '

Clearly B = " and a« =i’ - i + «'. From the third
entry we further have that « = &’ - i’ + i. The dif-
ference of these two expressions in « leads to i = 7,
and in consequence « = «’. and no repetition is pos-

sible. Now suppose that in the second sum there is
a repetition

I+ i+«

k—l—i+a+[5>:

i'+l1+y-0" o
k—1-i'+y [’

It is immediate that § = ¢, y =i =y + i, and
y —i=79"-1i. Solving the two last equalities for y’
and comparing them we are led to i = i’, hence to
y = y', showing that no repeated patterns appear. It
remains to exclude the coincidence of a pattern in
the first sum and a pattern in the second:

i+l+y-6 0\
k—l—-i+y
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I+B i+«
k-l-i+oa+p

|ir+l+y-06 6
k—i-i'+y |

Hered=i+a, f=yp+i-S,anda+f-i=y-1i.
Inserting the value of § in the second equality and
solving for y we obtain that y = a + § + i - i’, while
from the third one we deduce thaty =a + f -7 + 7".
From a comparison of these two expressions it fol-
lows at once that i = i’. Now i’ is further constrained
byi'>28+1=i +a+ 1 (see (4)); therefore, we ob-
tain the inequality

i=i'Zi+a+1.

As i 2 0, this would imply that « + 1 < 0, which is
impossible since « > 0. This shows that a coinci-
dence of patterns in the first and second sums can-
not happen.

Finally, for the IRREP [k, I, 0] the decomposi-
tion has the form

k=l 1 I+i—j =i P47
j+pB itj+a
[k, 1,04 +
| Q,E;ank-z-wmﬁ
kfzzll Sli+j+y j> (19)
=S | k-l -i+y .

From the first sum we see that, since a = 0, we
must have i = « = 0. Hence the first sum reduces to

Z’: j+B j>_

S|k

=

2

i

=

From this expression it is immediate that no
repetition of patterns is possible for different values

of j. If
Y
Tkoimiey

thenj=j,y+i=9y'+iand y - i=y'-i". Asbefore,
this leads to y = y"and i = 7, thus no repetition is
possible. The last possibility is that one pattern in
the first sum and one in the second sum coincide:

i+j+y J
k—Il—-i+vy

i+B J\_
k—1+p

'+j+y J
k—1-i'+y |

Comparing the entries we obtain that j = f,
B=y+1i, and =y -7, and this implies that i = 0
which is excluded since i" > 1.

This finishes the proof that the three types of
IRREPs are multiplicity free. It remains to show
that they are the only ones having this property. To
this intent, it will be enough to obtain the condi-
tions for which patterns of the first sum of decom-
position (4) appear more than once. Suppose that
the following equality holds:

m+j +p i'+j+a
k-I1-i+o +f '

Then the following identities hold:

m+j+B i+j+al\
k-l-i+a+p

jrB=j-pritjta=i+j+a,
—ita+f=-i"+a' +f.

Inserting 8 =j' - j + f’ into the third condition
and adding it to the second one we obtain that
a = o'. In particular this equality implies that

i+j=i"+p. (20)

This equality, jointly with f = j" - j + ', express-
es the essential condition for multiplicity. Indeed,
for any integer n > 1 the partitions of # as the sum
of two non-negative integers® opens the possibility
for the existence of repeated patterns with pairwise
different entries in (3, i, j) # (B, i', '), i. e. we would
have specifically

m+ j+(B'+j~j) i+j+a\
k—=l—i+o+(B +j —j)

m+j+f i+j+o
k—l-i'"+a +f' '

As a consequence, the only possibility to avoid
multiplicity is that in equation (20) we can ensure
the identities i = i'and j = j". This can only happen
if either the indices i, i’ or j, j take only one and the
same value. From (4) we see that the range for the
different indices is given by

0<i,i'<k-L0<j,j<l-m0<p,p <m-i.

In view of this, if 7, i’ and j, j' can only take one
value, then one of the following three possibilities
must occur:

(i) If k =1 then i =i =0 and by (20) we get
j=j',hence f = f’. We have seen in the first
part that this case corresponds to the (mul-
tiplicity free) representations [k, k, m].

2 We include the possibility that either i or j is zero.
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(ii) If I = m, then it is immediate that j = j'= 0
and 8 = 8. This corresponds to the IRREPs
[k, L 1].

(iii) f m=0,then0<f<-iand0< B < -i" As
both i, i’ are non-negative, this would imply
that i = i'= 0, and thus f = ' and j = j'.* For
this case we recover the IRREPs [k, [, 0].

For any other choice of values k, I, m some pat-
tern in the first sum (4) will be repeated, which
makes it unnecessary to inspect either the second
sum or coincidence of patterns in both parts. This
means that this analysis proves that the only rep-
resentations of sp(6) to be multiplicity free with
respect to the reduction $p(6) d sp(4) x sp(2) are
[k, k, 1], [k, I, 1], and [k, I, 0].

The previous result can be proved alternatively,
albeit with more cumbersome computations, using
directly the inequalities (2) associated to the states
(1). In order to determine the precise multiplicity

of a pattern |4 M\ in the decomposition of a given
m

IRREP [k, I, m] of sp(6), this direct approach can
be more convenient.
Au
1%

has multiplicity g, in the decomposition (4) of
[k, I, m], then the scalar equation

Pattern multiplicity criterion. If the pattern

—;(k+ I+m+A+pu—v)=T}+T3 1)
has exactly g, solutions (I'}, I'}), where k > I > [ and
[>T? > m. A computational convenience of (21) is
that it can be solved with total independence of the
patterns (1).

Suppose that the irreducible representation
(v) [A, p] of sp(4) x sP(2) (corresponding to the
previous pattern) appears more than once in de-
composition (4) and let g, denote this multiplicity.
In this case, the inequalities (2) to be satisfied are

k>T>1>1 > m, >A>T0>u,
[+m+A+u>T3+23, m+u>r;,
p+Q >T7 >0, A=T7>p.

(22)

We observe that Q! and I'} are constrained by A
and p alone, which means that these quantities will

3 It should be remarked that m = 0 does not imply that
i can only take the value i = 0, but that it must be zero
whenever the multiplicity condition (20) is imposed.

only have the effect of distinguishing states within
each sp(4)-representation [A, u]. Therefore only the
remaining scalars I'} and I} can refer to the multi-
plicity of such representations. As the value v is also
fixed, the possible values of I’ and I'; will also have
to satisfy the equation
v=k+l+m+A+p-2(I0,10).

1’72

(23)

It follows at once that the number of different cop-
ies of (v) [A, u] contained in [k, I, m] is complete-
ly determined by the pairs (I}, I?) satisfying this
equation.

As an example how this fact can be used to sepa-
rate degeneracies in formula (4), we consider the
lowest dimensional IRREP of sp(6) exhibiting mul-
tiplicities. Using (4), the representation [3, 2, 1] of
dimension 512 branches as

10\ |11\ ([11\ |20\ |20 21
B.21]4 + )+ )+ + +2| )+
1 0 2 0 2 1
(24)
‘21> ‘22> ‘2 2> ‘30> ‘31> ‘31> ‘32>
- + HOO) )L )+ .
3 0 2 1 0 2 1
The representation (1)[2,1] of the subalgebra
appears twice. From equation (21) we see that the
only solutions to equation (23) with A =2, y =1,
and v=1are (I?, I}) = {(3,1), (2,2)}. Therefore, tak-
ing as label a = T”, both copies are properly distin-
guished.
The multiplicity criterion has a practical conse-
quence, namely, the separation of representations

of 6p(4) x sP(2) having multiplicity greater than
one in [k, I, m] by the scalar values of I’ or I'’.

2.1. Merits and demerits of the direct combinatorial
approach

Formula (4) mainly constitutes a refinement of the
patterns considered in [@,@]. It is conceivable to de-
velop similar formulae for any fixed N > 3, although
this requires first to solve the cases 3 < m < N - 1. This
means that there is no straightforward possibility of
describing the generic case by a simple formula. This
fact substantiates the main drawback of the proce-
dure presented here, in contrast with the expansion
method based on S-functions and their operations,
where the generic case is described in a remarkably
simple form in terms of positive terms [@, ]. In
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addition, the use of the series of S-functions and
Littlewood-Richardson rules points out that the
branching rule problem presents analogous features
and similarities for different reduction chains, al-
lowing to compare apparently different chains of Lie
groups and extract information concerning multi-
plicities. Such relations remain certainly unnoticed
when using other more direct procedures, as ours.

For the case under scrutiny in this work, it fol-
lows from the results in [] that the multiplicity of
the IRREP (v) [A, u] of $p(4) x $p(2) in the IRREP
[k, I, m] of sp(6) coincides with the multiplicity in
the following embeddings:

(i) multiplicity of the IRREP [A, u] x[v + A, A]

of u(2a + 2) x u(2) in the IRREP [k, [, m] of
uQ2a + 4) for a = 0,1,
(ii) multiplicity of the IRREP [k, [, m] of u(3) in
the IRREP [A, u] ® [v, A] of u(3) ®u(3)%,
where A= %(k+l+m—l—,u —v). In view of these re-
lations, it is clear that the application of the charac-
ter theory goes far beyond the analysis of a specific
reduction chain, as it also provides an insight into
the BR of other Lie groups.

As to advantages of the ansatz proposed in this
work, these are mainly of computational nature.
While the S-function method requires the manipu-
lation of Young diagrams as well as the application
of simplification rules, the task of obtaining the BR
may be laborious for high dimensional representa-
tions. In contrast, formula (4) only requires evalu-
ation of a finite sum, and no further simplification
or manipulation is required.

Another positive aspect of the direct approach is
the possibility of solving questions that are far from
being trivially handled with when considering the
S-functions, e. g. the obtainment of those IRREPs
[k, I, m] of sp(6) that contain a (fixed) irreducible
representation (v) [A, u] of sp(4) x sP(2) as well as
determining the maximal possible multiplicity.

Proposition 1 Let R = (v) [A, ] be a fixed IRREP
of sp(4) x sp’(2). Then R appears in the decompo-
sition of the following irreducible representations

[k, I, m] of $p(6):

(i) Foru>m:

4 In this context, we observe that a closed formula for the
tensor products of representations of SU (3)was devel-
oped in [@].

(K, Lm]=[l+m+A-pu-v+2(b-a),l,m](25)
where [>2py,A 2m,0<b<v, and
Oa<min{l-pA-p,mpl+m+b2u+v+2a.

The multiplicity g, of Rin [k, [, m] is bounded by
, < 1+min{l -y, A -y, m}.

(ii) For y < m:
[k, ,m]=[l-m+A+u-v+2(b-a),l,m], (26)

wherel2py,A2m,0<b<v,and
Oa<min{l-mA-m,ul,A+u+bzm+v+2a.

The multiplicity g, of Rin [k, [, m] is bounded by
g, < 1 +min{l - m, A - m, u}.

Proof. We use identity (21) and the first four in-
equalities of (22). From k > I > [ > T} > m and
[?>A =T > uwe easily deduce that [ > yand A > m,
as well as I’} > max{u, m}. We distinguish the two
possible cases. If 4 > m, then I} = u + a for some
a > 0. Inserting it into (21) and (22) and simplify-
ing the expressions lead to k = 27 -l -m - A + p
+ v + 2a and the inequalities

k>T3>1>pu+a, T)2A>p+a,

I+m+A—pu—-2a>T), (27)

H=a.

This implies that a < min{l/ - y, A — y, m}. In partic-
ular, equation (27) shows that the multiplicity g, of
(v) [A, 4] can never exceed 1 + min{l - y, A — y, m}.
Now, as k > I'} holds, combining the third ine-
quality of (27) with the expression of k we further
infer that

C2l+m+A-pu-v-2a

It follows that I = [+ m+ A - pu+v+2a+b
for some 0 < b < v. Now, for each fixed value of
0 <a<min {l - y, A - y, m} and b that satisfy the
inequality A + 4 + b > m + v + 2a the conditions
(22) are satisfied, and (21) provides the value of k.
This shows that R is contained in the representation
l+m+A-pu-v+2(b-a),l, m.

We omit the detailed proof for the case y < m,
as it is completely analogous to the previous one. =

Corollary 1. Let g, > 2. Then [3q, - 3,2q,- 2, q,- 1]
is the lowest dimensional irreducible repre-
sentation of sp(6) such that the reduction
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sp(6) ¥ sp(4) x sp(2) contains some representa-
tion (v) [A, u] having exactly multiplicity g,

Proof. Suppose that (v) [A, u] has exactly multiplic-
ity g, in [k, I, m]. According to the previous result,
two possibilities are given, according to whether
Us<moru>m.
(i) Let y < m. The upper bound for the
multiplicity is given by g, < min{l - m,
A = m, u} + 1, implying that

I-m>q -1,A-m>q,-1,u>q,-1.

In order to get the representation [k, I, m]
of the lowest possible dimension, let us
putm=u=q,-1,l=m+q,-1=2q,-2,
and A = . Further let I} = g, - 1 + a, where
0 < a < g, - 1. Inserting these values into
(21) and (22) leads to the conditions

k>T?>2q,-2,4q,-4-2a =T},

where k = 2T} + 2a + 4 - 4q, + v. Since the
value of k must remain the same for any
0 <a<gq,- 1, the equation (21) has exactly
q, solutions if and only if

(I, 1) =(3q,-3-a,q,-1+a),0<a<q -1

It follows that k = g, - 2 = v, and the con-
dition k > I’ implies that v > g, - 1. The
minimal value of k is given for v = q - 1,
and we obtain the IRREP [3¢q, - 3, 2q, - 2,
g, — 1]. In this case, the representation of
sp(4) x sp(2) having multiplicity g, is
(q,-1) [2g,-2, g, - 1].
(ii) For the casey >m thereasoningis very simi-

lar to the previous one, and always choosing
the minimal possible values A = I = 2¢q, - 1,
pu=m+1=gq,v=gq,-1weobtain the IRREP
[3q, - 2,2q,- 1, q, - 1] of 5p(6) containing
the representation (g, -1) [2q, - 1, q,] with
multiplicity q,.

Using the dimension formula (16) it follows that

q; = dim[3q, - 3, 2q, - 2, q, -1] < dim [3q, - 2,

2q, - 1, q, - 1] for all g, showing that the former

representation is the lowest dimensional exhibiting

multiplicity q,. =

Consequence. Let a > 2 and A = [k, [, m] an irre-
ducible representation of sp(6). If dim [k, [, m] < a°,
then the maximal multiplicity of an IRREP (v) [A, y]
of sp(4) x sp(2)in Aisa - 1.

As an example of the preceding criteria, let us
consider the representation R =|722>. The applica-

tion of proposition 1 provides all the 16 types of
IRREPs of $p(6) whose reduction to sp(4) x sp(2)
contain R:
e [I+7,L0],[I+6,,1],[I+8,1,1] for]=>2;
o [l+5L0],[l+4,11] forl=3;
e[I+3,1,0] forl=>4;
o [l+2,1,1] for [ > 5;
e[l-m+7,Lm], [l -m+9,[, m],
[[-m+11, L m]forl>mand2<m <7,
e[l-m+5Lm]forlm+1land2<m<5;
e[l-m+7,Lm],[l-m+9,Lm]forl>m+1
and 2 <m < 6;
e[l-m+3,Lm]forl2m+2and2<m<3;
e[l-m+5Lm]forl>m+2and2<m<4;
e[l-m+7,Lm]forl>2m+2and2<m<5.
In addition, it follows that the multiplicity of R
in [k, I, m] never exceeds 3.

3. Application to orthogonal bases of states

It is well known that for any semisimple Lie al-
gebra § of rank [ there exist /() = [ functionally
independent Casimir operators and that eigenval-
ues of these label irreducible representations of s
[@]. Racah pointed out that in general the Casimir
operators and Cartan generators are not sufficient
to completely characterize the states within a rep-
resentation and that the total number of internal
labels required is given by’

i= %(dim 5—N(s)). (28)

If we use a subalgebra ¢ — ¢ to label the basis
states, a similar lack of a complete set of labelling
operators is observed. In this case the subgroup
provides %(dim s+ N(5))—/, labels, where [ is the
number of invariants of § that depend only on gen-
erators of the subalgebra &’ [E]. Additional

n= 15 (dim 5—N(s)—dim §' —N(s' ))+IO (29)

5 As the eigenvalues of the Casimir operators are the
same for all states, we can skip them whenever the

IRREP of s is fixed.
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operators, called missing label operators or sub-
group scalars, are needed to separate multiplicities
of IRREPs of §'. Supposed that these operators are
taken in Hermitean form, they can be simultane-
ously diagonalized and hence any state of the rep-
resentation [k, [, m] will be characterized by the ei-
genvalues of these operators [@].

The missing label problem (MLP) for the chain
sP(6) D sP(4) x $P(2) has been analysed from vari-
ous different perspectives [ﬁ, ]. However, for the
practical choice of the missing label operator there is
no natural candidate. The simplest suitable subgroup
scalar ® to separate degeneracies within a represen-
tation [k, [, m] would have degree six in the genera-
tors, which makes its diagonalization a difficult prac-
tical problem, as well as its numercial evaluation. We
will instead use the criterion (21) derived from the
branching rule to circumvent this point.

To construct a basis of eigenstates for $p(6)
representations in a $p(4) x sP(2) basis, we need
to find i = 9 internal commuting operators that in
addition commute with all generators of the subal-
gebra. The “external” operators correspond to the
Casimir operators of $p(6). As the reduction is not
multiplicity free, the previous formula (29) indi-
cates that in general n = 1 missing label operator
is sufficient to separate degeneracies. However, as
we have seen, using equation (23) we can skip this
operator, as repeated IRREPs of the subalgebra are
distinguished by the values of I'’ and I";.

It is convenient to use the Racah realization of
sp(6) to explicitly construct these operators [@].
We consider the Lie algebra generators X, with
-3 < i, j < 3 satisfying the condition

X +eeX. =0, (30)
i,j i i

where ¢, = sgn(i). Over this basis, the brackets are
given by

[Xi,j’ X 1= (Sjk X;=9, Xyte ‘%‘6;;4 Xiim &8 O, 4 Xp (31)

where -3 <, j, k, [ < 3. It is clear that the operators
Xi’j for which -2 < i, j < 2, jointly with X, X s
and X, _, generate the subalgebra sp(4) x sp(2). We
further have that h, = X generate the Cartan sub-
algebra of sp(6). ’

With this basis, a suitable choice for the com-
muting operators is given by [@]:

« The three Casimir operators L, I, I of $p(6).
They have the same values for all states within the
IRREP [k, I, m].

» The three Cartan generators h , h, h, of $p(6).
The last one corresponds to the Cartan subalgebra
of $p(2), while the two first generate also the Car-
tan subalgebra of sp(4).

» The three Casimir operators C,, C,, and C; of
sp(4) x $P(2). These will have the same values for
all states belonging to the irreducible representa-

tion (v) [A, 4] associated to the pattern Au\
\%

» The quadratic operators C,,, C,, obtained from
the further reduction chain $p(4) > $p(2) x $p(2).
These operators separate the states within each
sp(4) IRREP obtained in (4).

« The missing label operator ©.

As we have observed previously, we can con-
struct an orthogonal basis of states for arbitrary
representations of $p(6) without a necessity of com-
puting explicitly the difficult to diagonalize missing
label operator ®. We skip this subgroup scalar, and
as additional label to separate representations of
the subalgebra we use the numerical value of I'; (or
I’) obtained from equation (21).

Let p,, p,, p, be the eigenvalues of I, I, I. The
value of p, can be easily computed, while for the
computation of p, and p, it is convenient to use the
so-called Okubo formula [@]. We give the explicit
values for p,, p,, while we skip the expression for p,
because of its length (83 terms):

p, =k + P+ m’+ 6k + 4l + 4m,

p, = 5k* + 5I' + 5m* + 3K°F + 3k°m? + 3Pm’* + 60k
+40P +20m* +12k* + 6k*m + 18kI* + 18km*
+ 6FPm + 12Im* + 221k* + 861*+ 5m* + 72kl
+ 36km + 24Ilm + 126k + 241 - 30m.  (32)

Further let £, &, and &, denote the eigenvalues
of C,, C,, and C;for a representation (v) [A, u]. Their
explicit expression in the basis above of $p(6) is

& =v(@+1)+u@+u),
54=§u(2+u)+/1(1+4/1)(4u2+8u—2),
&=y (2+ v).

(33)

In order to determine the eigenvalues of the in-
ternal operators 6, and 6,,, corresponding to the
Casimir operators C, , C,,, we must also know how
the sp(4) representation [Ay] branches when re-
duced to the subalgebra $p(2) x sp(2). In this case

the formula reads:



81 R. Campoamor-Stursberg / Lith. J. Phys. 53, 71-83 (2013)

(34)

Pl S, S =) ).

s=0 r=0

Hence, for each fixed values of r and s the cor-
responding eigenvalues are

0,=(A-r-s)(A-r—-s+2),

(35)
0,,=(u+r-s)(u+r-s+2).

Putting together the previous eigenvalues, it fol-
lows that the orthogonal basis of [k, I, m] is deter-
mined by the eigenstates

|p1 Py Ps; &y &, &yy5 0y Ony5 by by by 0(), (36)

where a denotes the scalar(s) I'} obtained from
equation (23).

To illustrate the use of (36) we give the complete
basis of eigenstates for the IRREP [3, 2, 1] in Ta-
ble 1. For each pattern appearing in the decomposi-
tion (24) the eigenvalues and the number of differ-
ent states provided by them are given.

Table 1. Basis of eigenstates for 3, 2, 1] in d = 512*.

Pattern Constraints

Eigenstates

1l
H+

10
D) 155330k 0h52) hoh=n

—~
o)

states)

|5 =2 3;,305h 0h;2) hyh=t1

11
0> |8 20 0; 00500 0; 3)

—
w

states)

18200;33;h h,0;3)  hh=x1

11
2> [8200;00;00h;2)  h=%20

(15states) |8 20 0; 3 3; h h h;2) hoh=x%1h=%20

28> |12 -6 0;8 0;h, 00;3) k=20

[12-60;08;0h,0;3) h=
|12 -6 053 3; h, h, 0; 3)  h,h,==1

(10 states)

20
2> [12-60;80; h, 0 hy; 2)

|12 -60;08;0h, hs; 2)
|12 -6 05 3 3; h, hy hs; 2)

h, hy = £2,0
(30 states) >

21
1> |15%3;30;h10h3;3> By h = +1

|15%3;03;0h2h3;3> h
|15§ 3;83; hy hy hy; 3)

(32 states)

|15§ 3;30; h, 0 hs32)  h,ho=+1

(32 states)

|15§ 3;03;0 h, hy; 2)
|15775 3;83; hy hy hy; 2)

hyh =+1
h =%2,0,h,h, = +1

h, =+2,0, h,h,=+1

21
3

|15 % 3;30; h,0 hs; 2)  h =21, h, =13, £1
[1523;03;0h, h;2) h=tlLh=232%
h =+2,0,h, = *1,
(64 states) |15 775 3; 8 3; hl hz h3§ 2) h,= 43,41
|15 25 3; 3 8; hy by hy; 2) 1= LA =220,
h,=+3,+1
22
0> [20 110 0; 0 0; 0 0 0; 3)
|20 110 0,33, h1 h2 0, 3> hy, by = £1
14
(S 100 110 05 8 8 by b 05 3)  hu o= 42,0
22
2> |20 110 8;00;00 s 3)  hi=%2,0
(42 states) |20 110 053 35 hy hy b 3) By he=%1,1s%2,0
120 110 05 8 8; 1, iy 1y 3) o i ha= 42,0
30
1> 21 213515 05 5y 0 b 3) by =23, 41k, = 21
|21 izl 3; 0 15; 0 h, hs; 3) Fo= 43, +1 hy = +1
(“0states)  [21 =21 3;8 3; by hy g 3)  mi=£2.0h hi=+1

hz=i2,0,h1,h3:i1

|24 60 0; 15 3; h, h, 0; 3)

hi= %3, +1, h,= +1

(35 states)

|24 60 0; 3 15; h, h, 0; 3)
|24 60 0; 8 0; h, 0 0; 3)
|24 60 0; 0 8; 0 h, 05 3)
|24 60 0; 8 8; h, h, 0; 3)
|24 60 0; 3 3; h, h, 0; 3)

hi=+1, =43, 1
hi=+2,0
hy=+2,0

hi, hy= 12,0

hi, ha= 1

31
2

|24 60 8; 15 3; h, h, hs; 2)

(105

states)

2460 8; 3 15; b h, h; 2)
|24 60 8; 8 05 1, 0 hs3 2)
24 60 8; 0 8; 0 hy, hs; 2)
24 60 8; 8 8 h, hs hs; 2)
24 60 8; 3 3; h, by hs; 2)

355
[29 2 3; 15 8; hy h, hs; 3)

(80 states)

|29 333,815 h h,hy;3)

[29335 3,835 h h, h,; 3)
[293333;3 8 h h, h,;3)
|29 33—5 3;30;h h, hg;3)

o 3,03 h b hy3)

h =#2,0,
h,= £3,+1,h,=+1

h =#2,0, h, h,=+1

hy,h =+1

* For this representation, the Casimir operators of $p(6) have
the eigenvalues (ps, ps, ps) = (42, 6867, 59921).
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4. Concluding remarks

Starting from the generalized Zhelobenko pat-
terns (1) developed in [@, @] for symplectic Lie
algebras, we have derived an explicit branching
rule for the irreducible representations of $p(6)
when reduced with respect to the maximal sub-
algebra sp(4) x sp(2). Advantages of this formula
over the generic patterns (1) reside in the pos-
sibility of classifying the multiplicity free reduc-
tions as well as solving the multiplicity problem
for representations of the subalgebra intervening
in the decomposition. In particular, using some
of the inequalities of the (1) system, we are able
to separate degeneracies in the decomposition
by means of the scalar solutions of an equation.
This procedure is used to construct bases of ei-
genstates for sp(6) representations, but skipping
the usually difficult computation of the missing
label operator. Instead of this, we label repeated
representations of the subalgebra using the solu-
tions of equation (21), considered as a mere scalar
equation. This alternative approach, mixing the
combinatorial approach of (1) with the analytical
ansatz to the missing label problem, is of practical
use as it provides eigenstates for arbitrary repre-
sentations [k, I, m] directly from the decomposi-
tion formula (4). In contrast, for each fixed repre-
sentation of $p(6) the patterns (1) provide both
the branching rule (with some additional compu-
tations) as well as the distinction of possible de-
generacies, but for generic IRREPs the procedure
is cumbersome because of its computational com-
plications. The advantages, inconveniences, and
the range of validity of this direct approach with
respect to the general theory of S-functions de-
veloped in [, | have been discussed, pointing
out that for some specific problems, like the deter-
mination of the sp(6) irreducible representations
that contain a fixed IRREP of the subalgebra or
finding the lowest dimensional sp(6) representa-
tion, the decomposition of which exhibits a fixed
multiplicity, the formula (4) and the pattern mul-
tiplicity criterion provide the answer in a reason-
ably simple way.

In principle, the same procedure developed here
can be applied to obtain the precise branching rules
for the reduction sp(2N) l sp(2N - 2) x sp(2)
with arbitrary N > 3. Although for these algebras
the number of missing label operators is higher

[@], it should be expected that the labelling prob-
lem can also be solved by means of scalars arising
from a generalized equation (23).

The approach to the branching rules and la-
belling problem undertaken here could be use-
ful to give an adequate solution to another intri-
cacy in the representation theory: construction
of matrix elements. For the reduction chain
sp(2N) d SP(2N - 2) x sP(2) there are still no gen-
eral formulae for the matrix elements [@], and it
is still an open problem whether our combinato-
rial approach, replacing the missing label opera-
tors by suitable scalars obtained from the equation
(21), result in manipulable selection rules that en-
able to find the general expression for the matrix
elements, as derived in [BY] for the multiplicity
free reduction in N = 2. The main difficulty in this
aspect is to find suitable recurrence relations that
can be solved for all $p(2N) generators. This ques-
tion is currently under close scrutiny, and we hope
to find a satisfactory solution in the near future.
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sp(6) ¥ sp(4) x sp(2) SAKOJIMOSI TAISYKLES IR TIKRINIU BUSENU BAZES

R. Campoamor-Stursberg

Madrido Complutense universitetas, Madridas, Ispanija

Santrauka
Pateikta iSreiks$tiné formulé, aprasanti SP(6)
jvaizdZiy Sakojimasi pagal redukcijos grandinéle

sP(6) { SP(4) x $P(2). Tai leidzia klasifikuoti reduk-
cijas, neturindias pasikartojimy, bei gauti pasikartojimy
skai¢iy kiekvienam $P(4) x SP(2) jvaizdZziui. Metodas

palyginamas su tuo, kas gaunama remiantis S-funkcijy
teorija, nurodant isreikstinés formulés privalumus ir
trikumus. Sakojimosi taisyklé panaudota sudaryti orto-
gonalig $P(6) tikriniy funkcijy baze, kurioje i§sigimimai
sutvarkomi taikant skaliarg vietoje jprastinio triksta-
mos Zymos operatoriaus.
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