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We investigate theoretically and experimentally light dynamics in plane-mirror Fabry-Pérot resonators 
filled with two- and three-dimensional photonic crystals. It has been predicted that the diffraction of such 
resonators can be manipulated [20] and used to control the linear and nonlinear light pattern formation there. 
Here we study the phenomenon in detail. We show the hyperbolic shape angular transmission profiles in case 
of a two-dimensional photonic structure (obtained by the one-dimensional modulation of the surface of the 
mirrors) and study the sub- and superdiffractive regimes in such resonators. We also summarize and review 
the previous results [21] of a resonator filled by a three-dimensional photonic structure (obtained by the two-
dimensional modulation of the mirrors).
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1. Introduction

Pattern formation in nonlinear optical resonators 
is a fascinating subject, a systematic study of which 
started more than two decades ago [1]. First of all, 
the pattern formation in nonlinear optical resona-
tors resembles spontaneous pattern formation in 
other systems in the nature and technology [2]. The 
appearance of structures, seemingly from nothing, 
is a subject which fascinates not only physicists, but 
everybody interested in “philosophical” problems 
of self-evolution in the nature [3]. The nonlinear 
optical systems are nice and well controllable play-
ground for studying these building bricks of evolu-
tion in the nature. On the other hand, the patterns 
in optics are potentially applicable to digital and 
analogous information processing.

After very active 1990s, there arrived a decade 
of moderate interest in nonlinear spatial patterns. 
This is perhaps due to the fact that nonlinear light 

patterns did not enjoy quick applications from the 
very beginning. One reason for the lack of appli-
cations is that the “conventional” pattern forming 
nonlinear systems are relatively large in extent, and 
the basic localized patterns to be used in applica-
tions like optical vortices, solitons are of relatively 
large transverse dimensions. Therefore, in spite of 
a potentially huge speed of possible information 
processing (much larger than in conventional mi-
croelectronics), the localized light structures were 
supposed to be relatively large, i. e. of the size of the 
wavelength. Simply speaking, the photons of visible 
light are “large”, much larger than electrons, and 
nonlinear formations from photons are large too. 
In spite of a potentially huge speed of information 
processing, the optical systems could not beat the 
microelectronic information processing systems, 
due to large dimensions of photons.

In recent years a revival of interest on nonlin-
ear light patterns or on patterns in other similar 



M. Peckus et al. / Lith. J. Phys. 53, 25–40 (2013)26

Instead of directly filling the resonator (or part 
of it) with PhCs, we take advantage of the fact that 
the light wave travels periodically along the resona-
tor. Therefore, it is sufficient just to place one peri-
od (one plane or one row) of PhCs in the resonator, 
and the resonating wave will behave in a very simi-
lar way as propagating along the photonic crystal. 
Technologically it is more convenient to modulate 
periodically a surface of one or both mirrors. Then 
the unfolded resonator results in a periodic struc-
ture. In other words, the photon making roundtrips 
along the resonator will behave in a similar way as 
propagating along the unfolded, periodic structure. 
Obviously, the behaviour of the light wave in the 
resonator is not completely equivalent to the be-
haviour of light in the unfolded structure, as the 
longitudinal mode structure is affected by unfold-
ing. However, concerning the spatial propagation 
of the beams and of light patterns (i. e. concerning 
the transverse mode structure) the equivalence is 
complete. Therefore, if the unfolded PhC is of ge-
ometry corresponding to the nondiffractive (self-
collimating) regime [16, 17], then the photon reso-
nating inside the “folded” structure will not show 

systems can be seen. First of all, the structures in 
Bose condensates (vortices, etc.) are very similar to 
those discovered in the 1990s in nonlinear optics 
[4–8]. The Gross-Pitaevskii equation for zero-tem-
perature Bose condensates is in fact the same non-
linear Schroedinger equation in nonlinear optics. 
Second, the huge growth of the interest in the field 
of surface plasmon polaritons [9–11] revived the 
pattern formation theory developed in nonlinear 
optics. The ensembles of polaritons are described 
by nearly the same order parameter equation as 
“pure” photons in optics. The polaritons (coupled 
states of a photon and surface plasmon) are in fact 
much “smaller” than pure photons; therefore, their 
applications in micro- and nano-optics become 
very promising.

In addition to the above-mentioned relations 
with other fields of nonlinear wave dynamics, the 
recent advance of microtechnologies allows build-
ing the linear and nonlinear microresonators and 
promises new possibilities for pattern formation in 
small compact nonlinear optical systems. In partic-
ular, wave diffraction in resonators becomes more 
controllable due to possibilities to fill the resona-
tors with some exotic metamaterials [12]. Specifi-
cally, the negative-index metamaterials can invert 
the sign of diffraction, thus can allow nonevanes-
cent propagation of subwavelength scale patterns. 
Another possibility is to fill the resonator with pho-
tonic crystals (PhCs). The latter idea also allows 
compensating positive diffraction of free space by 
negative diffraction of PhCs, thus also offers pos-
sibilities to reduce the spatial scale of the patterns. 
The idea is illustrated in Fig.  1. Recently, several 
concrete architectures have been proposed for such 
linear [13] and nonlinear [14, 15] resonators, al-
lowing manipulation of resonator diffraction and 

thus manipulating the scale of nonlinear patterns 
there. An experimental realization of the latter idea 
(filling the microresonator with PhCs) is behind 
the subject of the present article.

In spite of advancing technologies of micro-
structuring the matter, it is still difficult to build the 
microresonators fully or partially filled with PhCs, 
as illustrated in Fig. 1. We follow a different tech-
nique, a different idea of realization, as illustrated 
in Fig. 2.

Fig. 1. Illustration of the beam inside a homogeneous 
resonator (a), and resonator completely (b) and partially 
(c) filled with PhCs.

Fig. 2. Illustration of unfolded structure of the resona-
tor: (a, b) double modulated mirror resonator, (c, d) sin-
gle modulated mirror resonator.
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diffractive spreading either. If light propagating 
along the unfolded PhC shows angular (spatial) fil-
tering [18, 19], then the light in the resonator can 
also be expected to show spatial filtering.

The above-described idea was proposed [20] 
and further elaborated and experimentally demon-
strated [21]. The first fabricated mirrors were of a 
large period structure (with the period ten times 
larger than the wavelength); therefore, the numeri-
cal aperture of manipulated radiation was very 
small [20]. Developing technologies allow decreas-
ing the periods of modulation, bringing the idea 
closer to reality. Now, sub-wavelength reflection 
gratings also become possible, which might open 
new perspectives for manipulating the waves even 
on a sub-wavelength scale.

The paper is devoted to the theoretical and ex-
perimental study of diffraction of the resonator filled 
with PhCs. The paper is organized as follows: Sec. 2 
gives a short description of fabrication and of ex-
perimental measuring techniques. Sec. 3 reviews a 
transverse and longitudinal mode theory of modu-
lated resonators, highlighting what differences could 
be expected compared with the nonmodulated case. 
Sec. 4 contains the derivation of the theoretical mod-
el used for numerical calculations. Original results 
are summarized in Sec. 5, where the subdiffractive 
and superdiffractive light dynamics in resonators is 
analysed numerically and experimentally. This study 
restricts to one-dimensionally modulated structures. 
For completeness, the results of two-dimensional 
mirrors are also presented in Sec. 6, which actually 
reviews the already published results [20, 21]. The 
paper ends with conclusions in Sec. 7. A short review 
of the relevant references on pattern formation on 
nonlinear optics is given in the Appendix.

2. Fabrication and experiments

The idea for such a resonator with an intracavity 
PhC is illustrated in Fig. 2: instead of creating mod-
ulation of the refraction index in both longitudi-
nal and transverse directions of the intraresonator 
media, we modulated the surfaces of the mirrors. 
The mirrors, as shown in Fig. 2(a), are shifted with 
respect to one another by half of the modulation 
period. This, in an unfolded structure of such a 
resonator (Fig. 2(b)), results in a 2D PhC: the wave 
resonating along the optical axis of the resonator is 
experiencing the periodic index of refraction both 

in longitudinal and transverse directions. The lat-
eral shift of the mirrors results in the propagation 
along the diagonals of the rhombi of the unfolded 
lattice of the refraction index in the case of modula-
tion in one transverse direction. We note that such 
geometry (propagation along the diagonals of a 
square lattice) is suitable for self-collimation [17, 
22, 23] and for respective manipulation of diffrac-
tion. This is the reason why in the previous work 
[20, 21] such a geometry (in particular the laterally 
shifted mirrors) was chosen. Here, we show that it 
is also possible to use a single modulated mirror 
(Fig.  2(с)). The unfolded structure of this type of 
resonator has a square type (Fig. 2(d)).

The mirrors of the resonator used in experiments 
are shown in Fig. 3 for the cases of modulation in 
one and in two transverse dimensions. For the fab-
rication of the mirrors, the low roughness (λ/20) 
substrates were used. The working side of a mirror 

Fig. 3. AFM images of modulated surfaces of mirrors 
used in our experiments, where modulation periods are: 
(a) dx = 2 μm, (b) dx = 4 μm, and (c) dx = dy = 4 μm.
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was covered by high reflection (98.5%) coatings, 
and the other side with antireflection. The modu-
lation of the surface of the mirror was achieved by 
the photolithography technology. The surfaces of 
the mirrors were first covered with a thin film of the 
MICROPOSIT® S1805® photoresist (~ 0.3 µm thick-
ness, n  =  1.58 index of refraction) using the spin 
coating technique. Next, using the contact photo-
lithography technology, 1D periodic structure was 
exposed and etched on the layers of the film of the 
photoresist with the period d = 2 µm and d = 4 µm 
in the 1D modulation case. In the 2D modulation 
case, a film of a resist was exposed twice with a 900 

rotated template. In this way dx = dy = 4 µm modula-
tion was produced. The width of the etched groves 
was approximately half their period ~  d/2, so the 
coatings on the mirror acted as the phase grating. 
Subsequently, the mirrors were heated in order to 
smoothen the profile of the photoresist and to make 
the surface modulation as close as possible to the 
harmonic one (see Fig. 2(a–c)).

Precise optomechanics or/and 3D piezo trans-
lator were used for cavity alignment and attenu-
ation. The distance between the mirrors (linear 
length of the resonator) was varied in the range 
l = 5–40 μm in accordance with the calculations 
(presented below). The mirrors (in the two mod-
ulated mirrors case) were shifted with respect to 
one another by half of the grating period in order 
to mimic the 2D photonic crystal with the optical 
axis directed along the diagonals of rhombi (see 
Fig.  2(b)) in case of the 1D modulation. In the 
2D modulation case, care was taken to shift the 
periodic structure respectively in both transverse 
directions. In the unfolded structure the propaga-
tion of light succeeded along the diagonals of the 
cubic structure. The self-collimation in 3D is the 
most prominent along the diagonals of the cubic 
structure (as calculated in linear cases [24], shown 
experimentally [25], and predicted in the nonlin-
ear case [26]). The resonator was illuminated by a 
CW laser beam (wavelength 532 nm, beam width 
2.5 mm, power 15 mW). A diffuser was placed in 
front of the front mirror of the resonator in or-
der to generate a broad spatial spectrum of the il-
luminating radiation. Transmitted radiation was 
recorded by using the lens and a CCD or screen 
and photo camera. A lens of 58 mm focal distance 
was used to collect the transmitted radiation into 
a CCD camera for the far field recording.

3. Mode structures of resonator with intracavity 
PhC

The transverse and longitudinal modes structure 
of homogeneously filled plane-mirror resona-
tors (Fabry-Pérot resonators) is well known. Fig-
ure 4(a, c) illustrates the resonator mode structure 
for the monochromatic radiation of frequency 
ω (and, correspondingly, of the modulus of the 
wavevector |k|  =  ω/c  =  2π/λ). As the presence of 
the mirrors imposes the resonance conditions on 
the longitudinal component of the wavevector: 
k|| = 2 πm/(2l) (m is the longitudinal mode num-
ber, and l is the linear cavity length), then the reso-
nant transverse wavevector components become 
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k  resulting in a sys-
tem of concentric Fresnel rings in the resonator an-
gular (far field) transmission profile counted by the 
integer values of m. In homogeneous material the 
character of diffraction is fixed; therefore, there is 
not much freedom in varying the character of the 

Fig. 4. Spatial dispersion curves (a) of monochromatic 
plane waves in homogeneous media and (b) of the Bloch 
modes in photonic crystals. The dispersion curve (b) 
is taken from [20], i.  e. calculated by a standard tech-
nique of harmonic wave expansion. The dashed lines in 
(b) indicate the dispersion curves of uncoupled plane 
waves (or equivalently of the Bloch modes in the limit 
of vanishing index modulation (s → 0)). The thick fuzzy 
lines in (a, b) indicate the resonances of the resonator 
as characterized by the condition of the longitudinal 
component of the wavevector k|| = 2 πm/(2l). (c) Fresnel 
ring structure of the homogeneously filled resonator. (d) 
Mode structure for the resonator with index modulation 
in one transverse direction.
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angular transmission profile. The mode structure 
(the system of Fresnel rings) is simply rescaled by 
varying the optical length of the resonator, i. e. the 
diffractivity of the resonator.

The idea behind the present article (as well as 
behind earlier works [20, 21]) is that the transverse 
and longitudinal mode structure of the plane-mir-
ror resonator could be substantially modified filling 
the resonator with the material with a refraction in-
dex periodic in space, i. e. with a PhC. It is known 
that the character of diffraction can be substantially 
modified in the bulk propagation through the ma-
terial with the periodic in space modulation of the 
refraction index of the media: the dominating orders 
of diffraction can change the sign or can convert to 
zero, resulting in the latter case in the effect of self-
collimation or subdiffraction [16, 17]. This allows us 
to expect that the mode structure of the resonator 
will also be respectively modified by the intracavity 
refraction index modulation. As the angular trans-
mission profile of the resonator is closely related 
with its transverse mode structure, then the shape 
of the resonator angular transmission profile should 
also strongly depend on the character of the in-
tracavity refraction index modulation. In particular, 
the angular transmission profile can be broadened 
or narrowed with respect to that of the “homogene-
ous” resonator, resulting in sub- and superdiffractive 
resonators. Below we perform a systematic numeri-
cal and experimental study of the angular transmis-
sion properties in such resonators.

Figure 4(b, d) illustrates the idea that the Fresnel 
ring structure could be substantially modified if the 
diffraction of the resonator is manipulated due to the 
periodic intracavity refraction index modulation. 
Here the two-dimensional intracavity PhC is con-
sidered, i. e. the index is considered to be modulated 
in one transverse and in one longitudinal direction 
(with respect to the optical axis of the resonator). In 
particular, the relatively broad angular areas of the 
resonances can be expected along the optical axis of 
the resonator when the plateau appears on the spatial 
dispersion curves (Fig. 4(b)) instead of the relatively 
narrow rings or a central spot (Fig.  4(a)). The 2D 
angular resonance profiles are more involved. Fig-
ure 4(d) illustrates the dispersion surface accounting 
for two transverse dimensions, where the refraction 
index is modulated in one transverse direction only 
(2D PhC). As the spatial dispersion surface resem-
bles the saddle, then the resonances, being the hori-

zontal cuts of the dispersion surface, result in the 
hyperbola-like angular transmission structure – in a 
strong contrast with the Fresnel ring structure of the 
homogeneously filled resonators in Fig. 4(c).

We also note that the light dynamics in the reso-
nator modulated in a transverse direction only (no 
longitudinal index modulation) as studied previ-
ously in [27, 28] by applying the mean field models. 
Here in our study, the longitudinal modulation of 
the refraction index is considered (the longitudinal 
modulation index is necessary in order to obtain 
the subdiffractive, or self-collimating, regimes). The 
presence of the longitudinal modulation of the re-
fraction index does not allow application of the mean 
field models like e. g. in [27, 28]; therefore, we de-
veloped a theoretical approach based on the multiple 
transfer matrix analysis. This analysis allows taking 
into account the multilongitudinal mode structure 
(multirings).

4. Theoretical model

For the theoretical-numerical analysis of the resona-
tor modes we developed an approach based on the 
multiple scattering matrix technique. We analyse 
a roundtrip propagation of light along the resona-
tor and calculate the transformation of the field on 
each of the elements consecutively: (i) diffraction on 
the modulated surface of the mirror, (ii) free space 
propagation between the mirrors (diffraction in 
homogeneous material), (iii) lateral shift of the pe-
riodic structure of the mirrors with respect to one 
another, and (iv) partial reflections from the mir-
rors. After calculating the field transformation in a 
resonator roundtrip (by applying the transforma-
tion operators, i. e. by multiplying by corresponding 
transformation matrices), we calculate the resonator 
transmission matrix by the standard techniques: by 
adding the entering plane wave to the resonators and 
by searching for a stationary state. This is essentially 
a classical approach to calculate the mode structure 
of the homogeneously filled Fabry-Pérot resonator, 
with the difference that the field transformations on 
each of the element in the resonator are now not sca-
lars but operators (represented by matrices).

The periodic modulation of the mirror sur-
face results in a set of diffraction components in 
the reflected light with transverse components of 
the wavevectors ,,nm

qk
��

�
�  where � �

yx
kkk ,�

�

�
 is the 

transverse wavevector of the incident light, and 
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� �yxnm nqmqq ,, �
�  are the multiples of the modulation 
wavevector. Strictly speaking, one should consider 
all the possible field harmonics; however, it comes 
out that consideration of the central component 
plus first-order sidebands is sufficient. Here, we 
consider one-dimensional modulation of the mir-
ror surfaces (say in x direction). The theory on the 
two-dimensional modulation case follows straight-
forwardly from the one-dimensional modulation 
case (can also be found in [21]). We approximate 
the resonating field in the following way:
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where qx is the wavevector of the index modulation 
in the transverse direction x. In case of two-dimen-
sional modulation the wavevector of modulation 

� �
yx qqq ,�

�  is to be considered. The plane-wave set 
(2) is tilted with respect to the optical axis, as repre-
sented by the factor in Eq.(1) with nonzero kx. The 
field, for convenience, is further represented by the 
column vector of plane wave components:

� � .,...,,,,...,
21012

T
aaaaaA

����
�

�
 (2)

Next, we list consecutively the field transforma-
tions in the resonator roundtrip.

Scattering by phase grating. The periodically 
modulated phase of the field on the reflection of 
the surface of the mirror couples the components 
of the field vectors. For the harmonic modulation 
the coupling occurs only between the neighbour-
ing components. We introduce the phenomenolog-
ical scattering coefficient sx, which can be linked to 
microscopic parameters of the coating, such as the 
depth of the modulation, and the refraction index 
of the photoresist. However, it is more convenient 
to keep the macroscopic scattering parameter as it 
is directly linked with the experimentally accessible 
diffraction efficiency of the grating (s is the square 
root of the efficiency of scattering into the side-
bands). The scattering matrix is:
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Here and below we consider the five mode ex-
pansion for simplicity, which can be directly ex-
tended to the arbitrary number of components.

Free propagation. The free propagation over 
the linear length of the resonator is considered by 
the paraxial propagation equation:
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(4)

where Ñ^
2 = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator 

acting in the transverse plane. Substitution of 
expansion (1) into Eq. (4) yields the (uncoupled) 
equation system:
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The integration of Eq. (5) over the linear resona-
tor length results in the diagonal field transforma-
tion matrix:
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(6)

where L  =  l/(2k0) is the normalized length of the 
resonator representing its diffraction.

Lateral shift of the mirror. In the case when both 
mirrors are modulated and, importantly, when the 
second mirror is shifted in the lateral direction, we 
account for the lateral shift of the grating (deter-
mined by mx) using the following trick. We fix the 
reference frame with the position of the first mirror. 
Then, for the calculation of the scattering from the 
laterally shifted second mirror, we change the refer-
ence frame by applying the ope rator

� � .,...,,1,,...,
22 xxxxxxxx qimqimqimqim eeeeDiagM �����

�  
(7)

Then, after calculating the scattering on the 
second mirror (by using Eqs. (3) or (4) in the new 
reference frame) we restore the original reference 
frame by applying 1−M


.

Resonator mirrors. Since the reflectivity is the 
same for all harmonic components of the wave, it is 
accounted in a standard way – by multiplication by 
a scalar r . Without losing generality in theory and 
in accordance with our experiment, we consider 
both mirrors of the same reflectivity.
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Resonator roundtrip. The variation of the field 
in a resonator roundtrip is calculated by applying 
consecutively all the operators discussed above:

.ˆˆˆˆˆˆˆ 12 SPMSMPrR ��  (8)

In special situations, when e. g. one mirror is not 
modulated, Eq. (8) respectively simplifies.

Resonator transmission function. The plane 
wave entering into the resonator is denoted in this 
vector form by ( )TA 0,0,1,0,00 =

  for the input field nor-
malized to unity. Then, we calculate the radiation 
balance in one resonator roundtrip and analogous-
ly to the homogeneous Fabry-Pérot case we obtain

� � 0

1ˆ1̂ ARtA
�� �

��  (9)

for the radiation at the entrance mirror. The only 
difference from the homogeneous Fabry-Perot case 
is that here we deal with the vectors of the wave 
components and transformation matrices, instead 
of complex scalar factors. Finally, the resonator 
transmission matrix is 
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122

1
2 ˆˆˆˆˆˆ1̂ˆ1̂ˆ

�
�

�

���� SPMSPMrtRtT

 
(10)

The transmission for the homogeneous compo-
nent is given by the element T0,0 of the matrix (10). 
The scattering of the resonator into the sidebands 
harmonics is described by the corresponding off-
diagonal column elements of the matrix: by T–1,0 and 
T+1,0 into the diffraction components in x direction, 
and by T0,–1 and T0,+1 into the diffraction components 
in y direction.

The transmission matrix (10) can be easily 
adopted for the single modulated mirror case by 
removing the operator of scattering from the mod-
ulated surface of the second mirror as well as the 
operator of the lateral shift:

� � � � .ˆˆˆ1̂ˆ1̂ˆ
1

22
1

2
��

���� SPPrtRtT  (11)

The resonator transmission profiles calculated 
by (10), (11) give the basic properties expected: 
subdiffraction and superdiffraction, and are ana-
lysed in subsequent chapters.

5. One-dimensional modulation of mirror 
surfaces

The resonator configuration was built with the initial 
purpose to obtain the subdiffractive condition, i. e. 

the flattening of the dispersion curve as illustrated 
in Fig. 4. This occurs at around the resonance condi-
tions for all the significant harmonic components of 
expansion (1). Although the final expression for the 
resonator transmission function (10) does not allow 
analytical interpretation of the results, the inspection 
of the free-propagation matrix (6) allows estimation 
of the parameters for this multiple resonance. The 
simultaneous resonance of at least three most rel-
evant harmonic components is possible if different 
components belong to different longitudinal modes: 
the central mode a0 belongs to a particular longitu-
dinal mode n and the sideband modes belong to the 
longitudinal mode with the index n–1. From (6) it 
follows that the conditions must hold: lk0 ≈ πn (the 
resonance condition for the central component) 
and Lqx

2 ≈ π (the resonance condition for the side-
bands). The latter means lqx

2/k0 ≈ 2π, or equivalently 
lλ/d2

x,y ≈ 1, where dx = 2π/qx are the corresponding 
spatial periods of the modulation of the surfaces of 
the mirrors, and l (we repeat) is the linear length of 
the resonator.

The latter conditions were indicators for selecting 
the resonator length in our experiments. The “rough 
tuning” of the resonator length around the critical 
one lcr = dx

2/λ ensures the multiple resonance condi-
tion, i. e. all field harmonics are simultaneously in or 
out of the resonance, depending on the fine tuning 
of the resonator. The other condition lk0 ≈ πn was 
considered for the fine (submicron) tuning of the 
resonator length in order to simultaneously tune all 
harmonics to the resonance. The fine tuning is char-
acterized by the roundtrip phase of the resonator: 
φ = 2lk0 – 2πn.

5.1. Single modulated mirror

We start our analysis from the case when only one 
resonator mirror has a modulated surface. Figure 5 
shows the transmission of the resonator as calcu-
lated according to (11). The figure shows that de-
pending on the parameters of the resonator (essen-
tially, resonator length and mirror reflectivity) two 
relevant cases are obtained: subdiffractive (Fig. 5(a)) 
and superdiffractive (Fig. 5(c)). In the subdiffractive 
case, transmission shows distribution broader than 
in the reference case of the homogeneous resonator. 
In the superdiffractive case, the transmission profile 
is narrower. As the modulation of mirrors is one-di-
mensional and is directed horizontally (x direction), 



M. Peckus et al. / Lith. J. Phys. 53, 25–40 (2013)32

then the transformation of the transmission profile 
occurs only in this direction. 

Below we analyse these two limiting cases 
in detail, by calculating and plotting the spatial 
characteristics of the transmission profile on a cross-
section kY = 0. The resonator transmission profile de-
pends on cavity length d and fine tuning, or phase φ, 
diffraction efficiency s, mirror transmission t. Figu-
re 6(a, c, e) represents superdiffraction, Fig. 6(b, d, 
f) represents subdiffraction. The black line in Fig. 6 
indicates transmission of a homogeneous cavity.

At a low diffraction efficiency (Fig. 6(a)) s = 0.1 
and for 3.3 ≤ d ≤ 3.8 the top value of transmission 
(for on-axis radiation) exceeds 0.9, but the periph-
eral parts of the transmission profile are relatively 

Fig. 5. Transmission profile of a PhC 
resonator with a single modulated mir-
ror as calculated numerically from (11): 
(a) subdiffraction angular transmission 
profiles at normalized resonator length 
d = 4.2 with parameters: s = 0.4, t = 0.015, 
φ = –0.1, (b) transmission profile in cor-
responding homogeneous case at s  =  0, 
φ = 0, (c) superdiffraction angular trans-
mission profiles at length d = 3.7 with pa-
rameters: s = 0.4, t = 0.2, φ = –0.25, and (d) 
corresponding homogeneous case of (c).

strong. If the cavity length is smaller, the top trans-
mission decreases rapidly. For the longer resona-
tors, the angular transmission spectrum is broader 
than a homogeneous resonator. Also, peripheral 
parts decrease and the transmission profile becomes 
smoother (see Fig.  6(c)). For diffraction efficiency 
s  =  0.35 (Fig.  6(e)) peripheral parts become irrel-
evant; however, the top values of transmission de-
crease down to 0.8.

The subdiffractive regime is obtained for the range 
of cavity length 4.5 ≤ d ≤ 5. If diffraction efficiency is 
low (s = 0.1) subdifraction does not occur (Fig. 6(b)) 
and the top transmission is close to 1. Higher diffrac-
tion efficiency makes transmission  broader than the 
homogeneous one (Fig. 6(d)). The dispersion curve 
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has abrupt edges so the cavity still can be used as 
a spatial filter. In case of high diffraction efficiency 
(Fig.  6(f)) dispersion exhibits the quadratic-like 
shape with a nearly flat plateau. It could be noted that 

Fig. 7. Resonator transmis-
sion cross-section at ky =  0 
depending on cavity mir-
ror transmission t: (a), (c) 
represent superdiffraction 
case, and (b), (d) represent 
subdiffraction. Transmis-
sion of homogeneously 
filled resonator is indica ted 
by dashed lines.

Fig. 6. Resonator trans-
mission cross-section at 
ky  =  0 for different cav-
ity parameters: (a), (c), (e) 
represent superdiffraction 
case, (b), (d), (f) represent 
subdiffraction. Resona-
tor transmission t  =  0.1 is 
fixed for all cases. Resona-
tor phase is tuned for maxi-
mum transmission.

in case of a high diffraction efficiency the shape of 
the dispersion curve is very sensitive to cavity phase.

The influence of the cavity finesse on the angular 
transmission profile is summarized in Fig. 7. Two 
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sets of parameters are used to explore the angular 
filtering and subdiffraction. The transmission of 
a homogeneously filled resonator is indicated by 
dashed lines. Higher cavity finesse (lower mirror 
transmission) reduces borders around the central 
peak in all cases. Figure  7(a, c) shows the spatial 
filtering regime indicating that filtering is possible 
at any cavity mirror transmission or grating dif-
fraction efficiency. Lower mirror transmission re-
duces the peripheral part of the transmission func-
tion but does not affect central peak intensity very 
much. After filtering, on-axis intensity decreases by 
the factor of 20–40%.

Contrarily to filtering, the subdiffraction regime 
cannot be realized in the cavity with high transmis-
sion mirrors (Fig. 7(b, d)). Cavity transmission for 
diffraction efficiency s = 0.2 and constant phase is 
shown in Fig. 7(b). Half intensity width is almost 
unchanged, but for low transmission mirrors three 
intensity peaks appear. In Fig. 7(d) the phase is at-
tenuated to form a nearly flat top. It is evident from 
this picture that the subdiffraction regime takes 
place in a cavity with a relatively high finesse and 
diffraction efficiency.

Fig. 8. Far field of radia-
tion transmitted through 
the resonator with a 1D 
single modulated mir-
ror as recorded experi-
mentally and calculated 
numerically. Parameters: 
s  =  0.4, t  =  0.2, physical 
and theoretical resonator 
length l = 35 μm (a, b) and 
l = 38 μm (c, d).

In 1D experiments we used two different geome-
tries: double modulated mirror resonator (Fig. 2(a)) 
and single modulated mirror resonator (Fig. 2(b)). 
Next, we analyse the resonator transmission func-
tion obtained at around the critical length of the res-
onator and by varying the fine tuning condition as 
characterized by the roundtrip phase φ = 2lk0 – 2πn. 
The roundtrip phase in experiments could not be di-
rectly determined and was indirectly restored from 
the comparison with the corresponding numerical 
plots (with the explicitly defined phase).

For single modulated mirror cavity experiments a 
1D modulated 4 μm period mirror was used which 
implies the critical cavity length of lcr = d 2/λ = 30 µm. 
The modulation profile is shown in Fig.  3(b). Dif-
fraction efficiency of grating was 27% in zero order, 
30.5% in ±first order, and 5% in the ±second or-
der maxima. Experimental results are in very good 
correspondence with numerical results (Fig.  8). In 
Fig.  8(b), the filtering (superdiffractive) regime is 
evident. All experimentally obtained transmission 
profiles correspond to the cases of high resonator 
mirror transmission (i.  e. low resonator finesse). 
As it comes out from resonator parameter analysis 
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(see discussion above and Figs. 6, 7) the subdiffrac-
tion regime cannot be realized if the cavity finesse is 
low (mirror transmission is large, t > 0.2). Although 
mirror transmission is relatively small, t  =  0.015, 
the scattering losses from the modulated surface 
lower the net finesse of the resonator. The modula-
tion profile of the grating is not perfectly harmonic 
(Fig. 3(b)) and diffraction efficiency to higher order 
maxima is 10%. This causes losses and reduces the 
net finesse of a cavity.

Here we also note the advantages of a single mod-
ulated mirror cavity. From an experimental point of 
view a cavity with a single modulated mirror is at-
tractive because of simplicity of the resonator. It does 
not need gratings to be shifted by half of a period 
and does not need to keep mirror grating precisely 
parallel. On the other hand, a mirror with no grating 
can be covered with a nonlinear or active material.

5. 2. Double modulated mirror

The double modulated mirror case was already 
reported in [21]. For comparison with the single 
modulated mirror case we present here the reso-
nator transmission profiles, both calculated by 
(10) and recorded experimentally. The modulation 
period of a double mirror resonator mirror sur-
face was dx = 2 µm (modulation profile is shown in 
Fig.  3(b)), which implies the critical cavity length 
lcr  =  d2/λ  =  7.5  µm. The diffraction efficiency of a 
grating was 52% in zero order, 16% in +-first order, 
and 4% in the ±second order maxima. Again, a good 

qualitative correspondence between results recorded 
experimentally (left column in Fig. 9) and calculated 
numerically (right column in Fig.  9) is envisaged. 
The case in Fig.  9(b) corresponds to the multiple 
resonances of all three waves, i. e. to the case when 
the frequency of the plateau of the dispersion curve 
is fine-tuned to the resonance. The case in Fig. 9(a) 
is characteristic of situations when the resonator is 
fine-tuned from the resonance.

6. 2D modulation of mirror surfaces

In 2D experiments the period of modulation of 
mirror surface was dx = 4 µm, dy = 4 µm (quadratic 
structure), which implies the critical cavity length 
of lcr = d2/λ = 30 µm. Figure 10 shows the resonator 
transmission function obtained at around the criti-
cal length of the resonator and by varying the fine 
tuning condition.

Also, in a 2D modulation case a good qualita-
tive correspondence with numerically obtained 
results was observed. Here again, the resonant 
case was obtained, characterized by a relatively 

Fig. 9. Far field of radiation transmitted through the res-
onator with 1D modulated mirror surface as recorded 
experimentally and calculated numerically from (10). 
The lateral shift of the mirrors is half of the modula-
tion period. Parameters used are: s = 0.4, t = 0.2, d = 4.0, 
m = π. The resonator roundtrip phase was varied to fit 
the experimental plots.

Fig. 10. Far field of radiation transmitted through the res-
onator with 2D modulated mirrors as recorded experi-
mentally and calculated numerically (10). The lateral shift 
of the mirrors is half of the modulation period in both di-
rections (mx = my = π). Parameters: s = 0.4; t = 0.2; d = 4.5.
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flat (homogeneous) and broad resonator transmis-
sion function. This case is analogous to the case in 
Fig. 8(b), however here obtained as a simultaneous 
resonance of five waves. Also, in analogy to a 1D 
case the typical off-resonance transmission distri-
butions were obtained as shown in Fig. 10(b, c).

The multiple resonance condition and the ap-
pearance of plateau can be also interpreted in a 
geometric way. Differently from 1D case, here it 
seems that the most homogeneous plateau appears 
under participation of the two resonant rings from 
the diffraction maxima, as indicated in Fig. 11. This 
means that also the longitudinal n-2 modes partici-
pate in formation of subdiffractive pattern. 

7. Conclusions

To conclude with, we built a PhC resonator with 
the intracavity modulation of the refraction index, 
i. e. resonator containing one longitudinal period of 
a PhC. We developed the method of calculation of 
such resonator based on the scattering matrix the-
ory and reproduced the experimentally observed 
transmission patterns by numerical integration of 
the developed model. We demonstrated experimen-
tally the basic properties expected, i. e. hyperbolic 
shape transmission patterns in case of 1D modula-
tion of mirror surfaces and square shape patterns in 
case of 2D modulation of mirror surfaces.

The PhC resonator shows the basic properties ex-
pected – the relatively flat angular transmission pro-
file. The maximum transmission area is of quadratic 
shape due to a quadratic symmetry of the modula-
tion of mirror surfaces. More symmetric modula-
tion patterns (hexagonal or octagonal) are expected 
to result in a more isotropic transmission spot.

We also analysed the resonator mirror transmis-
sion, grating scattering, and resonator length influ-
ence on cavity transmission properties. We pointed 
out that high reflection (R > 95%) mirrors (i. e. high 
finesse cavity) are necessary for subdiffraction reso-
nator properties. 
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Appendix

Herein we give a short historical survey on trans-
verse pattern formation in lasers and nonlinear op-
tical resonators.

The first hints on spontaneous pattern forma-
tion in broad aperture lasers and nonlinear resona-
tors appeared in the early 1970s when the relation 
between the coherent laser field and fluids/super-
fluids was recognized [29]. Also, filamentation of 
light in focusing media and, in more sophisticated 
cases, formation of bright spatial solitons [30] can 
be attributed to the initial works on nonlinear light 
patterns. However, really detailed studies of non-
linear patterns started in the late 1980s and early 
1990s. In [31] nontrivial stationary and dynamical 
transverse mode formations in laser beams were 
shown. In [32] it was recognized that Maxwell-
Bloch equations for a laser admit vortex solutions, 
which soon were confirmed experimentally [33]. 
These pioneering works were followed by an in-
creasing number of investigations, mostly attempts 
to understand nonlinear pattern formation by de-
riving the order parameter equation for a laser and 
other broad aperture nonlinear resonators. The 
Ginzburg-Landau equation as an order parameter 
equation for a laser was already derived in [29] in 
a very simple approximation. More sophisticated 
order parameter equations were derived, such as 
modified Ginzburg-Landau equation [34], Swift-
Hohenberg equation [35, 36]. The order parameter 
equations were also derived for other types of non-
linear resonators: resonator with a nonlinear pho-
torefractive crystal [37], resonator with parametric 
nonlinearity [38, 39], and passive driven nonlinear-
Kerr resonator [40, 41].

In parallel to the patterns in nonlinear resonators, 
the nonlinear patterns in different optical configura-
tions were studied, such as mirrorless configuration 
with unidirectional light propagation in nonlinear 
media, leading to filamentation effects and forma-
tion of bright solitons [42], optical vortices [43], 

counterpropagating configuration leading to hexa-
gons [44], systems with a feedback loop, showing a 
large variety of extended patterns [45, 46].

Coming back to nonlinear resonators, various 
phenomena have been studied. One exotic forma-
tion is an optical vortex [32, 33, 47–50] which can 
show chaotic dynamics (vortex mediated turbu-
lence) [51, 52], the vortices that can arrange in regu-
lar vortex lattices [53–55], and the like. Another rele-
vant localized structure is a bright dissipative soliton 
in bistable nonlinear resonators, in bistable lasers 
(with saturable absorbers) [56–58], in passive non-
linear resonators [59], in optical parametric oscilla-
tors [60, 61], and in vertical surface cavity emission 
lasers [62–64]. Also, phase solitons (related with the 
bistability of the phase) should be mentioned as in-
teresting localized formations of light [65–67]. Very 
different issues have been considered, such as three-
dimensional patterns (localized bullets) [68, 69], 
“rocked” resonators [70, 71], to mention a few.

Generally, the character of the above-discussed 
light patterns in nonlinear resonators is strongly 
dependent on diffraction of resonators. Some early 
attempts were made to eliminate the diffraction 
of the resonator by using self-imaging geometries 
[72]. As an alternative, the modulation of the in-
tracavity refraction index was proposed to manipu-
late diffraction, bringing to subdiffractive solitons 
[73, 74], hyperbolic patterns [75, 76], or elimina-
tion of spatial instabilities of the patterns [27, 28]. 
Further works on the topic of modulated resona-
tors (or resonators filled with PhCs) are reviewed in 
the introductory part of the main part of the article.
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Santrauka
Darbe tiriami plokščiųjų veidrodžių Fabri ir Pero 

rezonatoriai su vidine lūžio rodiklio moduliacija, 
atitinkančia vieną išilginį fotoninio kristalo perio-
dą. Tokie rezonatoriai realizuojami sukuriant perio-
dinę lūžio rodiklio moduliaciją vieno arba abiejų 
veidrodžių paviršiuje (t.  y. suformuojant vienmates 
arba dvimates fazines difrakcines gardeles). Fotoni-
nių kristalų rezonatoriaus formuojamų pluoštų di-
frakcinės savybės gali būti apibūdinamos subdifrak-
ciniu (kai kampinis pralaidumo spektras platesnis 
už homogeninio rezonatoriaus) ir superdifrakciniu 
(kai kampinis pralaidumo spektras siauresnis už ho-
mogeninio rezonatoriaus) režimais. Rezonatorius su 
vienmate veidrodžių moduliacija išsiskiria hiperboli-

nio pavidalo erdviniu spektru, o dvimatės veidrodžių 
moduliacijos atveju  –  kvadratinio pavidalo erdviniu 
spektru. Rezonatoriaus analizei sukurtas sklaidos 
matricų teorija paremtas modelis. Analizuojamas 
pagrindinių rezonatoriaus parametrų (veidrodžių 
pralaidumo, gardelių difrakcinio efektyvumo, rezo-
natoriaus ilgio) įtaka rezonatoriaus erdvinės disper-
sijos charakteristikoms. Skirtingai nuo ankstesnių 
darbų ([20, 21]), šiame darbe pagrindinis dėmesys 
skiriamas rezonatoriui su vienu moduliuotu veidro-
džiu. Tokio rezonatoriaus eksperimentiškai išmatuoti 
erdviniai skirstiniai labai gerai atitinka teoriškai su-
modeliuotus, o sistema yra patogi netiesiniams švie-
sos dariniams fotoninių kristalų rezonatoriuose tirti.


