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It has been shown that solutions of a number of many-body problems out of equilibrium can be expressed in terms of
Toeplitz determinants with Fisher-Hartwig (FH) singularities. In the present paper, such Toeplitz determinants are studied
numerically. Results of our numerical calculations fully agree with the FH conjecture in an extended form that includes
a summation over all FH representations (corresponding to different branches of the logarithms). As specific applications,
we consider problems of Fermi edge singularity and tunneling spectroscopy of Luttinger liquid with multiple-step energy
distribution functions, including the case of population inversion. In the energy representation, a sum over FH branches
produces power-law singularities at multiple edges.
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1. Introduction In recent works by two of us with Gefeh [12-15],
non-equilibrium realizations of some of these problems
For more than half a century, quantum many-body have been investigated. For this purpose, we have de-
systems remain one of central research directions in/eloped a non-equilibrium bosonization technique gen-
the condensed matter physics. There is a number oéralizing the conventional bosonizatidn [L6-20] onto
quantum many-body problems that are of fundamen-problems with non-equilibrium distribution functions.
tal physical importance and, at the same time, possesgve have shown that the relevant correlation functions
an exact solution. These are the Anderson orthogonalcan be expressed through Fredholm determinants of
ity catastrophe[[1], Fermi edge singularity [2] (FES), “counting” operator. The information on the specific
Luttinger liquid [3+5] (LL) zero-bias anomaly[[6], and type of the problem, as well as on different aspects of
Kondo problems [[7]. It has been realized long ago thatthe interaction, is encoded in the time-dependent scat-
these problems are, in fact, deeply interconnected, bothering phase of the counting operator. The findings of
from the point of view of the underlying physics and of Refs. [12-15] have demonstrated that the above clas-
the mathematics involved. Such connections have beesical many-body problems are even more closely con-
used, e.g., for the representation of the dynamics ofhected than has been previously understood, extending
the Kondo problem as an infinite sequence of Fermi-the interrelations into the non-equilibrium regime.
edge-singularity events |[8]. These relationships be- The “counting” operators governing the simplest
tween many-body problems extends beoynd fermions(one-particle) non-equilibrium Green functions in the
and encompass also interacting bosons (e. g., the Liebabove models can be reduced to Toeplitz matrix form
Liniger model [9,/ 10]), one-dimensional Heisenberg upon regularization and discretization [15]. The elec-
chains etc.[[11]. tron energy distribution function then determines the
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symbol of the Toeplitz matrix. The most interesting 2. Many-particle problems as Fredholm
situation arises when the distribution function has mul- ~ determinants

tiple steps (“Fermi edges”), which results in step-like
singularities of the symbol. According to the Fisher-
Hartwig conjecture[[21], this leads to a non-trivial ~ The FES problem describes the scattering of con-
power-law behavior of the correlation functions. Re- duction electrons off a localized hole which is left be-

cent progress in the analysis of Toep”tz determinantshind by an electron excited into the conduction band.
with Fisher-Hartwig singularities has allowed to estab- Historically, the FES problem was first solved by ex-

lish their leading asymptotic behavior [22]. In Réf. [15] act summation of an infinite diagrammatic series [2].

lized Fisher-Hartwi ect tf While in the FES problem there is no interaction be-
a generalized Fisner-nartwig conjecture was put 1oy veen electrons in the conducting band, it has many

ward that includes a summation over all Fisher-Hartwig fe atures characteristic of genuine many-body physics.
representations (corresponding to different branches obespite the fact that conventional experimental realiza-
the logarithm of the symbol). This yields also terms tions of FES are three-dimensional, the problem can
with subleading power-law factors. While these termsbe reduced (due to the local and isotropic character

are formally smaller (as compared to the leading term)©f the interaction with the core hole) to that of one-
when one considers the Green function in the timedlmensmnal chiral fermions. For this reason, bosoniza-

. . . tion technique can be effectively applied, leading to an
representation, they contain different oscillatory expo- alternative and very elegant solution [23]
nents. Therefore, after a transformation to the energy  gne can consider the FES out of eq.uilibrium [24

representation, they produce power-law singularities ap5), with an arbitrary electron distribution function
different edges, which makes these terms physicallyn(e). This problem can be solved within the framework
important. The extended version of the Fisher-Hartwig of non-equilibrium bosonization [12, 13], with the fol-
conjecture is also expected to be of interest from thelowing results for the emission/absorption rates:
purely mathematical point of view. AA; (21 — 25p)

In the present paper we perform a numerical analysis + 27v(1 + Z;/\T)(lféo/w)2 ’ (1)

91‘ Toeplitz determinants W.Ith Flsher-H.artW'g smgu.lar- Here dis the s-wave electronic phase shift due to the
the extended conjecture for the asymptotic (long-timeFurther, A, [27 — 26y] is the Fredholm determinant
or low-energy) behavior. Furthermore, the numerics al-(normalized to its value at zero temperature)

lows us to explore correlation functions in the entire en- _ AL [6]

2.1. Fermi edge singularity

iGléES(T) =

ergy range. To be specific, we focus on two fermionic Al = m =

problems: (i) the Fermi-edge singularity in X-ray ab-

sorption and (ii) the tunneling density of states (TDOS) det[1 + (e—i3 —1)7] o
of a non-equilibrium Luttinger liquid. det[1 + (6_1'8 — 1A (T = 0)] '

The structure of the present paper is as follows. Sec- he phasd i ocal in t )
tion [2 contains a brief review of the connection be- The phase) is an operator local in time conjugate

. . . to electron energy and has characteristic rectangular
tween one-particle correlation functions of many-body shape (Fig[]L)

problems and Toeplitz determinants. In Sgc. 3 we .
present the extended version of the Fisher-Hartwig con- ot) =310(t) —0(t —7)] - (3)
jecture, as well as illustrate it and discuss its impluca- The connection of the non-equilibrium FES problem to
tions on examples relevant to our many-body problems Fredholm determinants is summarized in the first row
In Sec[4 we calculate the Toeplitz determinants (andOf Tablel].
thus the correlation functions under interest) numeri- . - .

. . 2.2. Luttinger liquid: tunneling spectroscopy
cally and compare the exact results with the asymptotic

formulas. Our findings are summarized in Secfipn 5, The tunneling spectroscopy technique allows one to
where we also discuss prospects for future research. explore experimentally Keldysh Green functions of an
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Table 1. Non-equilibrium correlation functions of many-body
problems: Fermi edge singularitf=f5 (7)), Green functions of
right- and left-moving fermions in a LL({G (7) andGy (7)). Eval-
5 uation of these correlation functions yields the results in the form
of Fredholm-Toeplitz determinants™~'Ax[0r]AL[6r]. The
corresponding phases, ;. are presented in the second and third
columns. (For LL an adiabatic coupling to reservoirs on the scale
of the characteristic plasmon wave length is assumed.) The deter-
minants are normalized to their values at zero temperature. The
exponenty governing the zero-temperature correlation function is
shown in the last column.

5(t)

Or J3 v
0 . > Gims(r) 2r—0) 0 G2
Fig. 1. Rectangular shaped pulse in the phé@e. Gr(7) 27% 2”% (1;?2
interacting system that carry information about both G () 27@;_% 277;_% %

tunneling density of states and energy distribution. Re-
cent experiments on carbon nanotubes and quantum
Hall edges have proved the efficiency of this tech- It is worth emphasizing that the the rectangular
nique in the context of 1D systems [26,]|27]. The shape[(B) of the pulse with the amplitudié (7) is valid
technological and experimental advances motivate thén the case when the coupling to reservoirs is smooth
theoretical interest in the tunneling spectroscopy ofon the scale of the plasmon wave lengffi’, u/T. In
strongly correlated 1D structures away from equilib- the opposite regime the pulgét) entering ) is frac-
rium [12,[13/28-35]. tionalized in a sequence of rectangular pulses[[1R, 13].
In the case of a LL formed by 1D interacting |n the long-wire limit the corresponding determinant
fermions, the Keldysh Green function may be evalu- splits into a product of single-pulse (i.e Toeplitz-type)

ated theoretically via the non-equilibrium bosonization determinants. For definiteness, we focus on the adia-
technique. Assuming that a long LL conductor is adi- patic case in this paper.

abatically coupled to two reservoirs (modeled as non-
tionsnp(e) andny (¢) respectively, one obtains for the  1oepitz matrix
Green functions of the right movers |12,/ 13]

AR ~ Due to characteristic rectangular shapg (3) of the
A Ag:[0r]AL:[0 _ )
G3(r) = Fom A [ h?] 4 : (4)  pulsesé(t) the Fredholm determinantd, (§) are in
2w (1 £ A7)+ , e .
fact of the Toeplitz form. Specifically, one can write

whereu = v/ K is the sound velocity,

A,[0] = det[1 + P(e™® — 1)aP)]. (8)
v=(1-K)?*)2K, (5)
q Here we have defined the projection operator
an
_ . y(t), for t €0, 7],
K = (14 g/m) ™2 ©) Byt) — { ® 0.7 o
is the standard LL parameter in the interacting region. 0,  otherwise
The determinants\,-[0,] (7 = R, L) are given by The form [8) is convenient for peforming the ultra-
Eq. (2) withn(e) replaced by the corresponding dis- yjolet regularization of the determinazt, [5]. Specif-
tribution functionsn,,(¢) and ically, we discretize the time by introducing an ele-
14 nK mentary time stef\t = /A, such that; = jAt. This
0=0p=m JE (7) corresponds to restricting the energy variabke the

. _ o . range[—A, A]. We arrive then at a finite-dimensional
The connection of the Luttinger liquid Green functions yaterminant

to Fredholm determinants is summarized in the last two
rows of Tabld1L. AN[S] = det[f(t; —tk)], 0<j,k<N-1. (10)
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HereN = rA/m andf(t; —t;) is Fourier transform of 3. Asymptotic properties of Toeplitz determinants
the function
, Toeplitz matrices and operators were introduced by

fle)=14n(e)(e ™™ —1). (11)  ©. Toeplitz a century ago. Since this time, asymp-
totic properties of Toeplitz determinants have been in
a focus of interest of mathematicians, starting from
¢ f the 1915 paper [39] that was the first researc_;h paper
of Toeplitz type. , . by G. Szegd. The Szegt theorems|[40] valid for a

In order_to bring Eqs.[li]O),ml) to t.he canonical smooth symbol yield the largad- asymptotics of the

form gsed in the theory of Toeplitz _mqtrlces, we have determinant, which is exponential iV, with an N-
o gle_flne th_e functlorf(_e) on the unit circlelz| = 1. independent prefactor. As was realized by Fisher and
This is easily dong by |dent|fy|n_g the _polar %n@l_eg Hartwig [21], in the case of a symbol with singularities,
[, 7] parametnzmg the unit circle via = e with the asymptotics acquires, in addition to the exponential
the appro.pn.ately res‘?a'ed engrg@u: me/ A How- factor, also a power-law factor. Thus, the infrared be-
ever, if this is done directly with the functiop (11), @ ,ayior of the Toeplitz determinarit ([10) includes non-
no_n—_phy3|_cal jump will arse at = . In_ (_)rder O fivial power-law factors if the functionf(z) is not
ellmlngte I, one has to introduce an additional IOhasesmooth on the unit circle. The simplest example is the
factor into the definition off(c): zero-temperature determinant [15]

The matrix elementg(¢; — t;) depend oryj andk via
the differencej — k only, so that the obtained matrix is

fO=M+neEe™ -5, (12)

()’
. AN[(S,T:O]:Gii(SN/Z <7T> 27
After the mapping to the unit circle; = e™/A, this AT

defines a functiory(z) (known as the symbol of the

Toeplitz matrix) that is perfectly smooth at= —1. x G (1 — 5) G <1 + 5) (13)
It will, however, have discontinuities (“Fisher-Hartwig 2m 2m
singularities”) at the positions = ¢'*/* if the distri-  that has a power-law dependence on time in the long-

bution functionn(e) has such discontinuities (“Fermi time limit (A7 > 1).

edges”) ate;. We will be interested in the situation | et ys now consider a distribution function with
when there are several (at least two) such discontinumytiple steps: (cf. Fid-]2):

ities.
It is worth emphasizing that the regularizatipn](10), 1=ap, e < €
(I2) makes explicit the dependence of the determinant ai, € < e<e
A,(d) on the integer part 0f/27 (thus making re- nle) =1« ... (14)
dundant the procedure of analytical continuation from Qm, Em—1 < € < €y
d € [—m,x] to larger|d| discussed in Ref| [12, 13]). 0=am+1, €m <€,

This allows us to directly compute the determinant at
arbitrarily large (by absolute valué)
As the matrix{ f(t; — tx)} with0 < j,k < N — 1

where0 < a; < 1, for j = 0,...,m, We are inter-
ested in the Toeplitz determinart {10) for the multi-

is of Toeplitz form, results concerning the large-  St€P distribution functior[@,4_). Let us split the phase
d asé = 2rM + ¢, whereM is integer andd’| < .

asymptotic behavior of Toeplitz determinatg; can be T ) ) )
applied. We summarize them in the next section. Phys-We find it convenient to normalize the dete_rmlnat by
ically, the largeAV limit corresponds to the regime of its zero-temperature valug (13); the normalized deter-

long time, i. e. to infrared asymptotics of correlation Minant will be denoted as\,(4). According to the
functions under interest. (In the energy representation€Xténded Fisher-Hartwig conjecture [15], it has the fol-

this translates into low-energy behavior around singu-]OWIng long time asymptotics

larities.) B s it — 7 /2
Furthermore, Eqs[(10)[ (L2) are also very con- A,(6) = Xp (AT — 7/27]

. ) . . G(1=46/2 1 2
venient for numerical evaluation of the determinant G 0/2m)G(1+0/2m)

A, (6), providing us access to the full time (or, after —28; 6
Fourier transformation, energy) dependence of the cor- Z e PR H <1> «
relation functions. oo T =M icw \TUjk
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Fig. 2. Left panel. Triple-step distribution: an example of multi-step distributipn| (1®Right panel. Simplest non-trivial
distribution of the type[(J]4) with identically zero dephasing.

extensions of the Fisher-Hartwig conjecture. For the
x [[ G0+ 8,)G(1 - 5)) (1+...). (15) ; . o t.g f.Jt o
y B;=B+n; case when a unique combination of integersexists
_ . that minimizes the exponem{ny , . . . n,, ), the leading
Here we use the following notations: the exponesits  asymptotic term (including the corresponding numeri-

(satisfying|Re3;| < 1/2) are cal coefficient indicated irf (15)) was rigorously derived
i by Ehrhardt|[41]. In arecent seminal paper|[22] the the-
B = o orem due to Ehrhardt was generalized for the case when

there are several distinct sets of integérs} sharing
the same minimal value of the exponerttu , . .. n,,).

x [In(1 — aj41+ai1e ) —In(1—a;+ae ™ ,
[In(1 = airr+aine™) ~In(l-ai+aie™)] It was proven that théeadingterm of the asymptotic

(16) expansion of the determinaiX, [¢] at larger is given
the dephasing rate reads by (I5) where the sum should be restricted to the sets
1 {n;} minimizing the exponent(ng, ...n.).
— =2Im Z ﬁ;ej , a7) More recently, two of us and Gefen [15] formulated
7o j and extended version of the Fisher-Hartwig conjecture

[as shown in Eq[(15)] that includes a sum over all sets
{n;} (which correspond to different branches of the
logarithms) and captures the leading term of the ex-
pansionat everyoscillation frequency_; nje;. This
extension is very natural from the point of view of con-
L . tinutiy, as, under change of parameters, the dominant
gern, ..., nm Satistyingno + .. . +ny, = —M; each branch (that determines the leading asymptotics given
such set yields the corresponding oscillatory exponen " , .
it e ) o by Ref. [22]) may bgcome subdominant. ThI'S is par-
e~ 7. Equation|(1p) presents explicitly the lead- tjcyjarly transparent in the energy representation of our
ing asymptotic behavior for the factor multiplying each ropjem discussed below: different branches then cor-
of these exponents. Apart from this dominant term, \ogn0nd to singularities near different energies; clearly,
there will be in general also subleading (in powers of g ,chy 4 singularity will persist even when its exponent
1/t) terms corresponding to the same exponent; thesgij| hecome subdominant with respect to a singular-
are abbreviated by . . . in the last bracket. ity at other energy. Furthermore, the summation over
The asymptoticg (15) has a long history. The form pranches has a clear physical meaning: it corresponds

of its leading term (the one with the slowest decay in {5 processes including transfer of one or several elec-
7, i.e. with the smallest exponent(ng,...n;,) = trons between different Fermi edg&s|[15].

—2Re [Zj>k 5;‘54) was suggested back in 1968 by  To illustrate how Eq. [(I5) works, let us consider
Fisher and Hartwid [21]. Since then, significant efforts a simple case of the determinant at the phase 4,
were invested into the exact formulation, the proof, andwhich can be evaluated exactly by a “refermionization”

G(x) is the Barnes G-functiori/;, = |e; — €|, and

p' = —Re; Bie;. Note that the ultraviolet regular-
ization A does not enter the normalized determinant.
The asymptotic| (15) is valid provided that/;;, >> 1
forall j # k. The summation goes over all sets of inte-
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procedure [12, 13]. We assume for definiteness thatthe Thus, Eq.[(Ip) captures explicitly the leading term

distribution function is of double step form with jumps
ateg ande;. (Generalization to a distribution function

with more than two jumps is straightforward.) The ex-
act result reads

Ar[dm] = ai(a1 — 1) {(61 —c0)*7? — 2} e~ Heote)

+ (1 o a1)2€—2i607 + a%e—QielT . (18)

On the other hand, considering the expansjoh (15) on{|

gets ath — 4xw
/ §

=(a; —1)=— 19
6/
l=—a;— 20
b ai o (20)
with ¢’ — 0. Observing now tha&(z) hask-th or-
der zero atr = —k + 1 for any positive integek

we conclude that ab 47 (or generally for any
 being integer multiple o) the sum in[(1b) be-

for each frequency. A mathematically rigorous proof
of this generalized form of the Fisher-Hartwig conjec-
ture remains to be developed. Also, one may hope that
it is possible to generalize EQ.(15) further, accounting
also for sub-leading contribution (indicated as ..

in Eq. (I5)). A construction of such a full asymp-
totic expansion of the Toeplitz determinant was dis-
cussed very recently in Ref. [42,|43] for the special case
(€) =1+ (e —1)O (U — |¢]), whereO(z) is the
eaviside theta function.

It is worth mentioning that fod = 27 Eq. (15) re-
produces the exact result

A (27) = (1 — a)e ™7 4 ge1T (24)

without any corrections at all. While Eq. (24) is written
for a double-step distribution, this statement is valid for
any multi-step distribution as well. The only non-zero
terms in Eq.[(1p) fob = 27 are those with alh; being
equal to zero except for one equaltd. The deter-
minant demonstrates oscillations at frequenejesll

comes finite. In the present case only the terms withcorrections of the type- ... in Eq. (I3) vanish. This

(ng,n1) = (—1,-1), (—2,0) and(0, —2) contribute,
yielding

A-(4m) ~ay(a; — 1)(e; — 60)272€—i(60+61)‘r

2

+ (1 _ a1)26—2i607' + ale—QielT . (21)

Comparing this asymptotic formula to the exact result

(18), we see that Eq[ (1) indeed perfectly reproduce

leading factors for each oscillation frequency. The only
term missing in Eq[(21) is

— 2ay(ay — 1)e~cote)T (22)

implies that for values of ~ 2= the correction terms
+...in Eq. (I%) have additional smallness.

Having clarified the status of the expansi¢n](15),
let us now discuss its implications. In a generic case,
the power-law decay o\ () is cut off by the non-
equilibrium dephasing time, given by Eq.[(IJ7). Quite
remarkably, the dephasing time is an oscillating func-
tion of the phase) which translates, e.g., into the
non-monotonous dependencemgfon the interaction
strength in Luttinger liquid [12, 13]. The dephasing is
absent when’ = 0 in which caseA . (§) can be repre-
sented in terms of a free fermionic theory.

Dephasing is also absent for the case when al-

which represents a small correction (due to an addi—07 1. This corresponds to the case opare electronic

tional factoroc 772) to the leading term at the same
frequencyeg + €1,

ai(ar — 1)(e; — eo)?r2eileote)T (23)

state (i. e. characterized by a wave function rather than
by a density matrix). The simplest non-trivial distri-
bution of the type Eq.[(14) that has this property is
the triple-step distribution of Fig.]2 (right panel). We

Such terms representing small power-law correctionsstress that in this “ideal inverse population” case the
to the leading contribution at the same frequency aredephasing rate is identically equal to zero, regardless
indicated in Eq.[(I5) by the symbal. . .. of the value of the phas& Apart from being inter-
Let us note that, while being small with respect to esting on a pure theoretical grounds, the distributions
the leading term at the same frequency, these correcrealizing the inverse population of electronic states are
tions are not necessarily small with respect to leadingalso expected to be experimentally relevant, as they are
terms at other frequencies. In particular, in the con-inevitably generated in course of evolution of a smooth
sidered example the correction term on the frequencyperturbation of electronic density if the spectral curva-
€0+ €1, EQ. [22) is of the same order as the terms oscil-ture is taken into accourit [44].
lating with frequenciegey and2e; that are taken into The power-law decay of\,(§) in the time domain
account by Eq.[(Z1). is translated into the singular energy dependence of
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correlation functions in energy representation. Specif-

Let us consider the normalized determinAn{U, 4]

ically, every term in the expansioh (15) gives rise to a and its finite-dimensional approximatiaky [U/A, §].

singular contribution

—i T (y+1) Hj G(1+ /BJ)G(l - ﬁ])
G(1—-0/2m)G(1+6/2m)

Re [6 (QUTI

(Uj1,) 2535 ]
. . .y Tng...nm
j<k (ze +id i nje; — i — 7'/27¢)

to the Fourier transform a&,[6]/(i7)7 ! with the ex-
ponent

X

(25)

=7—2) Bib (26)

i<k
In Sec[4 we will compare Eqg. (25), (26) with the re-
sults of numerical evaluation of Toeplitz determinants.

Yno..nm
Bi=B+n;

4. Numerical analysis

In this Section, we present results of the numeri-
cal analysis of the Toeplitz determinarjts|(10) which al-

Here we made explicit the dependence of the determi-
nants onlJ. At 7 andU fixed, Ay[U/A, §] has a finite
limitas A — oo which is a cutoff-independent function
of the dimensionless variablér only:

AU, 8 =A[UT, 6}ZAIEI;OZN:% [5];,5} = (29)
. — [Ur
Jm By 5o @0

Equation [(3D) constitutes the starting point for our
numerical analysis. With a simpMathematicacode
we are able to go within a quite short computation time
up to the size of the Toeplitz matri¥ = 500, which is
typically sufficient for the convergence to the larfye-
limit for relevant values ot/ 7.

The convergence properties of our procedure be-
come generally worse at large Thus, we chose to
illustrate them with the calculation of the determinant
at the phasdr — 0.6 which is larger then any phase
we will encounter in the next section. This choice also

lows us to evaluate the many-body Green functions inenables us to demonstrate clearly the presence of the

the whole range of times (energies). We will further

correction terms indicated by . . . in Eq. (I5).

demonstrate that the numerics gives full support to the From now on, we measurein units of 1/U. Fig-

asymptotic expansion (P5), (26).
4.1. Numerical procedure

To be specific, we will consider fermions with the
following two types of many-step distributions: (i)
double-step distribution

1=agp, e<e=-U/3
ng(e) =< a1 =1/3, e <e<e =2U0/3
0=as, €1 <€,

(27)
and (ii) triple-step distribution with the “maximal” in-
verse population (Fig.2, right panel)

1=aqg, e<e=-3U/4

a1 =0, e<e<e =-U/2
ne(€) = (28)

as =1, € <e<e=U/

0=as, € < €.

In these equations we have expressed all the enefgies
in terms of characteristic scalé = ¢,,, — ¢y associated
with the distribution function.

ure[3 shows the result of numerical evaluation of the
normalized Toeplitz determinart . [47 — 0.6] for the
double-step distribution function, given by Eq.[(2]).
We have plotted the data fof = 50, 100, 500 together
with leading term of the asymptotic expansipn|(15), the
one withng = ny = —1

A [47—0.6] & (0.25-+0.0267)e 7 (ext0)T/27o 181

(31)
Herer, ~ 77 andeg + ¢; = 1/3. Note the fast conver-
gence with the increase of the matrix size and perfect
agreement with the predicted asymptotic behavior. We
stress that the asymptotic fit used here has no adjustable
parameters.

Let us now explore the effect of the other terms in the
expansion[(1l5). The next two terms are characterized
by (no,n1) = (—2,0) and(ng,n1) = (0, —2). Apart
from the exponential damping at scales larger thgn
they decay as—%'2 and r—92> respectively. Since
in this case powers of the leading and the subleading
harmonics are substantially different, a reliable obser-
vation of the subleading ones requires more substantial
numerical efforts. To achieve the required accuracy, we
use larger values of the matrix siz& (= 5000). Note
that in subsectioris 4.2, 4.3, where we focus on smaller
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Fig. 3. Time dependence of the determindnt[47 —0.6]. The distribution function was taken to hg(e), Eq. ). Numerical
results for matrix sizegV = 50, 100, and 500, as well the leading asymptotic tgrm (31) are shown. The numerical result for
N = 500 is almost indistinguishable from the asymptotics.

Re[6 A, [47-0.6]] mains, which is predominantly due to the correction [of
061 : the type+ ... in Eq. (I5)] to the leading (oscillating
with frequencye; + e; = 1/3) harmonic.

A We have thus demonstrated that, even for a relatively
0.2 large phasé, the numerical simulations work perfectly

. and that the large-behavior is fully understood in the
100 framework of the asymptotic expansion. In the sequel,
we will present the results for two physical problems
I Y T of our interest (FES and Luttinger liquid) in the energy
G - S domain. This is more natural physically (as this corre-
sponds to spectroscopy measurements) and also gives
us the possibility to separate the contributions of dif-

04f it

Fig. 4. Difference between the numerically evaluated deter-
minant (shown in Fid.]|3) and the asymptotic approximation L o
for N = 5000. The gizelzctronic distribution was the double- ferent harmonics IﬂS)_Wlthm the same'graph. We
step distributiony (). Dotted line: only the leading term  NOte that the Green function= () are obtained from
(1) was subtracted; full line: three main harmonics (Fisher- & Toeplitz determinant (or a product of two Toeplitz de-
Hartwig branches) of the expansidi (15) have been takerferminants) by multiplication with /(A7) (with ~

into account. The remaining difference is due to a correctionbeing the zero temperature exponent, see the last col-

[of the type indicated by-. .. in Eq. @)] to the leading  umn of Tabl@_)_ Thus,
harmonic[(31L).

> 7 ~=
values of the phase shift subleading harmonics will G=(e) = (A) G=(e/U), (32)
be much more pronounced and easily seen. _

The difference between the numerically calculated Where the functiong/=(e¢/U) are cutoff independent.
Toeplitz determinan{(10) and its asymptotic approxi- From now on we omit the energy independent factor
mation[I5) is shown in Fig]4. The dotted line corre- (U/A)” from the Green functions and measure all the
sponds to the difference between the numerical resulgnergies in units of the characteristic sdéle
and the leading terni (B1). The solid line is the differ-
ence between the numerical result and the first threet.2. Fermi edge singularity
terms in the expansiofi ([15). As expected, inclusion of
the terms(ng,n1) = (—2,0) and(ng,n1) = (0,—-2) According to Eq.[(]l), the emission/absorption rates
improves the agreement between the asymptotics andut of equilibrium are given by a single Toeplitz deter-
the exact results. Indeed, the oscillations at high fre-minant. We analyze the case of a double-step distribu-
quencies, that are clearly seen on a dotted line, are aktiion functionn,(e€), EqQ. ), first. The results for the
sent on the solid line. Nevertheless, a clear differencedifferent values of the scattering phageare shown in
between the exact result and the asymptotic formula reFig.[5.
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Fig. 5. X-ray absorption spectra at different values of the scattering phaser the double-step distribution function of

electronsngy(e) specified in Eq.[(47). The solid lines represent the result of numerical evaluation of Toeplitz determinants

while the dotted lines show the fits based on the asymptti¢s (15, 25). The legend shows the corresponding dephasing time
together with the exponentg and~; governing the singular behavior 6 (¢) ate = ¢y = —1/3 ande = ¢; = 2/3.

The solid lines in Fig[ [ represent the result of nu- der poynomial. An example of such a smooth function
merical evaluation of Toeplitz determinants, while the 5G> (¢) is shown in Fig[ b (see inset of the lower right
dotted lines show the fits based on the asymptotic for-graph).
mulas [(I5),[(2p). Only the dominant terms in the sum | agreement with the analytical predictions, the ab-
(19) were retained (the terms withh = —1,n; = 0 sorption spectra shown in Figl 5 demonstrate singular
or vice versa). U_sing the expa_nsi(15), we are ablebehaviorG;ES(e) N (6 N %Z)vk near the Fermi
to calculate the singular behavior 6¢ (¢). The regu- edgese, . k — 0,1. Note that 'Eﬁhe exponents at two

lar part is controlled by the behavior 6f (7) at small edaes are different. which is a verv qood demonstra-
7 and therefore contains the information that is not re- S 9 ) ' Y9 .
Jion of the importance of summation over all Fisher-

tained when one uses the asymptotic expressions. Ino , _

der to compare the singular behavior predicted by the artwig branches in Eqs. (I5), (25). One observes the
asymptotic formulag (15)[ (25) with the exact results, enhancement of absorption near the Fer'ml gdges the
we add a smooth functionG™ (e) to the Egs.[(T5), for 6o > 0. Contrary, fordy < 0 the absorption is sup-
(5). We chooséG> () in the form of a polynomial of pressed. Upon increase of the modulus of the scattering
a relatively low order with coefficients that are adjusted phasedy, the exponents, and the inverse dephasing

to optimize the fit. In fact, already a second polynomial time %—1 grow by absolute value. Simultaneously, the
is sufficient to get a rather good fit, and we used it in dephasing increases, which induces a stronger smear-
most of the cases. In several cases we used a fourth orng of singularities.
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Fig. 6. X-ray absorption spectra of the non-equilibrium FES problem with triple-step distribution of the elect(ehgsee.

Eq. (28)) at relatively small scattering phage= +0.2, +0.4. The solid lines represent the result of numerical evaluation of

Toeplitz determinants while the dots show the fits based on the asymptotic expgansion (15). For the chosen distribution function

the dephasing rate/, is identically zero and the singularities are not smeared. The last graph in the second column has an
inset exemplifying the smooth functi@iz~ (¢) added to the asymptotic expression to fit the numerical data.
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Fig. 7. X-ray absorption spectra in the non-equilibrium FES problem with triple-step distribution of the electrons. The elec-

tronic distribution was the same as on Hif. 6 but the phigsis now larger. In addition to singularities at Fermi edge

€ one observes now a singularity at energy— €; + e = 0 with the exponenty,_;. o originating from the term with
ng=—1,ny =1, ng = —1in the sum[(Ip).

In Fig.[§ we plot the results for triple-step distribu-  As § = 27 — 2§, deviates further from2r, ad-

tion, n¢(¢), and for relatively small values of the scat- ditional terms in the serieg ([L5) become important,
tering phaseyy. At chosend, the dominant terms in 55 jllustrated in Fig[]7. In particular, @ = 0.8,

the expansion (15) are those with all = 0 except  jna from the singularities at Fermi edgesa new
for onen; = —1 and the only visible singularities are

located at the Fermi edges. In contrast to the case ° © (atfg =@ -atea = ,0)_ with the exponent
of double-step distribution, the growth of the scattering 70-1+2 1S Clearly seen. It originates from the term
phased, is not accompanied by smearing of the sin- %0 = —1,n1 = 1, np = —1in Eq. (I3). This once
gularities, since the dephasing rdtér, is identically =~ more confirms the extended Fisher-Hartwig conjecture
zero. (I5) with the summation over all branches.
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Fig. 8. TDOSv,,(€) of left (first column) and right (second column) particles in a non-equilibrium Luttinger liquid. The incom-
ing right movers have the double-step distributigiie). The incoming left movers are assumed to have zero temperature, so
thatA . [0.] = 1. The phaséy entering the nontrivial determina¥z 5] is in the vicnitiy of0 for the case of,(¢) and in

the vicinity of 2 in the case of'r(¢), as indicated in the legend.

4.3. Tunneling into non-equilibrium Luttinger liquid is the one at = 0 while main singularities of/z(¢)
are ate = €, €;. This behavior is illustrated in Fig] 8.

Let us now turn to another application of Toeplitz Note that the left-moving electrons are dephased much
determinants, the tunneling into the Luttinger liquid. stronger([12, 13] than the right-moving.
We begin by considering the simplest case, when the The behavior ofvy (¢) at stronger interaction (see
incoming right-moving electrons have the double-stepFig.[9) demonstrates the non-monotonous dependence
distribution functionn,(e), while the left movers are of the dephasing on the Luttinger liquid paramekér
held at zero temperature. In this case the determinanFor K < (3 — v/5)/2 ~ 0.38, the phaser > T,
Ap.[6L] in Eq. @) is identically equal to unity. If the and the leading singularities iry, are those aty and
interaction is not too strong and one is interested in thee;. They can be clearly seen if one plots the second
density of states for the left-movers, the phdgeen-  derivative of the density of states with respect to energy
tering the non-trivial determinamk - [dz] is close to  (Fig.[d, left panel). Note that the smearing of those sin-
zero. On the other hand, the correlation functions of gularitiesdecrease§. e. singularities sharpen) with-
the right-movers are given by the determinants at phase&reasinginteraction strengthi = 0.3 — 0.25 — 0.2,
§r close to2r. Correspondingly, the dominant singu- as K evolves towardsdl = 3 — 2v/2 ~ 0.17, where
larity in the density of statesy, (¢) for the left particles  §r = 27 and the dephasing is absent.
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Fig. 9. Non-monotonous dependence of the non-equilibrium dephasing in a Luttinger liquid on the interactions strength. The

incoming right movers have double-step distributigife). The incoming left movers are assumed to have zero temperature.

The interaction is now sufficiently strong so that the phgsgoverning the density of states for the left movers is closerto

Correspondingly, the dominant singularitiesin(e) are now located at; ande,. The exponentsy and~; are positive and

large and the singular behavior of (¢) is difficult to see directly (left panels). It becomes evident, however, if one considers
the second derivative of TDOS/ () (right panels).

Finally, we consider an interacting wire with triple- 5. Summary and outlook
step distributiom; for both left and right moving elec-

trons. In this case, both determinants in E§. (4) are non- 1, summarize, we have explored single-particle

trivial. The corresponding density of states is shown in Green functions of many-body fermionic systems in
Fig.[10. At weak interaction = 0.7, upper-left panel

of Fig.|10), the right determinak r, [0r] oscillates as
a function of timer with frequenciesy, k =0, 1, 2,

non-equilibrium settings characterized by multiple-
step energy distribution functions. By using a peri-

while the left determinant decays mostly without os- odic ultraviolet regularization, the problem is reduced
cillations, This leads to the singular behavior of the to that of Toeplitz determinants. We have carried out

density of states af,. As the Luttinger parameter de- Nnumerical calculation of the corresponding Toeplitz de-
creasesK = 0.5, upper-right panel of Fig.10), sub- terminants and thus obtained the results for the non-
leading oscillating terms i,ﬁLT[aL] come into play equilibrium Green functions in the entire energy range.
and additional (weak) singularities irp(¢) appear at  Further, by employing the extended Fisher-Hartwig
e =—5/4ande = —1/4. conjecture, we have analytically determined the energy
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Fig. 10. The density of states in the Luttinger liquid coupled to two reservoirs with the triple-step distrilgtion There is

no dephasing, so that the singularities are sharp. At weak interadtion (0.7, upper left plot), the most important terms

in the right determinan\ r, [§r] oscillate as a function of time with frequencies;, k = 0, 1, 2. On the other hand, the

leading contribution to the left determinant decays without oscillations, and the oscillatory terms are very small (decay with

much larger exponents). This leads to the singular behavior of the density of state8sithe Luttinger parameter decreases

(K = 0.5, upper right plot), the subleading oscillating termsAn .[6.] come into play. This leads to additional (weak)
singularities invg (¢) ate = —5/4 ande = —1/4. The corresponding regions of energy are magnified in the lower plots.

dependence of the Green functions near each of thee One can consider many-body correlation functions

Fermi edges. in the non-equilibrium setups discussed above. This
The obtained Green functions show, in the energy  problem can be reduced to determinants that are of

representation, power-law singularities near multiple a form more general than the Toeplitz one. Some

edges. The singularities are in general characterized results in this direction will be reported soon [45].

by different power-law exponents and are smeared bye It would be important to further extend the Fisher-

dephasing processes. In the special case of a distribu- Hartwig conjecture in order to include Toeplitz ma-

tion function with population inversion that alternates  trices with matrix symbols.

betweenn = 1 andn = 0, the dephasing is absent

(i. e. the singularities are sharp) and the TDOS (or the

absorption rate) exhibits enhancement and suppressio’ﬁ‘CkaIeclgements
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