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While it is well-known that the electron-electroed interaction cannot affect the resistivity of a Galilean-invariant Fermi
liquid (FL), the reverse statement is not necessarily true: the resistivity of a non-Galilean-invariant FL does not necessarily
follow a T behavior. Thel behavior is guaranteed only if Umklapp processes are allowed; however, if the Fermi surface
(FS) is small or the electron-electron interaction is of a very long range, Umklapps are suppressed. In thig'¢dsena
can result only from a combined — but distinct from quantum-interference corrections — effect of the electron-impweéy and
interactions. Whether th&? term is present depends on (i) dimensionality [two dimensions (2D) vs three dimensions (3D)],
(ii) topology (simply- vs multiply-connected), and (jii) shape (convex vs concave) of the FS. In particuldr? tteem is
absent for any quadratic (but not necessarily isotropic) spectrum both in 2D and 302Them is also absent for a convex
and simply-connected but otherwise arbitrarily anisotropic FS in 2D. The origin of this nullification is approximate integrability
of the electron motion on a 2D FS, where the energy and momentum conservation laws do not allow for current relaxation to
leading — second — order Ii/ Er (Er is the Fermi energy). If th@? term is nullified by the conservation law, the first
non-zero term behaves @. The same applies to a quantum-critical metal in the vicinity of a Pomeranchuk instability, with
a proviso that the leading (first non-zero) term in the resistivity scaldsas (T%). We discuss a number of situations
when integrability is weakly broken, e. g., by inter-plane hopping in a quasi-2D metal or by warping of the FS as in the surface
states of topological insulators of the;Bes family. The paper is intended to be self-contained and pedagogical; review of the
existing results is included along with the original ones wherever deemed necessary for completeness.
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1. Introduction of the electric current. In order to achieve a steady-state

) ) o ) current under the effect of an external electric field, a
. AT _scallng of the resistivity V\_”th temperaturg _momentum relaxation mechanism is needed.
is considered as an archetypal signature of the Fermi- . .
Of course, the FL of electrons in a metal is not

liquid (FL) behavior in metals. This result owes its ori- , _ _ _

gin to the Pauli exclusion principle which dictates that, Galilean-invariant. In the presence of lattice, the cur-
at low temperatures, only those quasiparticles that reJent may be relaxed by Umklapp collisions [1], which
side within a width of ordefl” near the Fermi energy conserve the quasimomentum up to a reciprocal lat-
participate in binary collisions. This argument, how- tice vector:k + p = k' + p’ + b. Umklapp pro-
ever, applies only to the inverse of the quasiparticle re-cesses are allowed, however, if the incoming electron
laxation timel /7. but not to the resistivityp, per se  momentak andp as well as the momentum transfer
theT? scaling of the former does not necessarily imply  _  _ 1/ — ' _ p are all of orderb. These re-
that of the latter. A very simple example is a Galilean-

. X ) uirements are satisfied (i) if the Fermi surface is large
invariant FL, where the electron-electroge( interac- d 0 9

tion does not affect the resistivity, althougfir.., as enough, e. g., at least quarter-filled in the tight-binding

measured, e. g., by thermal conductivity, does scale aSase([2], and (i) if the interaction is sufficiently short-
T2. The reason is that, since velocities of electronsf@nged. In conventional metals, these two conditions

are proportional to their respective momenta, conservaare easily met due to a large number of carriers and
tion of momentum automatically implies conservation effective screening of the Coulomb interaction; thus
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Umklapp collisions occur at a rate comparablé toc., Debye and Conwell [5]. There is also a large body of
andp o« T2. work on normal collisions in multi-band metals, fol-
However, there are situations when these conditiondowing the original paper by Baber|[6], both at the phe-
are not met; e.g., the first condition is violated in nomenological (reviewed thoroughly in Ref] [7]) and
systems with low carrier concentration, such as de-microscopic([8] levels. That momentum relaxation oc-
generate semiconductors, semimetals, surface states gfyrs differently in 2D as compared to 3D was pointed
three dimensional topological insulators, etc., and thepy Gurzhi, Kopeliovich, and Rutkevich, first for the
second condition is violated when a metal is tuned g|ectron-phonori 9] and then for thee [10, [11] inter-
to the vicinity of a Pomeranchuk-type quantum phase,tions. Maebashi and Fukuyarial[12, 13] analyzed an
transition [3] (QPT), e.g., a ferromagnetic QPT. A jn0hjay hetween normal and Umklapp collisions for

Pomeranchuk-type QF.)T s @ = 0. instability of an anisotropic 2D FS and found that the normal colli-
the ground state, manifested by a divergence of long-

. sions do not give rise to &2 term as long as the FS is
wavelength fluctuations of the order parameter. The :
. . ) . ) convex. Rosch and Howell [14] and Rosch|[15] showed
effective radius of the interaction mediated by the ex-

change of such fluctuations diverges at the QPT. Onethat a similar nullification happens for the’ term in

of the consequences of this divergence is the FL breakIhe optical conductivity in a disorder-free 2D system.

down, as manifested by a non-Fermi—liquid (NFL) Chubukov and twp of us (D.L.M. and V.I.Y.) gener-
scalingl/7.. o T7 with 4 < 1, but another one is alized the analysis for a NFL near the Pomeranchuk

the concurrent suppression of Umklapp processes.  QPT [16]. Scaling of the resistivity near a convex-to-
too low for the electron-phonon interaction to be effec- Per expands on our recent works [16} 17] and provides
tive), current can be relaxed only via electron-impurity Some more details.
(ei) collisions. Still, the normal, i.e., momentum- It is worth noting that the effects studied in this pa-
conserving,ee collisions can affect the resistivity, if per occur already within the semiclassical theory of
certain conditions are met. The main purpose of thistransport that neglects quantum interference between
paper is to summarize and analyze these conditionsee and ei scatterings. Whether semiclassical descrip-
The combined effect of norma&e andei interactions  tion makes sense is one of the issues analyzed in the
does not necessarily lead to tiié dependence (or its paper (cf. Sed. 5|1): as a general rule, semiclassi-
NFL analog) of the resistivity. Whether this happens cal effects can be considered separately from quantum-
depends on three factors: (i) dimensionality [two di- interference ones in the ballistic but not in the diffusive
mensions (2D) vs three dimensions (3D)], (ii) topology [imit.
(simply vs multiply connected), and (iii) shape (convex  The rest of the paper is organized as follows. We be-
vs concave) of the Fermi surface (FS). Theterm is gin by formulating the problem in terms of the Boltz-
absent not on'Iy for a Gahleap—mvanant but, more gen- mann equation (BE) both for the FL and the NFL cases
erally, for alr: |softrop|c_ FL with s non-%ara_bohc SPEC- in Sec[2. In Se¢]3, we solve the BE perturbatively with
trum, as well as ror anisotropic but qua ratic SpeCt.r_um'respect taeescattering, which is an adequate approxi-
In 2D, the conditions are more stringent. In addition . .
) ‘ mation at low enough temperatures, and analyze vari-

to cases mentioned above, thié term is absent for a . ) . .

. ) .. ous stituations mentioned above. In Seéc. 4, we discuss
simply-connected and convex but otherwise arbitrarily o .

the opposite limit of high temperatures, when

anisotropic FS. The reason behind this is that THe N L
term arises from electrons confined to move along thecontrlbutlon to the resistivity saturates, and show that a

FS contour such that, for the convex case, momentuni'U€ Scaling regime, with an appreciable difference be-

and energy conservations are similar to the 1D Case'gween the low and high temperature limits of the resis-

where no relaxation is possible. tivity, does not exist in a single-band metal (Sec] 4.1).

The issue of an interplay between nornes and Such a regime is shown to exist for a two-band metal
ei interactions has a long history, and it is beyond theWith very different masses (Sec. 4.2). In Sgc. 5, we
scope of this paper to give a Comprehensive review ofanalyze the limits of the Valldlty of the results based
the existing literature; some aspects relevant to 3D meton the semi-classical BE with respect to both quantum
als are reviewed in Ref.[4]. Very briefly, the first notion (Sec[5.1) and classical (Séc.|5.2) correlations between
that normal processes can affect the resistivity even ineeandeiinteractions. Our concluding remarks are pre-
a single-band metal probably goes back to the paper byented in Se¢.6.
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2. Boltzmann equation: Generalities
2.1. Collision integral

The most straightforward way to find the effect of
the ee interaction on the conductivity in the semi-
classical regime is via the Boltzmann equation (BE)

which, for the case of a time-independent and spatially-

uniform external electric field, reads

O _ _rlhd=Lelid, @

ok
where —e¢ is the electron charge anfi is the distri-
bution function. The collision integral,. and I,; on
the right-hand side describe the effects of éeandei
interactions, respectively. Explicitly,

I = / wien (e — i) 5 (B —ew) ,  (2)
5

_eE .

and

fee = / / / Wy powpd (ek + €p — €1 — £pr)
p p/ !

x 0 (k+p—k —p') [ffp (1= fir) (1 = fp)
= Jwfo (1= fi) (L= fp)],

3)
where [, is a short-hand notation fgr 2

@D andwy
and Wy , . are theei and ee scattering probabil-
ities, correspondingly. For a weak electric field, the
left-hand side of the BE reduces &y - En;, where
vy Is the electron group velocity ant, = n(cx) is
the equilibrium distribution function, with prime denot-
ing a derivative with respect to the electron enetgy,
(measured from the Fermi energy). Linearizing éee
collision integral on the right-hand side with respect to
the non-equilibrium correction tay, defined as

(4)

Ji = nk — Ty g = nie + nie (1 — ne) g

one obtains [2]

Iee:// / Wi p—i'pr
P p/ /

X (gk +9p — gk — gp/) NKNp (1 — nk/) (1 — np/)
X5(k+p_k/_p/)5(5k+€p—€k/—Ep/) . (5)

2.2. Pomeranchuk quantum criticality

In addition to the case of a generic FL, we will be

such a QPT include ferromagnetic and electronic ne-
matic transitions/[18]. As opposed to, e.g., charge-
density waves and antiferromagnets, both the ordered
and disordered phases are spatially uniform, and the
transition is manifested via the divergence of certain
susceptibility atg = 0. Therefore, critical fluctua-
tions near the QPT are long-ranged, and the effective
interaction among electrons, mediated by these fluctu-
ations, is of a long range as well. Since a FL is, in gen-
eral, unstable with respect to long-range interaction, the
guantum-critical region of the phase diagram near the
QPT is characterized by manifestly non-Fermi liquid
(NFL) properties, such as a divergence of the specific
heat coefficient. However, the long-range nature of the
effective interaction has another aspect; namely, small-
angle scattering at critical fluctuations effectively pro-
hibits Umklapp processes which, in the absence of dis-
order, are necessary to render the resistivity finité [16].
Therefore, theeecontribution to the resistivity can re-
sult only from an interplay betweesi and normalee
collisions.

In this Section, we briefly summarize the proper-
ties of the simplest model describing a QPT of the
Pomeranchuk type: the Hertz-Moriya-Millis (HMM)
model [19+21]. In this model, electrons are assumed to
interact via an effective potential proportional to the di-
vergent susceptibility of the order parameter. Details of
the effective interaction depend on whether instability
occurs in the charge or spin channel but, for our pur-
poses, it suffices to model the interaction by a scalar
function

VEl
5+ a2q? —

VFq

Uett (¢, w) ; (6)
wherevr is the density of states, > 0 is the “dis-
tance” to the critical point along the axis of the con-
trol parameter (pressure, doping, etc.), and the ra-
dius of interaction in the critical channel. Sinté (6) can
be derived, strictly speaking, only in the random-phase
approximation, one needs to require thata > 1
(Ref. [22,[23]). [Alternatively, one can assume that
the coupling between electrons and critical fluctuations
is weak [24] 25]; results of these two approaches dif-
fer only by re-definition of parameters.] The imagi-
nary part ofU.g results from Landau damping of crit-
ical fluctuations by itinerant electrons. The correlation
length of critical fluctuationg = a/+/0 diverges at the

also interested in a special but widely studied case ofQPT, wherej = 0.

a FL near a Pomeranchuk-type QPT [3], which breaks For the interaction in Eq[ [6), the inverse quasipar-
the rotational symmetry and/or topology of the FS but ticle lifetime (the imaginary part of the self-energy)
leaves the translational symmetries intact. Examples obehaves ad /7., o« T2 for T < Ty, = vpa®/&3
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and asl/7.. o TP/3 for T > Tp,. The energy (a) (b)
scale Ty, separates the FL and NFL regions of the £ )—P/ P
phase diagram. Since the momentum transfers are |

small in both regionsg ~ ¢! for T <« Ty, and p. /
G ~ (w/vpa®)'3 ~ (T/vpa®)'/3 for T > Tgr), W W
the transport scattering time is longer than the life- < > <>

| _ : |
time: 1/7% ~ (1/7e) (3/kr)®. In the NFL region, () A O
a small prefactor| [26]. The conventional wisdom was M "(/

that “transportization” of the relaxation time was the -
only manifestation of the long-range nature of the inter- Fig. 1. @) Umklapp process for a long-range electron-electron in-
action, so that the resistivity could simply be obtained teraction. One of the electrons (with initial momentlthis scat-

L. . . tered by a small angle via thee interaction, while another one
by substituting the transport time into the Drude for- (with initial momentump) is scattered by the lattice all the way

mula [26, 27]. This yieldp o« T°/% andp oc T%/3 in across the Brillouin zone. by Umklapp processes for large mo-
the NFL regions in 3D and 2D, correspondingly. The mentum transfer. The original FS is in the center. Reprinted from

5/3 scaling of the resistivity is indeed close to what Ref. [1€], courtesy of the APS.

has been observed experimentally in a number of itin-

erant ferromagnets near a QRT |[28-30]. The reason-

ing tacitly assumes, however, that Umklapp collisions €dging this problem, we remark that the processes re-
are still present, and occur at a rate comparable to thagponsible for this breakdown are effectively 1D-like
for normal ones, so that the transport time for normal scattering events, in which both the initial and final
collisions gives a reasonable estimate for the Umklappfermions move along the same line. Although these
scattering time. As we have already pointed out at theprocesses are dangerous for the single-particle self-
beginning of this Section, this assumption is not sat-energy, their contribution to the conductivity should be
isfied for a long-range interaction. In the next Section, reduced by at least the “transport factor”, which dis-
we will quantify this statement. Before we proceed fur- criminates against small-angle scattering.

ther, some general comments on the HMM model are  Once the BE is adopted, the difference between the
in order. FL and NFL regimes becomes formal: the dependence

First, we are going to use the BE even in the NFL ot the ee scattering probability on the energy transfer
region of the QPT, where quasiparticles are not well 5y e neglected in the former but not in the latter.
defined, i. e., whet /7., > T. This seems to be incon-

sistent with the general criterion of the validity of the

BE [31]. However, well-defined quasiparticles are not 2.3. Matrix elements on a lattice: normal vs Umklapp
required for the BE to be valid in a special case, when processes

the effectiveeeinteraction can be treated in the Migdal-

Eliashberg approximation, i.e., when the self-energy The interaction potential between electrons on a lat-
depends on the electron energy but not the momentuniice / (ry, r5) depends on the coordinates of two elec-

and vertex corrections are small. In this case, the BEyons separately rather than on their relative coordinate;
ggzdt_’t‘?ogerg’ﬁ‘:hig g;?a}r(ne;?ggsg”tzChlnci?]ueaWi;h;mciny transforming to the center-of-mass and relative coor-

itions .T, as long as a mu - : _ C r4r
weaker conditionre.cp > 1 is satisfied|[3R2]. This ar- gﬂztzspgelxsi(;jﬁ:i)o; o& thQ 7not20f3r’1 Vzhz.e
1 2
gument, formulated first by Prange and Kadanoff for (The time-dependence of the effective interaction is not

the electron-phonon mtera_ctlon I‘.?’3]’ was used later byessential for the analysis below, and will be omitted.)
a number of researchers in a wider contéxt [34], and
Consequently,

also applicable to NFL systems, given that they allow
Migdal-Eliashberg description. Having said that, we
come to the second point, which is that the Migdal- U (ri,ry) = /Z eI (rir2) o =ib-(rit2) 27 (g by |
Eliashberg treatment of the HMM model, thought pre- qa b

viously to be controllable at least in th¢ N approxi- (7)
mation [24]25], has recently been shown to break downwhere b is the reciprocal lattice vector and the vol-
beyond the second loop order [35+-38]. While acknowl-ume of the system is put to unity. The matrix
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element ofU on the Bloch wave function®y (r) = state, e. g., antiferromagnetism, rather than in a Pomer-
S ux (b) e/K=P)T reads anchuk QTP. From now on, our analysis will be focused
on normaleecollisions, the matrix element of which is
Myp—wp = Z 5k—k’+b1—b2,p’—p+b3—b4 given by Eq.[(®) withb; — by = b3z — by. The cor-
b,bs...by responding scattering probability, averaged over spins
of the initial states and summed over spins of the final
X ujer (b1) u (b2) ugy (b3) up (ba) states, reads
xU (k—k +b; —by—b/2,b). (8) Wip—k'p' =

Now we consider a long-range interaction, relevant for 1 2
a FL near the Pomeranchuk instability. In this case, the 4 Z ‘507555Mkpﬁk’p’ — 0as0py Mippri| =

matrix element is non-negligible only if the first argu- KAl
ment of U is as small as possible, which means that 9
b= 2(b2 — bl) andk ~ k' ‘Mkp—>k’p’ + ‘Mkp—>p’k’
Myp wp = Ok—K'+b;—by,p'—p+bs—b *
p—k'p b§)4 +b1—bg,p’—p+bz—bs — Re(Mkp_)k/p/Mkap/k,) . (20)
. . Wyp_x'p has certain symmetries. First, we assume
X upr (b1) ux (b2) ugy (b3) up (ba) the microreversibility property
x U (k —K,2(by — by)) . 9) Wip—x'p = Wip'—kp - (11)

We see that the condition for an Umklapp process pe N addition, since electrons are indistinguishable,

comes very stringent [16]: sinde ~ K/, the momen- Wy o o = Wippie = Wek ok pr = Wk p/k -
tum conservation conditiok — k'’ = p’ — p + b can (12)
only be satisfied at special points, whefe-p ~ band  Finally, combining [AL) and (12), we obtain

b = by —bs+b; — by is just another reciprocal lattice

vector. As Fig[ la shows, this is only possible j§ and Wip—wp = Wiep—kp = Wpr—pk - (13)
p’ are located at the edges of the Brillouin zone (and wjith only normalee collisions taken into account,

the FS is open). The volumes (areas) around the speciahe total electron momentum is conserved, i. e.,
points are small — in proportion to a small momentum

transferg. The corresponding scattering rate is smaller / kl,.=0. (14)
than thetransportrate ofeecollisions by a factor of k
g”. For HMM criticality, whereg o< /3, this implies Notice that althougHy; is written down in its most

that the contribution to the resistivity from the process general form that holds true as longwag obeys uni-
depicted in Fig[h scales ag2(P+1)/3 j e., asr®/3in tarity [31,/39] 40], in writing dowrl, we have already
3D and asT™ in 2D. In both cases, the exponents are assumed thatVy ,, ., obeys the microreversibility
larger or equal tha@. This means that the NFL contri- condition [11).

bution to the resistivity is smaller (3D) or comparable

(2D) to the FL (") contribution, arising from Umk-  2.4. General properties of the solution

lapp scattering in the channels that are not affected by

the proximity to a QCP, e. g., from the charge channel
in the vicinity of a magnetic instability. In addition,
processes in Fig.glare, in fact, “pseudo-Umklapps” 1. “Hidden” phonons. The linearized form of
because they can be viewed as normal processes on the steady-state BE assumes implicitly that the

Before proceeding with a more detailed analysis of
the BE, we make a few general comments.

a closed (hole) FS. The “real” Umklapps, shown in electron-phonon interaction is also present in the
Fig.[Ib, can occur only if the constraint of small mo- system; otherwise, the total electron energy will
mentum transfer is relaxed or else, near half-filling, increase indefinitely due to the work done by
when the “gap” between the FS and the edges of the  the electric field. As usual (see, e.g., Rél. [7]),
Brillouin zone is small. Half-filling, however, is more we assume that the temperature is low enough

likely to result in a finiteg instability of the ground so that one can neglect a direct electron-phonon
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contribution to the resistivity (which requires that
Teph > Tees Tei, Wherer’s are the transport scat-

tering times for corresponding processes) but high 3.

enough so that, for a fixed electric field, the
electron-phonon interaction can still equalize the
electron and lattice temperatures (which requires
that the work done by the electric field on the en-
ergy relaxation length is much smaller than the
temperature).

. Parity of a non-equilibrium part of the distri-
bution function. A linear in E term in fy. can be
written as

0fk = fxu —nk = —Ax - ETny, (15)

where A contains explicitly only the effects of
the ee and ei interactions. At low enough tem-
peratures (as specified in the previous paragraph),
the electron-phonon interaction shows up only in
the next — quadratic — term and does not affect the
resistivity directly. At even lower temperatures,
when 7., > 7, eescattering can be treated as
a perturbation teei scattering. In this caseA

is determined by the crystal symmetry and by the
ei scattering probability and, without specifying
both of them, no properties &y can be further
inferred. However, if thesi scattering probability
satisfies the microreversibility condition| [7], i.e.,
wkk = Wk k thenAy is odd ink. Indeed,
reversing the sign ok in the BE and relabeling

k’ — —k’, we obtain

6Vk~Eni< :‘/’w_k/’_k (f_k/ —f_k) (5 (€k—€k/) .
kl
(16)

Using time-reversal symmetuy, \» =w_, _y
(which is guaranteed in the absence of the mag-
netic field and magnetic order) and microre-
versibility, we see thaA _,, = —Ay. This is the
property of the non-equilibrium distribution func-
tion we will be using later on. To simplify the
presentation, we will first use a model form of the
ei collision integral, namely, a relaxation-time ap-
proximationl; = (fx — nk) /7, (cf. comment
in Ref. [41]), which allows for a closed-form so-
lution, and then extend the proof for the general
form of fx given by Eq.[(Ip).

However, one has to keep in mind that, beyond
the Born approximation, microreversibility is not
a general principle but a consequence of two mi-
croscopic symmetries, i.e., symmetries with re-

spect to time— and space-inversions, and is thus
absent in non-centrosymmetric systems [42].

No disorder — no steady-state linear-response
regime. Since the momentum is conserved in nor-
mal collisions, the collision integrdl|(5) is nullified
by a combinatioB - k, whereB is k-independent
but otherwise arbitrary. This means that there is no
unique steady-state solution in the linear-response
regime. Obviously, the steady-state solution is ab-
sent because the total momentum of the electron
system (per unit volumeK = [,k fy, increases
with time. Indeed, restoring the time and spatial
derivatives in the BE, multiplying it bk and in-
tegrating ovek we obtain

0K; 8H2~j _ 6/ k@fk
k

ot | oz, ok,

E;, a7)

wherelIl;; = [ kiv; fx. Integrating by parts in
the right-hand side and taking into account that the
number densityV = [, fx, we obtain

OK; Ol
ot ox yi

The left-hand side is just the continuity equation
while the right-hand side is the total force per unit
volume. Therefore, although the electron liquid
is not, generally speaking, Galilean-invariant, it is
accelerated as a whole by the electric field. (In a
crystal, an increase of the momentum in time leads
to Bloch oscillations of the current; the current av-
eraged over time is equal to zero.) Therefore, one
needs to invoke impurity scattering in order to ren-
der the problem well-defined [43].

= —eNE;. (18)

4. No lattice —noT™? term in the resistivity. Adding

just disorder but no lattice does not give rise to a
T2 term in the resistivity. Notice that this state-
ment is weaker than “theeinteraction does not
effect the resistivity at all”, which is true iy
depends only on the scattering angle but not on the
electron energy. The simplest case is that of point-
like impurities, whenwy v = 1/v(ex)n, where
v(ex) is the density of states (per one spin com-
ponent) andr is a constant. In this case, the BE
reduces to

fu—f

Ti

—€EVk En{( - - - Ieea (19)
wheref is an average ofy the directions ok. In
the absence of lattick, = mv and hence the elec-
tric currentj = —2e [, vfx = —(2¢/m) [, kfx.
Now one can multiply the BE equation lyand



148

H.K. Pal etal. / Lith. J. Phys52, 142—164 (2012)

integrate ovek, upon whichl., —in accord with 3. Electron-electron contribution to the resistivity
(I4) — drops out, and obtain a relation betwgen

andE directly, without solving forf: 3.1. Do normakecollisions affect the resistivity?
_e/ vk(vi - E)nj = m j. (20) It may seem that the reverse statement to the head-
k 2er; ing of item #4 in the previous Section (“no lattice — no

The resuling conductivity = ne?r /m does not T2 term in the resistivity”) should be “&? term in the
contain any effects of theeinteraction, except for ~ resistivity occurs in the presence of both disorder and
FL renormalizations ofn andr;. lattice”. Indeed, while disorder takes care of momen-
The same is true if the scattering probability de- tum relaxation, lattice breaks the Galilean invariance.
pends only on the angle betwekandk’. Param-  As a resultvy = sy /0k # k/m, which means that

eterizinguwy x as momentum conservation does not imply current con-
o servation, and one cannot obtain a relation between the
Wy ) = W (5ka k- k’) /v(ex),  (21)  current and the electric field without actually solving

o the BE. In general, therefore, one should expe&ta
we expandfy andw <€k, k- k’) over a complete  term in the resistivity. While it is really the case in 3D,
basis set of, e. g., Legendre polynomials in 3D: it turns out that the conservation laws in 2D forbid the

T2 term for a convex and simply-connected but other-
- {3
he= ; FH (@) Pe(cost), wise arbitrary FS.

w:Zw{f}(ak)Pg(cos 0)Pu(cos8)+ W, , (22) 3.2. Low temperatures: Perturbation theory

¢ ) . .
In this subsection, we discuss the case of low tem-

wheref) (¢') is the angle betweel andk (k'), and  peratures, when theecollisions are less frequent than
W, is an odd function of the polar angles that van- the ej ones. In this case, thee contribution can be

Jad; electron-impurity scattering, when the BE is given by
—evEng = =) ooy P (cos £0) —Iee (T9). However, we keep the dependence ofdivelax-
CY 23 ation time on the electron energy for the time being.
with (23) At the first step, we solvé (19) with,. = 0, which
) . yields
_ {0 _{¢
e o) - 20 + lw{ (@) (@4 g = eri (51) vieE/T . (25)

Next, we substitut@fj) back into ) and find a cor-

If Ti{e}(Ek) does not depend on the electron en- )
rection due td.

ergy, one proceeds in the same way as for point-

like impurities, i. e., one obtains a direct relation @ T (sk)I [ (1)}

betweerj andE by multiplying (23) byv and in- I = Tnj, Ik | -

tegrating overk. The resulting (Drude) conduc- , _

tivity o = ne?r!" /m contains the transport time The corresponding correction to thi¢ component of
1

T = Ti{l} but no effects of these interaction the conductivity tensor is given by
(again, up to FL renormalizations). e? dPq
If w does depend on the electron energy, as d0ij = _Qf/ (2m)? ///deEkdEP
it is often the case for semiconductors, the inte-
gral [, kl.; does not reduce to the electric current, 7{%
X

(26)

d d . .
e TP 1 o (@, w) LAl (21) 1 (2p)

and one needs to solve fdg in order to find the Uk Up

conductivity. Since theeinteraction affectsfy,
the conductivity is also affected. However, aswe  x [1 — p (g — w)][1 — n (ep + w)]
show in Sed 3.3]3, this effect leads only td"a

term in the resistivity (of* In 7" in 2D). X 6 (ex — fxeq — w) 6 (6p — Eprq +w) . (27)
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Here,q = k — k' = p’ — p is the momentum trans-

projected onto the FS! What it really means is that the

fer, day is the surface (line) element of an isoenergetic §-functions impose constraints on the angles betvkeen

surface (contour) at energy, in 3D (2D), andAZ =
7i(ex) Vi +Ti(ep) Vp —Ti(Ek—W) Vk—q—Ti(EpTW) Vpiq

andq (andp andq) with electrons’ momenta being on
the FS. Typical values of these angles are determined

is a vector measuring the change in the total “vectorpy the ratio of typicaly (= g) to kp. In a system

mean free path?y, = vy7i(ex) due toeecollisions.

with a short-range interactiory ~ min{kr,1/ao},

The energy transfer was introduced by re-writing the \yhereq, is the lattice spacing; therefore, typical an-

energy conservation law @agey + ep — e — €p)
J dwd (ex — ex — w) d (ep — epr + w). The scattering
probability Wy p(q,w) = Wk pk—q,p+q IS NOW al-
lowed to depend ow. Using the symmetry properties
of Wi p(q,w), one can casf (27) into a more symmetric
form

e? dPyq
50'7,‘7 = _W/W///deEkdap
<

X [I=n(ex —w)] [l = n(ep+w)

&&WKP (Cb W) JAVAVAN 227} (51{) Np (5p>
Uk Up

X 0 (ex — €k—q —w) d (€p — Eptq T W) - (28)

Now let us count the powers @f in (28). Each of the
three energy integrals (over, ey, andep,) gives a fac-
tor of T" which, in a combination with the overall/T’
factor, already gives @2 dependence, as is to be ex-
pected for a FL. Th&@™? result holds as long as the inte-
gral overq does not introduce addition@ldependence.
This is the case in the FL regime, when typigalre of
order of the ultraviolet cutoff of the problem, i.e., the

gles are of order unity. On the other hand, typical
(= w) are of orderT’, and corrections to angles due to
finite w are small as long &6 < min{ep, W}, where

W is the bandwidth; the last condition is implied any-
how to be in the FL regime. If the interaction radius,
ro, iS much longer than both the lattice spacing and
the Fermi wavelengthg is small but in proportion to
1/ro rather than tdl’, while w is still of order7". This
means that effective ultraviolet energy scale is reduced
to vr /19, and the FL description is valid only at low
energies, where the effect of a finite energy transfer on
the kinematics of collisions is negligible. This can be
illustrated for a simple example of the quadratic spec-
trum, when the angle between, e.k.andq, satisfies
cos Oy q = (¢%/2m+w)/vrq. Neglectingw is justified

as long ag’ < ¢?/2m. Notice that this simplification

is valid even near QPT (cf. Sdc. R.2), where the scal-
ing dimensions ofv and g are different:wo ~ T but

g o T'/3. A characteristic temperature, below which
the conditions ~ T < ¢2/2m ~ T2/ is satisfied,
coincides with the scale below which the quasiparticle
description breaks down, which is the regime of main
interest for quantum phase transitions.

smallest of the three quantities: the reciprocal lattice ag another remark, typicglmay be different for dif-
vector, a typical size of the FS, and the inverse radiusgrent gpservables. What we said above is true for the

of theeeinteraction. In this case, the dependence of

leadingterm in theeecontribution to the electrical con-

Wiep (q,w) can be neglected. The energy dependencey, tivity in all dimensionsD > 1, because the small

of r; contributes only to higher order termsihand we
neglect it for the time being as well, so thaf = ;Av
with

AV = Vi + Vp — Vk_q — Vp+q (29)

being the change in the electron current dueeaol-
lisions. Finally, since the integrals of the combinaton

of the Fermi functions over energies already produce 2"d thermal conductivity [4

behavior of the integrand ifi (28) is regularized by the
A factors that vanish in the limit of — 0. (This is
analogous to the regularizing effect of the— cosf
factor in a transport cross-section for elastic scatter-
ing.) However, when calculating the single-particle
lifetime (the imaginary part of the self-energy) [44] 45]
16] in 2D, one runs into in-

factor of T2, electrons can be projected onto the FS in frared Iogar_ithmic divergences, which means that the
the rest of the formula. This means that one can drognfrared region of the momentum transfegs< 7'/ vr)

w in both-functions and perform the surface integrals
over the FS.

We pause here to remark that neglectingn the
o-functions doesiot mean performing an expansion in
w/ek,w/ep, etc. Infact, all quasiparticles energieg (

does contribute to the result. In those cases, neglecting
w in the é-functions is not justified. (The subleading
terms in the conductivity also require more care; see

Sec[3.3 B below.)

Coming back to the main theme, we focus now on

€k—q, €tc.) are equal to zero because the electrons weréhe FL case, when one can also negledh the scat-



150 H.K. Pal et al. / Lith. J. Phys52, 142-164 (2012)

tering probability. After all these simplifications, the where
diagonal component of the conductivity reduces to

Ry p () =
e? dPq
00 = ——7'12/ ///dwda‘ de
27" | (2m)P K / do (w?/T%) Wiep (0.0) N(w) [N(w) + 1] (34)
daf dap , and N (w) is the Bose function. For the effective inter-
j{]{ of — Wip (4,0) (AV") action from Eq.[(B) at the QP (= 0), power counting

of (33) givesdoy; o« T(P+2)/3, which coincides with
xn () n(ep) [L — n (ex — w)] [L — n (ep + w)] the estimate based on the transport time (cf. Set. 2.2).
As in the FL case, however, one needs to make sure that
X 6 (e — Ek—q) |ex=00 (€p — €prq) leuo.  (30)  the prefactor is non-zero.
where superscripf’ indicates that the corresponding 3.3. Cases when the leading term vanishes
guantity is evaluated at the FS. Now the integrals over
all energies can be performed with the help of an iden-3.3.1. Isotropic system with an arbitrary spectrum

tity The first case is that of an isotropic but otherwise
1 arbitrary energy spectrum. Such a situation may arise
T /del /d52/dwn (e1)n(e2)[1 —n(e1 —w)] due to relativistic effects. Another (pseudo-relativistic)

example is weakly doped graphene with a negligibly
small trigonal warping of the FS. Sineg is a function

i (31) of k| only, thes-function constraints in Eqj. (B2) imply
that|k| = |k — q| and|p| = |p + q|. Then,

272

X[1—n(e2+w)]= 3

and we obtain & term in the conductivity with a pref- A oe
actor given by a certain average over the FS vy = 28(1{:1;) kj =¢&(k)k;,
(5(71'1' = ; 85
Yeeq=2 5075 x (kj—aq;) = (k) (k;—g5) .
2 d O(k?) le—ql=Iiq
et [ o f i e @ @)

where¢(k) = vx/k. Notice that the second line in
Eq. (3%) is not an expansion in smallbut an exact
relation. Substituting Equ) (and similar expressions
for vj and v}, ) into Av, it is easy to see thahv
Clearly, whether the leading correction to the resid- vanishes identically. Thus, there is #i8 correction to
ual conductivity indeed scales &8 depends on wheth-  the resistivity of a non-Galilean-invariant but isotropic
er the integral over the FS is nonzero. Since the inte-system. This result also holds for a general quadratic
grand is positive, the integral may vanish onlf = spectrunmey = k;k;j/2m;;, in which case; = k;/mj;
0 under the energy conservation constraints imposed byandAv/ = 0.
thed- functions. As a simple check, we apply Eq.](32)  Notice that, in contrast to the Galilean-invariant case
for the Galilean-invariant case, whef, = k/m. In (with e,. = k2/2m — €r), when not only thel™? term
this caseAv = 0, as it should be. but all higher order terms are absent, higher ord&r, (
We now consider a more general situation, when theetc.) terms are non-zero for a non-parabolic spectrum.
w dependence of the scattering probability is important,
which is the case, e.g., near a QPT. In this case only3.3.2. Approximate integrability: Convex and simply
two out of the three energy integrals can be performed connected Fermi surface in 2D

x (AV')?§ (ek — €k—q) |ex=00 (Ep — Eptq) lep=0 -
(32)

explicitly and, instead of Eq[ (32), we obtain Kinematics of ee collisions on a circular FS. The
o fact that 72 term in the resistivity is absent for an
5oy = — T / ?{ j{ day da 2 Rip () isotropic FS does not mean that it is necessarily present
vk Up for an anisotropic FS. In fact, thE? term is also ab-

' sent for a simply-connected and convex but otherwise
X [AV]?6 (e —€x—q) |ex=00 (€p—€ptq) lep=0, (33)  arbitrary FS in 2D[[10~13, 16]. Before considering the
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k' p

k P

Cooperchannel velocity swapping no scattering
Av =10 Av=10 Av=10

Fig. 2. Isotropic case in 2D: three possible scattering processes none of which leads to current relaxation.

general case, however, let us study the simplest exam(e_, = ¢,) and symmetries of the scattering probabil-
ple of such a FS, i.e., a 2D circular FS with quadratic ity, we obtain

spectrum. Since this is just a Galilean-invariant case, Sors; =

we already know (cf. Se€. 2.4) that teeinteraction

has no effect on the resistivity. However, it is instruc- 2 d2q daF dak
- - - i . Lery k2P 5 (q,0)
tive to see in a geometrical way how tie term van 3 v (2n)? e vy | ©P
ishes — this will be useful for the subsequent analysis
of the general case in 2D. Geometrically, one needs to o [vi Cvivi i }2
find two initial momentak and p, belonging to the k=" "k—a " "p—q
FS, such that the final momentk,— q andp + q,
X 6 (ex — €k—q) 6 (6p — €p—q) - (36)

also belong to the FS. As shown in Fig. 2, only three
situations are possiblé [47]: (i) Cooper channel, whenFor givenq, we must find two momenta satisfying the
the total initial and, therefore, the total final momentum relationsey = ex_q andeg = e5—q. Geometrically,

is equal to zero; (i) swapping of velocities, when the finding the solution to these two equations is equiva-
initial momentum of one the electrons coincides with 1€t to shifting the FS by, and finding the points of

the final momentum of another electron arice versa intersection between the original and the shifted FSs.
i.e.,p = k — q (iii) no scattering — this is the trivial A convex FS has at most two self-intersection points.

case where the initial and final momenta of individual Therefore, th(.a quat_l:ak = fk—q has only tW.O solu-
tions. In addition, ifk is a solution, then-k + q is also
electrons are the same. For all of these cades= 0

d thus the2 is ab hat th . a solution so that the roots of the first equation form
and thus thd™ term is absent. To see that these situa- set{k, —k + q}. Since the second equation is the

tions indeed exhaust all the p053|b|I|t|.es, one gan So_lvesame, its two root$p, —p + q} = {—p, p + q} must

the momentum and energy conservation equations, i. goincide with the roots of the first equation. This can
k — k' = p’' — p = qandk® = k", p* = p”?, subject  happen if 1)k = —p, which gives the Cooper channel
to the additional constrainkt = p = k' = p’ = kr.  orif 2) k = p + q which gives swapping. The situa-
This leads to two equationsy® — 2kgcosfy, = 0 tion with ¢ = 0, when no scattering occurs, is trivially
andg? + 2pq cos 6,, = 0, whered;; denotes the angle possible. For all the scattering processes listed above,
between the vectorsandj. The three possible solu- Av = 0 and theI™* term vanishes.

tions are: 0y, — 0,, = , corresponding to case (i);  Being purely geometrical, the preceding analysis is
Oy + 0, = , corresponding to case (ii); amd= 0 equally valid for the NFL case, with the conclusion that

. ) 473 -
for arbitrary,, andd,, , corresponding to case (iii). ~ he7 /* term vanishes as well.

Beyond the relaxation-time approximation.
Kinematics of eecollisions on a generic convex FS. Although the analysis above was based on [Ed. (36), ob-
The situation described above is not SpeCifiC to a Cir-tained in the relaxation-time approximation fErscat-
cular FS in 2D but occurs also for a generic convex tering, it can be readily extended for the general form of
FS, see Fig[|3a. Indeed, introducing a new variabletheei collision integral in Eq.[(2). The non-equilibirum
p = —p in (32) and using the time-reveral symmetry part of the distribution function in the presence ef
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scattering only is given b5), which implies tlﬁp (a) (b)
in @) is replaced b)gl((l) = Ay - E. The lowest-order q
iteration ineescattering is to be found from an integral q
equation
2 1
il = 7 lelAi B 37)
The ei collision integral can be viewed as an integral . ‘ .
operator, the inverse of which is defined by Fig. 3. (a) A convex contour has at most two self-intersection points
(marked by dots). (b) A concave contour can have more than two
fe_il [fk] = Z Owx fi (38) self-intersection points (six in the example shown).
k
. ) o Higher order term from electrons away from the
wherek = k/k. Thanks to microreversibilitf)x v = FS To find the subleading correction for the case
O x- A formal solution of [3}) is considered in the previous section, we go back to
@ 1 . Eq. (28), replace agaim by a constant in the scat-
9 = Tni(lei Lee[Ax - EJ. (39) tering probability, but now, instead of neglecting

. . . in the § functions, expand the product of tldefunc-
Using the microreversibility property @i and the ¢ 5 second order i. The zeroth-order term,
fact that Ay is odd ink, it is easy to see thagl(f) is 0 (e — €k—q) 0 (¢p — €p+q), Nullifies Av’. The odd
Odd ink as We” Th|S iS a” one rea”y needS to re- in w terms Vanish upon integration Ova{,sp, andw'
peat the steps of the previous analysis. The correcin the FL case, this gives

tion to the conductivity now contains a combination ) "

AV'AAJ, whereAA = Ay + Ap — A — Ay Be- Sos; = }gTiz d qD / / / duww?derdey

ing odd in all momentaA A behaves in the same way 2T ) (2m)

asAv upon the changp — —p. The scattering pro-

cesses are classified in the same way as before, and the day dap 12

vanishing of thel? term follows from the vanishing of x %% IZWI"F’ (9,0) [AV } n(ex) n (ep)
Av.

X [1=n(ex —w)] [l —n(ep +w)]
Approximate integrability. A limited number of
possible outcomes of thee collisions means that our , , 1.,
2D system behaves similar to a 1D system, where bi- < 19 (€k—¢k-q) 0" (€p—Epiq) — 510" (ek—ck—q)
nary collisions do not lead to relaxation. The anal-
ogy works because, to find the leadirfj?j term in "
the conductivity, it suffices to project electrons onto the X ¢ (6p —€p+a)+0 (6k—ck—q) I (5p—€p+q)]}- (40)
FS, which is a line in 2D. Therefore, kinematics ef-
fectively becomes 1D and, although this is a 2D case, The derivatives of thé-functions produce the same
we have an integrable system. However, this analogy©0ts fork andp as thej-functions themselves. How-
has certain limitations. First, the 2D case is integrable€Ver, integrating by parts, we make the derivatives to
only with respect to charge but not thermal current re-act on [Avi]®. Although [Av?]” vanishes fork and
laxation, whereas there is no relaxation of all physical p satisfying energy and momentum conservations, its
quantities in 1D. Second, even the charge current relaxderivatives do not. This makes the integral non-zero.
ation is absent only up to next-order-termdife (see  Since we now have two more factorswfthe correc-
Sec[3:3B). Third, not any FS line in 2D is integrable: tion to the conductivity scales as
concave and multiply-connected contours behave in a 4
non-integrable way. With all these limitations in mind, 0o o T (41)

we will refer to the 2D convex case as to “approximate |n more detail, lek, be one of the roots of the equation
integrability”. ex = €x_q- The corresponding root fgy is thenpy =

. . o ko — q. ExpandingAv around the roots gives
3.3.3. Subleading corrections to the resistivity when

the leading term is absent Av' = ([6)k—dp] - V) (vf(0 - vf;(]_q) . (42)
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wheredk = k — ko anddp = p — ko + q. Subsequent (@) (b)
integration proceeds as in the integral :
! ! 1 2 B,
[ [ dwdys' @8 ) 5 @~ y)* =
] )

—/dxd’ (x)z =1, (43) :

wheredk anddp play the roles ofc andy (and simi-

larly for an integral with a produd’(. .. )d(. .. )). Fur-

ther cancelations for a particular FS may makeThe Fig. 4. (a) A 3D FS has an infinite number of self-intersection

dependence even weaker but the generic ansvier. is points (a line). (b) A mgltiply co_nnectgd FS has more than two
Clearly, going away from the FS produces an extra self-intersection points.

factor of 72. Sincew ~ T in the NFL as well, the  formal similarity to that of the thermal conductivity be-
result for the NFL regime is obtained by multiplying cause the change in the thermal curignt= vy due
the “naive” estimatéfo;; o« T%/3 by T2, which gives  tg eecollisions

oy o< T'0/3. This is obviously subleading to tHe? . .

term resulting from the FL interaction in non-critical Jk TJp ~Jk—q “Jptq =

channels.

. (k=P —2q)w+qlek —ep)
Energy-dependent electron-impurity relaxation m
time. In addition to the mechanism described above, contains the same term asf in (44). The singularity
there are other sources of higher thahcorrectionsto  can be resolved by the same method as in Ref. [46],
the conductivity; one of them is the energy dependencs. e., by considering a dynamically screened Coulomb
of 7, which we have neglected so far. This mechanisminteraction. The result is that, similar to the thermal
operates even in a Galilean-invariant system: althoughconductivity, the conductivity contains an extra log fac-
eecollisions conserve the momentum, they redistributetor as compared to the 3D case:
electrons in the energy space and thus affect the con- i N2
ductivity, if depend%yonpthe energyl [5, 7]. To esti- oip o () T (er/T) - (47)
mate the magnitude of this effect, we apply Hq.](28) The “2D log” does not occur in th&? term in the con-
to the Galilean-invariant caser (= k/m) and ex-  ductivity, if the latter is finite due to broken integrabil-
pand the impurity relaxation times entering the “vec- ity, which is the subject of the next section.

(46)

tor mean free path” as; (1) = 7:(0) + 7/e1, where An extension to the NFL case is again, trivial, and
7! = 97i(21)/Oe1|z=0. This yields we will not repeat the argument here.
Tw 3.4. Non-integrable cases
Al=-"(k-—p—2q). 44 s 9
—(k—p—2q) (44)

Concave FSin 2D It follows from the previous dis-
cussion that whether thE? term is absent or present
depends entirely on the FS having two or more than
two self-intersection points. A concave FS in 2D can
Satiy oc (1)2T?. (45) have more than two self-intersection points (cf. Fig.
b), therefore there are more than two solutions for the
In 2D, the situation is more delicate because the parfnitial momenta for giveng. Some of these solutions
of the integrand associated with the— p term in  gtj|| correspond to “integrable” processes, encountered
(44) is logarithmically divergent. This a well-known gjready for a convex FS, but the remaining ones do re-

“2D log singularity” that occurs, on a more general |ax the current. Therefore, A2 term survives in this
level, as the mass-shell singularity of the self-energycase.

(see Ref.[[44, 45] and references therein). This is also

the same singularity that one encounters when calcu3D FS. In 3D, the manifold of intersection between
lating the thermal conductivity in 2D (in the absence of the original and shifted FSs is a line, see Fig] 4(a).
impurity scattering)|[46]. Indeed, our problem bears a Therefore, the equatiofi = ex_q has infinitely many

Since [(2}) contains two factors 8¢, and each of them
is proportional tav, we have an extra? factor in the
integrand. In 3D, this immediately givesi# term
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roots. There is no correlation between the roots of thein the in-plane conductivity, we use a method similar to
equationsy = ex_q andep = ep1q. Geometrically,  that in Sec[ 3.3]3, i.e., we expand théunctions, ex-
this means that the initial momentk,andp, do not  cept for that now we expand bothdnandej_. As we
have to be in the same plane as the final oké®nd  explained in Sed. 3|2, the expansion.inis really an
p’. Therefore, an anisotropic (but not quadratic) FS in expansion inv normalized by the appropriate ultravio-
3D allows for aI™? correction to the resistivity. let energy scale of the problem. Likewise, the expan-
The T°/3 term in the NFL regime survives for the sion in et is really an expansion in, /ex, which is
same reason as well. Therefore, our theory at least doea natural small parameter for a quasi-2D system. The
not contradict the experiments [28+30] where suchzeroth-order term = 0, ¢ = 0) nullifies Avll. The
term was observed. first-order terms also vanish: the ones, proportional to
w, do so by parity, and the ones, proportionat}o, do
Multiply connected FS. If the FS is multiply con- 5o because the first-order derivatives of dHeinctions
nected, al'? term in the resistivity is present, even if nullify (AVII) after a single integration by parts. Fi-

the individual FS sheets do not allow forZZ term  pally, the cross products in second-order terms, being
on their own. Even more so, the individual sheets canodd in w, also vanish. Therefore, the only surviving

even be isotropic. The reason is obvious from Fjg. 4(b)second-order term is

which shows an example of two circular FSs in 2D. I I

Clearly, the equatiory = cx_q has more than two 0 <5kH —q; " fk, T Chimqe ~ k. w)
roots even in this case. Thus, according to our previous

arguments, there is no general reason for the vanishing  « § ( I N el et + w) _
of the T2 term in such a situation. In Sed. 4 and Ap- ikl 5y T et T s

pendix 6, we discuss the two-band case in 2D in more 1 2,
. z 4
detail. 3 {(Ekzqz - akz) +w
3.5. Weakly-integrable cases Al I I
X0 (‘Eku —ay Eku) 0 (EP\\+QI\ - 5|P|’u)
In this section, we consider two situations when in-
tegrability is broken only weakly. i 5 [(Ezz)erqz _ 5;) T wz}
3.5.1. Quasi-2D metal
The first case is a layered metal with a quasi-2D X & (Eku a gku) 5”( €py 1t 5'1')“)
spectrum which, for simplicity, we assume to be sep-
arable into the in- and out-of-plane parts as
panep + (e =) (e —55) =)
€k = €|k|\| + €k, (48) ||
!/
wherek| andk, are the in-plane and out-of-plane com- X0 (Ekn —qy Ekn) ( “pjtay ‘SPH) - (49)

ponents of the momentum, correspondingly. In the Equation [[4P) contains two independent corrections.
tight-binding model with nearest-neighbor hopping, All terms proportional tas? produce & correction to
e;. = t1[1 — cos (k.c)], wherec is the lattice spacing  the conductivity that exists even in a purely 2D system.
in the z-direction. The metal is in a quasi-2D regime All terms containing the squares of the out-of-plane
whent, < ep. Inregard to the in-plane part of the dispersions produce &2 correction [10[ 11]. There-
spectrum EL‘H we assume that the corresponding en-fore,

ergy contours are anisotropic but convex so that, in the S0 = AT 2 2

. . ! ! i = + Aot T=, 50
absence of inter-plane hopping, tfié-term in the in- o 4 2L (50)
plane conductivity would be absent. (If the planes arewherei = z,y, and constantsl, and A, depend on

assumed to be Galilean-invariant, i.fgk\ — k2/2m|\ details of the in-plane spectrum; generically, ~ As.

o : , Equation [(5D) describes a dimensional crossover from
asina“corrugated cylinder model ,tﬁ@ term is triv the 2D-like regime doy; o T%) atT > ¢, to the 3D-

ially zero because the in- and out-of_—plane component ike regime oy, « T2) for T < t,). Notice that, in
of the momentum are conserved independently, an : 9 . ) L

I I I I i 5 he 3D regime, th&“-term in thein-planeconductivity
hencevy, +vp, Vi, T Ve T 0.) To find theT™-term depends on theut-of-planehopping.
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In the NFL regime, Eq[(50) is replaced by (a)
Soii = A T3 4+ At2 T3 (51)

(b)

3.5.2. Conductivity near the convex-concave transition
In this subsection, we consider a FS near a convex-

concave transition which occurs when the Fermi en-

ergy goes above a certain threshold valyfl7]. Such

a situation is encountered, e.g., in the case of surfaceig. 5. (color online). (a) Even in the concave case, there can be

states of the BiTe; family of 3D topological insula-  ©nly two intersection points if is not along a special direction.

tors, where the electron spectrum can be approximateéf’) Forgq larger than a critical \é?rllltjse, there are only two intersection

by [48] elf = i\/v%kQ + A2kScos?(360), with 6 be- P

ing the polar angle. Corresponding isoenergetic con- , _

tours are shown in Fid]]6(a). We will be interested '€gimes. The dependence is monotonic for the convex

in the vicinity of the convex/concave transition, when FS and non-monotonic for the concave one. (This be-
ler — £¢| = |A| < e havior is not specific to the particular FS considered

We first consider the case d@f > T, when the here butis a general feature of any convex or concave
isoenergetic contours near the Fermi energy are ConcontourS). The oscillations are related to the rotational
cave and thermal population of concave isoenergeticsymmetry of the FS (six-fold in our case; Fi§] 6(c)
contours can be neglected. Obvioushy in Eq. (3§)  shows only the domaith € [0, 7]). The non-monotonic
shows a critical behavior: it is zero on the convex parts are centered around special (“invariant”) points
side and non-zero on the concave side of the transipassed by thé*(0) curves for all types of contours.
tion. However, there are two other quantities which Near the invariant points, the non-monotonic part of the
also show a critical behavior. As Fids. 5(a) 4rjd 5(b) curve obeys a cubic equation
illustrate, even a concave FS does not necessarily have
more than two self-intersection points: this happens 0* = b6° — a(A)F, (53)
only if the FS is shifted along certain directions that
lie close to high symmetry axes, i. ey lies within ~ Wherea(A) o< A andb > 0 is a constant. The energy
some angular intervahf,, and the magnitude of the dependences of the critical quantities can be obtained
shift is below certain threshold, i.e;, < gmax. Ob-  from this equation.
viously, Ay and g,y also depend o in a critical To find A4, we note that the equation —cx—q =
manner |[49]. Approximating’ d?q by Afqq2 .., We 0 reduces tovy - q = 0 for smallq. This implies that
resolve they functions and integrate over all energies the solutions are those points on the FS where the nor-

T

to obtain mal to the FS is perpendicular g [cf. Fig. [§(b)],
27272 i.e., 0%(0) = 6q + m/2, wherefy is the angle defin-
doii = — 1’2 > Abg| My, p,, (Amax)|* ing the direction ofq. From symmetry, ifd is a so-
lm lution, so isé + x; therefore, one needs to consider

only half the domain o). That only certain direc-

_ ———— __— _(52) tionsofqallow for more than one solution to this equa-
Vi, - ki Vo - Pm [vy, - dl [vp,, -4l tion, may be appreciated by inspecting fFig. 6(c), which
where the sum runs over all intersection points, themMakes it obvious that multiple roots can only occur
prime denotes a derivative with respect to the polar anin the regions of non-monotonicity. The intervabg
gle, andl = 1/|1|. The task at hand now is to find the Where it happens is then proportional to the (vertical)
energy dependences Afv’ andAd,,. width of these regions. Using Eq. (53), we find that

This task is facilitated by the geometrical construc- Afq o A6* oc A%/2. Similarly, one can show [17]
tion in Fig.[6(b). Letd* be the angle between the nor- thatAv’ o< guaxA andgmayx o< A'/? (a posteriori, this
mal to the FS at a point, parameterized by the afigle justifies the assumption of smal.
andq. As one goes around the FS contdlirchanges Substituting these results into the expression for the
with 6. Figurg®(c) shows the dependencébébnd for  conductivity, we find that\dq[Av;]? oc A%2, which
the FS in Fig[ B(b) in the convex £ < e., dotted), crit-  means the prefactor of tHE? term in the resistivity
ical (¢ = €., dashed), and concaveg > <., solid) scales asA?2. The T* term is always present, as

kl Pm 1 1

X [Avl]lzm



156 H.K. Pal et al. / Lith. J. Phys52, 142-164 (2012)

(a)

Fig. 6. (color online). (a) Isoenergetic contours for the surface states of tfiesBamily of 3D topological insulators. The dashed line

corresponds to the critical energy for the convex-concave transition. (b) For gnpalints (black dots), where the normal to the FS is

perpendicular tay, are the points of self-intersection. @) vs ¢ [as defined in panel (b)]. Solikkr > e.; dashed:er = e.; dotted:
er < ec;. (d) A zoom of the non-monotonic part of the graph in panel (c). Reproduced froni Ref. [17], courtesy of the APS.

discussed before. Hence, the resistivity has the follow-than theei one. It is the case for Umklapp scatter-
ing form: ing, whose contribution grows unabated up to the tem-
AN 9/2 T4 peratures comparable to the Fermi energy. The nor-
p=po+A (> O(A)T? + B—-, (54) mal contribution, however, is different: it saturates in
e °F the limit when theeerelaxation time becomes shorter
where p is the residual resistivityg(x) is the step  then theei one. The effect of saturation was under-
function, andA and B are material-dependent parame- stood already in the earlier days of the electron trans-
ters (genericallyA ~ B). A crossover between tH'  port theory|[50; 51]: very frequeegcollision establish
and7? regimes occurs & ~ ep(A/ep)?/* < e a quasi-equilibrium state with the drift velocity fixed by
Returning to the case @k S T', when both convex g scattering. The previous analysis was, however, lim-
and concave contours are populated, it is easy 10 Sefe tg the case when normegcollisions affect the re-
that theA®/? prefactor is replaced by®/?, leading to sistivity via the energy dependence of gigelaxation

13/2 - . - - ] ) )
aT term inp. This term, however, is subleading time [7,/52]. In the next subsection, we show that the

4 . ; )
FO theT™ one. Therefore, Eq4_) d(_escrlbes f[he I_ead saturation occurs even if tlerelaxation time does not
ing T-dependence of the resistivity in both situations depend on energy

(JA] > T and|A| < T) near the transition. Note that

the exponents of, 4, and9/2 in Eq. ) are univer-

sal, i.e., they are the same for arbitrary 2D Fermi  4.1. Saturation of the resistivity in a single-band metal

surface with a non-quadratic energy spectrum near a

convex-concave transition. We adopt the simplest model of point-like impurities

with energy-independent scattering time, when the BE

is given by Eq.[(IP). Theecollision integral in [(IP)

can be viewed as a linear operatigg acting on the
So far, our analysis has been focused on the low-non-equilibrium part of the distribution functiqfil) =

temperature limit, when thee contribution to the re-  f,, — ny

sistivity is a correction to thei one. From the experi-

mental point of view, however, it is important to under- (1) — n (1)

stand V\?hether thee contribution maypbecome larger Teel 771() = %:Iee(k’ k) (53)

4. High-temperature limit
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The non-Hermitian matrix operatdk, can be repre- implied in (58) and[(60)]. The scalar produft(57) of
sented in terms of its lef®*, and right,®*, eigenstates  the zero-mode{@l) is

as
(07="]®3=0) Gl sy, kj(—ni) =
= fZ|<I>A (@], (56) Z
ee by
wherer?, is the effectiveeescattering time. The right CiCv(Er)ikik;) . (64)
and left states constitute an orthonormal basis: where
=y I Y 1
(@¥|o%) = Ek: OV (k) @Nk) = 6y x, (B7) (F) = ——— 3" F(k)(—nj) . (65)

whereV is the system volume in the D-dimensional The scalar product (64) is diagonal in the coordi-
space. A general solution of E{. {19) can be expandedate system associated with the principal axes of the

over the complete basis as quadratic form(k;k;); normalization is ensured by
O R choosingC;C; = [v(Er)(k?)]~t. Using these prop-
=) ad(k); (58) erties, we reduce Ed- (p0) to
)
I , , , 1 _ A _
substituting this form into Eq[ (19), we obtain an equa- he =en Z CiCiki(— Z kivie - Enjg =
tion for the coefficients: k: >k/
(Y
Y - / —emi Zk J> E;. (66)
—+ = C)\:6<(I) |vk-Enk>. (59)
Ti Tee

o _ _ Finally, we obtain the conductivity tensor in the high-

Only the zero modeX = 0) contribution survives in  |imit as
the limit of 1/7, — oo, so the solution in the higi- (
regime is given by Tijlr oo = 2¢°v(Ep)n Z(vikﬁ il

l 1
(1) . &A=0 l FA=0/1/ . /
he ’Tﬂoo_ eri @ (k)y; Z K vie - By In the opposite limit of low temperatures, the standard
(60) expression reads

- — 9,2 Ay
Itis not difficult to see that the right and leferomodes %ijlyo = 26V (Er)milvivy) (68)

of I are In contrast to the case of energy-dependgnivhen
the low- and high-temperature limits of the conductiv-
ity differ in how 7; is averaged over the energy [7, 52],
these limits in our case differ in how the conductivity
is averaged over the FS. Naturally, the two limits co-
<(§)\:O|jee - Z k Lo(k,X') = 0 (62) inciqle for the Galilean-?nvariqnt case. Notice that sat-
uration holds for any dimensionality and shape of the
FS, i.e., regardless of whether the temperature depen-
dences of the resistivity starts with7& or 7 term at
low temperatures, it will saturate at high temperatures.
In reality, of course, other scattering mechanisms, such
as electron-phonon scattering, will mask the resistivity
because the collision integral, evaluated for equilibrium saturation.
distribution functions, remains to be equal to zero ifall  If the FS is not abnormally anisotropic, the low- and
energies are shifted ag — ¢ +u-kwithubeingan  high-T limits are of the same order, which means that a
arbitrary k-independent vector. The zero modes form true 72-scaling regime does not have room to develop.
a D-dimensional subspace labeled by the Cartesian inA mechanism in which such a regime is possible is con-
dicesi = 1,2,... D [ summation over these indices is sidered in the next section.

2)-0(k)) = —Cikint,  (8}70(k)| = Cik; . (61)

Indeed,

due to momentum conservation; while

Lee] @70 ¢ 3 Le(k, K)k'njy =0 (63)
k/
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4.2. Two-band model: Scaling regime At T — oo, the resistivity saturates at a value deter-
mined by the resistivity of the heavy band
In this section, we consider a simple model of a two- 9 )
band metal with impurities. Since normegcollisions p(c0) = 2” (1 (ml) 4 ) ~ - T
affect the resistivity for any multiply-connected FS, we €"EF \Til \MM2 7i2 E"EFTi2
consider the simplest case of two bands with quadratic o (_73)
dispersions;sl(j’Q) _ k2/2m1,2, and, in general, dif- T_her_e_fore, thel’ = 0 andT = oo limits now differ
ferent impurity scattering times;; and r,,. We con- significantly
sider only the inter-band interaction (the intra-band one p(oo)  mm  me
drops out in this case anyway) and neglect processes in —~=_—=—2>1. (74)
p yway) glectp p(0) T2 my
which electrons are _transferrgd from one band to an-rpe scaling regime, in which
other. The BE for this model in 2D can be solved ex-
actly by generalizing the method of Appel and Over- p(T) ~ amg 1 (75)
hauser([8] (see Appendix) with the result e? my epTee(T)

occurs in a wide temperature internVBl < T < Th,

; el (Lm Lm) the boundaries of which are defined by

U Ti1Ti2 + Tee (T)

p(T) _ 5 Ti1 M2 Ti2 M1
1 1 1 m m ’
egFﬁ—i_E—i_Tee(T)(z—i—mi;—'—mi?) 1 :i@; 1 :i@' (76)
(69) Tee (T1)  Tiim2’ Tee (Th) Tz M2
where This model can also be applied to the QPT, in which
- case it is natural to assume that critical fluctuations oc-
Teo(T) cur only in the heavy band. Consequently, the effec-
tive interaction is obtained from Ed.|(6) by replacing
NCUT 2KE™ dag vp — vpe andvp — mgy/27w. Computing the integral
o2 [m dw/o or (7d) for6 = 0 andg < kP™, we find the effective
scattering rate in the NFL regime
y WQ(‘%W) : Lsamte/s) s 1 (o)
V1= 1(a/kr1)*V/1 = (q/2kF2) Te(T)  8IL(2/3) &2 m2d2 \ a ’
(77)
X W2N (w) [N () +1] (70)  where((z) andI'(z) are the Riemann arigHfunctions,

correspondingly. In this scenario, norneacollisions
do lead to a real scaling regime in the resistivity with an
exponent given by “naive” power-counting argument.

andk™" = min{kp1, kr2}. The result for the resistiv-
ity follows already from the equations of motian [7]

d
m1% — B - M nna(vy —va) =0,
¢ Til 5. Limitations of the Boltzmann-equation approach
mg% — _eE - M2V2 nni(vi —va) =0, (71) The semiclassical BE does not capture two types of
t Ti2 effects. The first type — quantum — results from quan-

if the phenomenological “friction coefficient] is ex-  tum interference betweezeandei scattering; the sec-

pressed via the microscopic Scattering timena& ond one - classical — from correlations in the electron
7 /epTee(T). flow patterns produced by different impurities. In this
An interesting case is when the masses are Signiﬁsection, we discuss the limits of validity of the semi-
cantly different (as would be the case for a metal with classical approach focusing on the 2D case.
partially occupieds andd bands|[53]), e. gms > my
(consequentlyrs < 711). At T — 0, the two bands
conduct in parallel, and the total resistivity is domi-
nated by that of the lighter band

5.1. Quantum-interference effects

5.1.1. Fermi-liquid regime

Recall that the FL-like contribution to the resistivity,
T 1 7 discussed in this paper, behavesi&s(or T*, if there
~ (72) is approximate integrability) in the low-temperature

p(0) = ~ :
e%er Ti1 + Ti2 e’epTil
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regime, defined by /7. < 1/7; and saturates in the nantrole in 2D systems with highly anisotropic FSs and
high-temperature regime, defined byr.. > 1/7. In non-parabolic spectra, such as the surface state in the
non-integrable systems,/7.. = g7?/cr, Whereg is topological insulators of the Bie; family, discussed
the dimensionless coupling constant. In a generic FL,in Sec[3.5.P.

g ~ 1 and the crossover between the two limits oc-

curs atT* = y/ep/7. For a good metalpry > 1 5.1.2. Non-Fermi-liquid regime

so thatl/7; < T* < ep. In case of quantum cor- In this section, we describe the interplay between the
rections (QC), the scale that differentiates between lowguantum-interference and diregcontributions to the
and high temperatures, i. e., between the diffusive andesistivity in the NFL-regime of a ferromagnetic quan-
ballistic regimes, ipg = 1/7. ForT <« Tpg, one  tum phase. For simplicity, we assume that the integra-
is in the diffusive limit, characterized by a logarithmi- bility is broken already in a single-band case by suf-
cally divergent Altshuler-Aronov correction [b4]; with ficiently strong concavity of the FS. In this case, one
all coupling constants being of order onéy|/op ~ can simply calculate the transport time for scattering at
In(1/T7;)/erm, Whereop = e?epri/m is the Drude  critical spin fluctuations, described by the propagator
conductivity. ForT > Tpg, one is in the ballis- (6) with § = 0, and substitute the result into the Drude
tic limit, where the correction scales linearly wifft formula [26]. This gives-donFrL/op = T4/371/T01/3,
|0c|/op ~ T/ep (Ref. [55]). Apart from the inter-  whereTy ~ (vp/a)(kra)® (we remind thatcpa >
action correction, there is a also a weak-localization1 is a control parameter of the HMM model). The
correction—dowr,/op ~ In(14/7)/ermi, Wherer, temperature above which the NFL contribution satu-
is the phase-breaking time, a precise form of whichrates is now given by ~ 5;/4(kFa)2/7'13/4- The
depends on whether one is in the diffusive or ballis- main difference between the FL— and NFL_regimes is
tic limits: in the former,1/7, ~ T'ln(ep7i)/erm; I that quantum criticality changes space-time (or energy-
the Iatter,1/7'¢ ~ ]-/Tee- In the diffusive limit, the momentum) Sca”ng: while o q inaFL,w qZ
weak-localization correction is similar to the Altshuler- near QCP, wher¢ is the dynamical exponen(= 3
Aronov result, differing only in the prefactor. In iy the HMM model). Therefore, the temperature of the
the ballistic I|m|t, the weak localization correction is diffusive-ballistic crossover, determined by the condi-
smaller than the interaction correction by a factor of tion gupr; ~ 1, whereq ~ (T'/vpa?)/? is a typical
In(T*/T)/T. Therefore, the correct order of mag- value of the momentum transfer in @e collision, is
nitude for the quantum-interference correction is still replaced bylpg ~ (a/vpn)?/7 (Ref. [56,57]). Ina
given by the interaction correction both in the diffusive clean system, where/vpr; < 1, Tpg is significantly
and ballistic limits. Comparing the FL-contribution smaller than in a FL, wher&pp ~ 1/, so that the
—borr/op ~ T?7;/er to the quantum corrections, we  pallistic regime continues down to much lower temper-
find that|doqc/dorL] ~ In(1/T7)/T?77 > 1and  atures compared to the FL case, and we limit our anal-
|6oFL/doqc| ~ TT; > 1in the diffusive and ballis-  ysis to this regime. (Lowering df}yg in the vicinity

tic limits, correspondingly. Therefore, it is meaningful of a ferromagnetic QCP becomes noticeable already in
to consider the FL contribution and neglect quantum-the FL regime[[55].) Another consequence of quantum-
interfence processes in the ballistic but not in the dif- critical scaling is that the quantum correction in the bal-
fusive limit. The interplay of different mechanisms is |jstic regime near a QCP behavesAEd3 as opposed to
shown sc_hematically in Fig] 7. _ o T: —60qc/op ~ (T /ep)Y? (akp)*/3 (Ref. [56,57]).

In the integrable case, t€” term in the resistivity  comparing the NFL and QC contributions, we find that
vanishes and the FL correction scales@s|/op ~  the NFL contribution dominates only @t>> 7', where
T7i/e}. Inthis case, the FL correction dominates over 7 (qkp) /7, ~ Tog(ern)?(kra)? > Tpp. A
the quantum one only at temperatures well above thee|ative weakness of of the NFL contribution is due to

diffusion-ballistic crossover” > _(€FTi)_2/3TDB =~ small-angle scattering at long-wavelength critical fluc-
Tpg. It is worth noting that the discussion of the ex- tyations.

perimental observations of quantum corrections in the

ballistic regime has been so far limited to 2D electron 5.2, Viscous contribution to the resistivity

gases in Si and GaAs heterostructures [58], with essen-

tially circular FSs and almost parabolic spectra, where The statement thaee interaction does not con-
the FL contribution is expected to be very small. The tribute to the resistivity of a Galilean-invariant FL (cf.
FL contribution, however, is expected to play a domi- Sec[2.4) seems to contradict an intuitive notion that it
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Fig. 7. Different temperatue regimes for Fermi-liquid (FL) and quantum-interference (QC) corrections to the conductivity. The shaded
region on the temperature scale is the regime where th@'&)dorrection is dominant.

is the viscosity of a liquid that defines its rate of flow. sistivity within the hydrodynamic regimeip,/pp ~

In a certain regime, indeed, the resistivity does depend../R < 1.

on the viscosity of the electron liquid [59,|60]. Thisef-  In 2D, the Stokes force from a disk-like impurity
fect is not taken into account by the standard BE whichdepends om? only logarithmically: Fs = 4muu/L,
neglects not only quantum but also classical correla-whereL = In(3.70u/RmNw) [61]. However,1/7 ~
tions between scattering events. The “viscous” contri-vxN; R also contains? instead ofR?, so that the ratio
bution occurs at high enough temperatures, when thép,/pp is the same (up to a logarithm) as in 3D.

mean free path due to tleeinteraction/e. = vp7ee, IS The situation is somewhat different for small impu-
smaller than at least the average distance between inrities, because a force exerted by a small « I..)
purities, 1/Ni1/D, whereN; is the number density of sphere on a rarified gas depends not on the viscosity
impurities [60]. In this regime, thei mean free path  but on the gas-solid accommodation coefficients [62].
> 1/N1/D > le is the largest scale of the prob- N 2D, the situation is further complicated by the Stokes

lem, which implies that the FL contribution — even if Paradox|[61]. Hruska and Spivak [60] showed that the
allowed due to anisotropy of the FS — has already sat.viscous correction for small impurities in 2D is given
urated of at a value comparable to the Drude resistvityPY
(cf. Sec[4). Barring phonons, the viscous contribution 5 a 1
is the only source of th& dependence in this regime. ———~7 (1/2> ; (78)

To estimate the magnitude of the viscous contribu- PD e N lee
tion, we consider, following Ref! [60], a flow of the wherea is the impurity scattering length and <
electron liquid through a random array of spherical im-;_ 1/N¢1/2 . Because of a large logarithmic factor,

puritieS. FiI’St, the Impurlty radiuﬁ is assumed to 5pv can, in principle’ be Comparable/@_
be much larger thai,., so that a hydrodynamic de-

scription is applicable at all lengthscales. The force on

one electron from all impurities is just the Stokes force 6. Conclusions

Fs ~ (N;/N)puR, wherey is the dynamic viscosity,

u is the flow velocity, andV is the electron number ~ The main purpose of this paper was to analyze the
density. [An exact value of the numerical coefficient effect of eeinteractions on the reSiStiVity in the situa-
in Fg depends on the boundary conditions for the ve-tion when Umklapp scattering of electrons can be ne-
locity at the surface of the sphefe [61] but will not be glected. Such a situation arises, e.g., in low-carrier
needed here.] In steady stafé; = eE, which yields ~ density materials, as well as in metals neay & 0

u ~ eEN/N;uR, and thus the viscous contribution to QPT, where the effective interaction is of a long range.
the resistivity is given byp, ~ N;uR/e2N2. InaFL, InDsuQch cases, the conventior# dependence (or its
§py X pu ~ mNvple oc 1/T2; thus the viscous cor- T analog in the NFL region near a QPT) of the re-
rection is of thansulatingsign. On the other hand, the sistivity on temperature is not guaranteed. Whether it is
Drude resistivity resulting from scattering off the same present depends on 1) dimensionality, 2) shape, and 3)
impurities ispp = m/e?2N7, ~ mvpN;R?/e2N.  topology of the FS. If the FS is quadratic or isotropic,
The viscous contribution is smaller than the Drude re-there is ndl™? contribution to the resistivity. However,

)
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anisotropy is not sufficient to guarantee thédepen-  wherel’ is the electron-electron collision integral for

dence. In the case of a convex and simply connectedcattering between two electrons from ttile andjth

FS in 2D, there is nd@™? dependence either. In such band, anch, » are the equilibrium distributions. Since

cases, the leading temperature dependence on resistifh our model each of the bands is Galilean-invariant on

ity due to eeinteractions isI™* in the FL region and its own, the intra-bane@einteraction cannot affect the

T(P+8)/3 in the NFL region. Also, if the FS changesiits resistivity, and the corresponding parts of the collision

shape from convex to concave as a function of the fill- integrals are not written down. Linearizing}, (o =

ing fraction, the resistivity follows a universal scaling 1,2) in the same way as for the single-band case

form near the convex-concave transition. In all other

cases, thel® (or T73") behavior is allowed, albeit  fa = N + na (1 = 1a) go = Na — Tn4ga,  (A2)

only as a correction to the Drude resistivity. However,

atrue scaling regime (when tleecontribution is larger

then theei one) is possible for a guantum-critical two- / 12 Tnig

band metal w?th £ubstantially dcilfferent band masses. —eviBny ==l g1, 9] + T

Since a quantum-critical behavior is observed typically /

in multi-band metals with partially occupietibands, /g2l T'nsgo

we conjecture that th&/3 scaling of the resistivity ob- —eveBny ==l g1, 92] + Tio

served in 3D ferromagnets [28-+30] and subquadratic
- . _ where

scaling in a quasi-2D metamagnet B, O, [63-65]

is due to the interaction between light and heavy carri- 112 —

ers in these materials.

Ak Ak Ak
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acknowledged. This work was supported by RFBR-12-and integrating ovek, andk,, correspondingly, we
02-00100 (V.I.Y.) and NSF-DMR-0908029 (D.L.M.)  obtain for the left-hand sides

we obtain

)

, (A3)

(A4)

in that the first integral goes
over k; instead ofks. We seek for a solution in the
following form

de' 2 m
—e 2 (va-E)’nl, = 202 eE?. (A6
/ onpp Ve B = e (A0

In this Appendix we derive Eq[ (§9). The two cou- Similarly, theei collision integrals, integrated over the
pled BEs (1 and 2 refers to the bands 1 and 2) read ~ corresponding momenta, reduce to

Appendix. Two-band model in 2D

ki) —n A2k, Tn! 2
—evy - Vi, fi=—1¢ [fl’f2]*&, / 2 Nadoy B=_¢, 2% acp? (A7)
Ti1 (27)°  Tia AT Tia
fo(ka) —n For a FL, the scattering probability may be assumed to

_ g2 2
—eve Vi fo= I [f1, f2] - Tio , (A1) depend only on the momentum transfer but not energy
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transfer. In this case, the integralsescollision inte-
grals multiplied ovew,, - E reduce to

d?ky

/ _vi-EI2 = eF’R—2 (Cl = 62) ,
(2m) UR1UF2 \T1 M2
(A8)
where
T ri}?in W
= gf1—12\/0 dqq 2(q) -
1= (a1 ()
(A9)

with K™ = min{kp1, kro}, and fi vo - EIZ} differs
from by a factor ofm; /ms. [Integration over en-
ergies was performed with the help of Hq.|(31).] Solv-
ing the system of linear equations

mye o C1M o M2 {01_02}
47 F1 Til 47 F1 VF1Up2 [T mo
mo o Co M2 9 mq Cc1 Cc2
— Vg = —— — Vg +R ———
4 2 Tig 4 F2 ¥ VF1VF2 LMy mJ
(A10)
we find
o = _1/7‘12 + (1/7‘ee) (ml/mz + 1)
1 1 1 1
TilTiz | Tee (H% + E%)
ey = _1/7’11 + (1/7ee) (ma/m1 + 1)
1 1 1 1 m
TilTiz | Tee (H% + Emif)
(Al11)

where the effectiveee scattering time was introduced
as

1 1 1
— =47 R . Al2
Tee A/1T1mo 2}%12}%2 ( )

Using that the Fermi energy is same for both bands,

i.e., thatvg /vpe = /ma/m1, we cast Eq (A1) into

a different form

1 2 T2 /mimg  [2KE™ p

Teo(T) 3 2 o 4

8 W (q,0)
V1—(q/2kr1)*/1—(q/2kF2)

Oncec; 2 are found, one readily finds the electric cur-

_. (A13)

rent and arrives at the expression for the resistivity

quoted in Eq.[(69). An explicit expression foy 7.
was derived in Ref| [66] for a special case of the “over-

screened” Coulomb potential. Our result for this case

coincides with that in Ref| [66] up to a numerical coef-
ficient.

In general, theeescattering probability depends not
only ong but also onw. In this case, the integrals over
energies cannot be performed in a general form, and the
expression fon /7., can only be reduced to the form
quoted in Eq.[(70).

It should be stressed that the electron masses occur-
ring in all equations of this section should be under-
stood asbare rather than renormalized masses. This
follows from the derivation of the BE in the Keldysh
technique using the Migdal-Eliashberg approximation.
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