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The paper is devoted to the problem of resonances in one-dimensional disordered systems. Some of the previous results are
reviewed and a number of new ones is presented. These results pertain to different models (continuous as well as lattice) and
various regimes of disorder and coupling strength. In particular, a close connection between resonances and the Wigner delay
time is pointed out and used to obtain information on the resonance statistics.
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1. Introduction

The problem of resonances, also referred to as
metastable or quasi-stationary states [1], goes back to
the early days of quantum mechanics [2]. A simple
example of resonances [3] is provided by a potential
depicted in Fig. 1. There is a wall,V = ∞, for x ≥ L
and a potentialV (x) = uδ (x). Foru → ∞, a parti-

cle of massm has bound states at energies1
2m

(
π~n
L

)2

[n = 1, 2, . . .]. For any finiteu the spectrum be-
comes continuous. However, the strictly stationary
states which existed atu = ∞ do leave a trace in the
continuum and turn into resonances. They correspond
to poles of the scattering matrixS (E) on the unphys-
ical sheet of the complex energy plane [1, 4]. An al-
ternative, more direct approach to the problem of res-
onances amounts to solving the stationary Schrödinger
equation with the boundary condition of an outgoing
wave only [1, 2]. Thus for the potential in Fig. 1 one
has to solve the equation

− d2ψ

dx2
+ αδ (x)ψ = k̃2ψ

(
α =

2mu
~2

)
(1)

with the boundary conditionψ (x = L) = 0 and the
outgoing wave conditionψ (x) = e−ik̃x for x < 0. The
latter condition makes the problem non-hermitian: the
eigenvalues for̃k, and for the corresponding “energies”
Ẽ = ~2k̃2/2m, will be generally complex.

The solution of Eq. (1) is

ψ (x) =

A sin k̃(x− L) , 0 < x < L

e−ik̃x, x < 0
. (2)

Matching the function and its derivative atx = 0 re-
sults in (

1− iγk̃L
)

tan k̃L = −γk̃L , (3)

whereγ = (αL)−1 � 1. Forγ = 0 one recovers the
bound states,knL = πn. For smallγ the solutions of
(3) are obtained by iteration:

k̃nL = πn
(
1− γ + γ2

)
−i (πn)2 γ2+O

(
γ3
)
. (4)

One can immediately write down the “eigenenergies”,
Ẽn = ~2k̃2

n/2m = En − i
2Γn. The real part,En,

gives the position of the resonance on the energy axis,
whereasΓn determines the resonance width. Forn not
too large, namely,n � γ−1, the resonances are sharp,
i. e., their width is much smaller than their spacing on
the energy axis. This simple example demonstrates
how true bound states in a closed system (u → ∞)
turn into resonances, when the system is opened to the
outside world (finiteu, i. e. non-zero coupling constant
γ).

Open quantum systems can be described in terms of
an effective, non-Hermitian Hamiltonian whose com-
plex eigenvalues give the position of the resonances in
the complex energy plane (in addition, there might be
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Fig. 1. An illustration to the problem of resonances in a potential
comprised of aδ-function barrier and a hard wall.

real eigenvalues which correspond to the bound states).
Such non-Hermitian Hamiltonians have been used for
a long time in scattering theory, including scattering in
disordered and chaotic systems [5–8]. There is a con-
siderable amount of work on resonances in disordered
potentials [9–17]. An example of one-dimensional ran-
dom potential is depicted in Fig. 2. The potentialV (x)
is zero forx ≤ 0 and it is infinite forx ≥ L. In
the interval0 < x < L, V (x) is a random function
of x, with zero mean and some well defined statisti-
cal properties. There is also a barrieruδ(x) at x = 0
which allows to tune the coupling strength to the ex-
ternal world. Foru → ∞ (closed system) all states
are localized within the system. Two such localized
wave function are schematically shown in the figure:
ψE (x) is a state of positive energy, localized far away
from the boundaryx = 0, i. e. its localization center
x0 is much larger than the localization lengthξ. The
functionψE′ (x) corresponds to a negative energy state,
which is localized essentially in a single deep potential
well. Whenu is made finite the localized stateψE (x)
will turn into a narrow resonance, with a widthΓ pro-
portional toexp (−2x0/ξ), while the stateψE′ (x) will
remain a true bound state. A theory of resonances in
disordered chains should consider the statistical ensem-
ble of all possible realizations ofV (x) and produce the
probability distributionP (Γ).

A quantity closely related to the resonance width is
the Wigner delay time [18, 19] which is a measure of
the time spent by the particle in the scattering region
and is defined as the energy derivative of the scatter-
ing phase shift. For the single-channel scattering, as
presented in the setup (b) in Fig. 2, the solution of the
scattering problem amounts to finding the phaseθ (E)
of the reflected wave,e−ikx+iθ(E), due to the incident
waveeikx. The corresponding Wigner delay time is de-
fined as

τ (E) = ~
dθ (E)
dE

. (5)

For a disordered system,θ (E) and τ (E) are ran-
dom quantities, characterized by the joint distribution
PE,L (θ, τ) over the ensemble of realizations. There
exists a large body of work on the statistics of delay
times for the scattering on disordered and chaotic sys-
tems [20–26]. In the presence of a sharp, well isolated
resonancẽEn = En− i

2Γn, delay time at the energyE
close toEn is given approximately by [19]

τ (E) ≈ ~
Γn

(En − E)2 + Γ2
n/4

, (6)

which demonstrates the intimate relation between the
resonance width and the delay time. Below (section
IV) we obtain a relation between the delay time and
the resonance width distributions which is exact in the
limit of weak coupling to the lead, and which enables
us to obtain information about resonances based on the
existing knowledge of the delay time statistics.

Statistics of resonances and of delay times (or the
closely related “dwell times”) are of great interest in
the physics of disordered media. For instance, in a dis-
ordered conductor the current carriers can be trapped
for a long time, which lead to long tails in the decay
of an electric current [27]. Although our discussion
is limited to “matter waves”, obeying the Schrödinger
equation, similar phenomena occur for electromagnetic
waves as well. When a wave is injected into a random
dielectric medium, it can spend there a very long time,
before escaping from the sample. This phenomenon of
long delay times has been extensively studied in exper-
iments [28]. Resonances and long escape times might
be also relevant to the phenomenon of “random lasing”,
when an active random dielectric medium without any
prefabricated cavities, exhibits lasing above some exci-
tation threshold [29].

The organization of the paper is as follows. In sec-
tion 2 we introduce a tight binding model and, follow-
ing [14, 15] derive the effective non-Hermitian Hamil-
tonian for the resonance problem. Section 3 is de-
voted to the case when coupling between the disor-
dered chain and the external lead is weak. Both the
tight binding model and a random continuous poten-
tial are treated. In section 4 a relation between the dis-
tributions of resonances and delay times is obtained,
and used for studying properties of the resonances un-
der various conditions (weak and strong coupling, finite
and infinite chain). Section 5 specializes to the case of
strong disorder, for the tight binding model, using the
locator expansion technique.
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Fig. 2. Schematic illustration of a 1D disordered system with one end (x = L) closed, and the other one (x = 0) coupled to the lead
through theδ-function barrier. The resonance problem corresponds to (a): the outgoing wave condition is imposed and complex values ofk̃
are found. The standard scattering problem is described in the set-up (b), where a particle with energyE = ~2k2/2m is impinging on the

system.

2. A tight binding model for resonances and its
effective Hamiltonian

Along with the model of a continuous random po-
tential, described in the Introduction, we also consider
the tight binding (Anderson) model (TBM) depicted in
Fig. 3. Black dotes, labeled byn = 1, 2, . . . , N , des-
ignate sites in the chain. Each site is assigned a site
energyεn chosen from some distributionq(ε). The en-
ergies on different sites are independent of each other.
Open circles, labeled byn = 0,−1,−2, . . ., repre-
sent the perfect semi-infinite lead to which the chain is
coupled. The lead simulates the free space outside the
chain. All nearest neighbor sites of the chain are cou-
pled to each other by a hopping amplitudet, and the
same is true for all nearest neighbor sites of the lead.
The only exception to this rule is the pairn = (0, 1)
which provides coupling between the chain and the
lead. The hopping amplitude for this pair is taken to
be equalt′. This allows us to tune the coupling from
t′ = 0 (closed chain) tot′ = t (perfect coupling). The
Schrödinger equation for the entire system (chain+
lead) is a set of coupled equations:

− tψn+1 − tψn−1 = Ẽψn (n < 0) , (7)

−tψ−1 − t′ψ1 = Ẽψ0 (n = 0) , (8)

−tψ2 − t′ψ0 + ε1ψ1 = Ẽψ1 (n = 1) , (9)

−tψn+1−tψn−1+εnψn = Ẽψn (1 < n ≤ N) , (10)

with the Dirichlet boundary conditionψN+1 = 0.
Eqs. (7)–(10) are to be solved subjected to the bound-
ary condition of an outgoing wave in the lead, i. e.
ψn ∝ exp(−ik̃n), for n ≤ 0, with Rek̃ > 0 (the wave
propagates from right to left). The complex wave vec-
tor k̃ is related toẼ by Ẽ = −2t cos k̃. The complex

solutionsẼα = Eα − i
2Γα of Eqs. (7)–(10) yield the

width of the resonances, as well as their position along
the energy axesE.

As has been explained in the Introduction, the con-
dition of an outgoing wave makes the problem a non-
Hermitian one. In particular, for the tight binding
model (Fig. 3) one can derive an explicit expression for
an effective non-Hermitian Hamiltonian whose eigen-
values correspond to the resonances, in addition to the
possible bound states. Using the plane wave solution
ψn ∝ exp(−ik̃n) in the lead(n < 1), it is straight-
forward to eliminate from Eqs. (7)–(10) allψn’s with
n < 1 (for details see [6]), thus reducing the problem
to a system of equations for the amplitudesψn on the
sites of the disordered chain alone (n = 1, 2, . . . , N ):

− tψn+1 − tψn−1 + ε̃nψn = Ẽψn

(n= 1, 2, . . . , N) , (11)

with the boundary conditionsψ0 = ψN+1 = 0. Here
ε̃n = εn for n = 2, 3, . . ., but not forn = 1. This end
site is assigned a complex energy

ε̃1 = ε1 − tηeik̃ , (12)

where the parameterη = (t′/t)2 describes the coupling
strength to the outside world. Thus, the effective non-
Hermitian HamiltonianH̃, defined in (11), differs from
the Hermitian Hamiltonian,H, of the corresponding
closed system (i. e., withη = 0) only by the complex
correction to the energy of the first site (the only site
coupled directly to the lead), i. e.,

H̃ = H − tηeik̃P , (13)

whereP is the projection on siten = 1. Note that the
effective HamiltonianH̃ depends, viãk, on Ẽ. There-
fore Eq. (11) does not constitute a standard eigenvalue
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Fig. 3. Resonance problem for one dimensional TBM.

problem and the eigenvalues of̃H have to be deter-
mined self-consistently. We denote the complex vari-
able Ẽ ≡ z = E − i

2Γ. It is shown in [15] that the
resonanceszα, in the complexz-plane, correspond to
the roots (withImzα < 0) of the equation

z − ε1 − S1(z) + ηteik̃(z) = 0 , (14)

whereS1(z) is the self-energy for siten = 1 andk̃(z)
is related toz by z = −2t cos k̃ (in [15] the variablez
was measured in units oft).

3. Treating the coupling term in H̃ as perturbation

When the coupling to the lead is weak (η � 1), the
resonances can be obtained as small corrections to the
eigenvalues of the closed system. For the tight binding
effective HamiltonianH̃, Eq. (13), first order perturba-
tion theory with respect to the coupling term−tηeik̃P
gives

Ẽα = eα − ηtψ2
α (1) eikα ≡ Eα −

i

2
Γα , (15)

whereeα is the energy of the unperturbed eigenstate
ψα[the former notationψn has been changed into
ψα (n), where subscriptα labels the eigenstates], re-
lated tokα by

eα = −2t cos kα ⇒ eikα = −eα
2t

+ i

√
1− e2α

4t2
. (16)

Thus, the resonance width is

Γα = 2ηψ2
α (1) sin kα = 2ηψ2

α (1)
√
t2 − 1

4
e2α . (17)

In addition to the imaginary correction,−iΓ/2, there
is also a real-valued correction, i. e.Eα = eα +
ηψ2

α (1) eα/2. This small energy shift on the real axis
is of no interest. Note that the resonances exist only for
|eα| < 2t, i. e. within the band of the lead. For energies
outside the band only bound states exist (realẼα).

An expression analogous to (17) is obtained also for
the continuous case depicted in Fig. 2, either as a con-
tinuum limit of (17) or by direct application of the per-

turbation theory. In the latter approach, matching the
internal solution to the outgoing wave in the lead, one
obtains

ψ
(
x = 0+, k̃

)
ψ′
(
x = 0+, k̃

) =
1

ik̃ − 2mu
~2

. (18)

Hereψ
(
x, k̃

)
is the solution in the interval0 < x < L

for the energyE = ~2k̃2

2m , which satisfies the closed-

end boundary conditionψ
(
x = L, k̃

)
= 0 plus the

condition of the outgoing wave forx < 0. For
u → ∞, Eq. (18) gives the spectrum and the eigen-
states of the closed system, satisfying zero boundary
conditionψα (0, kα) = 0. For weak coupling to the
lead, g ≡ 2mu

~2kα
� 1, perturbative expansion of the

above secular equation in powers ofg−1, yields

Γα = 4
~2k2

α

2m

[
~2

2mu

]2
ψ′ (0, kα)
ψk (0, kα)

, (19)

whereψk (x, k) = ∂
∂kψ (x, k). Then, employing the

identity (see, e. g., Refs. [19, 25])

|ψ|2 =
~2

2m
d

dx

(
dψ∗

dx

dψ

dE
− ψ∗

d2ψ

dxdE

)
, (20)

the resonance width is expressed as

Γα =
~2kα

2m

[
~2kα

mu

]2 |ψ′α (0, kα)|2

2k2
α

, (21)

whereψα is the normalized to unity eigenfunction of

the closed system with the eigenenergyEα = ~2k2
α

2m .
This expression is consistent with the exact effective
Hamiltonian for the continuous open systems derived
in Refs. [30, 31].

Thus, both in the continuum and in TBM, for weak
coupling to the lead there is one-to-one correspon-
dence between the resonances and the eigenstates of
the closed system, and the resonance width is related to
the tail of the corresponding eigenstate at the boundary.

Certain simplifications occur in the limit of a semi-
infinite chain. The TBM in theN →∞ limit has been
studied in [15], where the small-Γ asymptotics for the
density of resonances (DOR) has been rigorously de-
rived in the weak coupling limit (η � 1). DOR in the
E,Γ-plane, for a given realization of the disorder, is
given by

ρ(E,Γ) =
∑
α

δ(E − Eα)δ(Γ− Γα) , (22)
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wherezα = Eα − i
2Γα are solutions of (14). For any

Γ 6= 0, this expression for DOR has a well defined
N → ∞ limit and no division of the sum byN is
necessary, - in contrast to the usual case of the den-
sity of states (on the real axis) for a Hermitian prob-
lem. Note that the probability distribution of resonance
width P (Γ) (for some fixedE) does not have a well
definedN →∞ limit and it approachesδ(Γ). (Indeed,
for a semi-infinite chain an eigenstate will be localized,
with probability1, at an infinite distance from the open
end and, thus, will be ignorant about the coupling to the
external world.) Thus, the appropriate quantity to look
at for a semi-infinite chain is the DOR, rather than the
probability distribution of resonance width. This subtle
point is discussed in some detail in [14].

Although the general considerations in [15] pertain
to any coupling strengthη, specific results for the av-
erage DOR where obtained only in the weak coupling
limit, where the width of all resonances becomes pro-
portional toη. The small-Γ asymptotics for the average
DOR 〈ρ(E,Γ)〉 is [15] (wherein the result is written in
terms of some rescaled variables):

〈ρ(E,Γ)〉 =
ν (E) ξ (E)

2Γ
, (23)

whereν(E) andξ(E) are, respectively, the usual den-
sity of states (on the real energy axis) and the local-
ization length for an infinite disordered chain. Angular
brackets denote averaging over the ensemble of all ran-
dom realizations. This asymptotic (1/Γ)- behavior is
universal, in the sense that it holds for any degree of
disorder and for any−2t < E < 2t.

The 1/Γ-asymptotics can be understood with the
help of a simple intuitive argument which, in somewhat
different versions, has appeared in [9–12, 25]. The
essence of the argument is that narrow resonances stem
from states localized far away from the open boundary,
say, at distancex. Such states will have an exponen-
tially small tail at the boundary, proportional toe−x/ξ,
and the corresponding resonances will be exponentially
narrow,Γ ∼ e−2x/ξ. The1/Γ- behavior then immedi-
ately follows from the assumption that the localization
centers,x, are uniformly distributed in space.

One should keep in mind that, for a long but finite
chain ofN sites, the(1/Γ)-tail will be cut off at very
small Γ of the order ofexp (−2N/ξ). The extremely
narrow resonances withΓ � exp (−2N/ξ) originate
from states localized in the vicinity of the closed-end
siten = N and they should be treated separately (see
below).

4. Relation between distributions of resonances
and delay times

The rigorous asymptotic result of the previous sec-
tion, Eq. (23), was obtained for asemi-infinitechain
weaklycoupled to an external lead. Things get more
complicated if these restrictions are relaxed. In partic-
ular, the simple relation between the resonance width
and the behavior of the corresponding eigenstate of the
closed system [Eqs. (17) and (21)] breaks down when
the coupling between the system and the lead becomes
strong. In this section we discuss systems of finite size
L and beyond weak coupling limit.

In the Introduction we have mentioned the problem
of the delay timeτ (E,L) and the corresponding phase
shift θ (E,L), for a particle of energyE impinging on a
random chain of lengthL. We designate byPE,L (θ, τ)
the joint probability distribution ofθ andτ for perfect
coupling to the lead (η = 1, or u = 0) and relate
this distribution to the average DOR〈ρ (E,Γ)〉. Such
relation is useful because it enables us to “transfer”
the existing knowledge of the time delay in disordered
chains [20–25] into the field of resonances. To this end
we introduce the quantity

Φα =
1
2

∣∣∣∣ψ′α (0)
k

∣∣∣∣2 , (24)

where ψα (x) is a normalized eigenfunction of the
closed system satisfying the boundary conditions
ψ (0) = ψ (L) = 0. The average density of points
{Eα,Φα} in the(E,Φ)-plane is

〈ρ̃ (E,Φ)〉 =

〈∑
α

δ (E − Eα) δ (Φ− Φα)

〉
. (25)

Although 〈ρ̃ (E,Φ)〉 is defined in terms of eigenval-
ues and eigenfunctions of the closed system, it can be
related to the distributionPE,L (θ, τ) which describes
scattering properties of the corresponding open system.
The relation stems from the fact that forθ (E) = π
the scattering wave function vanishes atx = 0, so that
the eigenvaluesEα are given by zeros of the function
θ (E)− π. This observation results in the identity

δ (θ (E)− π) =
∑
α

[
dθ (E)
dE

]−1

δ (E − Eα) =

~
τ (E)

∑
α

δ (E − Eα) . (26)
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A generalization of this identity involves, in addition
to the eigenvaluesEα, also the eigenfunction-related
quantityΦα, (24), and it reads [32]∑

α

δ (E − Eα) δ (Φ− Φα) =
4

~v2
gΦ3

δ (θ (E)− π)

× δ

(
τ (E)− 2

vgΦ

)
, (27)

where vg = ~−1 dE
dk is the group velocity in the

lead. This identity, upon averaging over the distribution
PE,L (θ, τ) and using (25), yields the required relation
between the quantities characterizing the open and the
closed system:

〈ρ̃ (E,Φ)〉 =
4

~v2
gΦ3

PE,L

(
θ = π, τ =

2
vgΦ

)
.

(28)
This expression holds for arbitraryL and has a well de-
finedL → ∞ limit [cf. the discussion after Eq. (22)].
Let us note that Eq. (28) constitutes the strictly one-
dimensional counterpart of the similar relations de-
rived in Ref. [33] for the one-channel scattering from
a higher-dimensional system. The results in Ref. [33]
were obtained within the nonlinear sigma-model and,
thus, do not include the strictly 1D case discussed here.

Equations (24),(28) correspond to the continuous
model. A completely similar treatment for the TBM
yields precisely the same relation (28) [with~ ≡ 1],
but withΦα redefined as

Φα =
ψ2

α (1)
2 sin2 k

, (29)

and the group velocity in the lead given byvg = dE
dk =

2t sin k.
The relation (28) is rather general. It holds for an ar-

bitraryL, for any degree of disorder, and it is applicable
to lattice models as well as to continuous ones. How-
ever, to employ this relation for the resonance statistics
problem one more step is needed, namely, a relation
betweenΦα andΓα. For the weak coupling case such
a relation has been derived in the previous section for
both the TBM [Eq. (17)] and the continuous potential
(21). The two expressions can be unified into a single
formula

Γα = T
~vg

2
Φα , (T � 1) , (30)

whereT is the transmission coefficient through the po-
tential barrier separating the lead from the chain. The

latter is realized by aδ-function potential in the con-
tinuum or by the weak hopping linkt′ in the TBM, as
described previously, so that

T =


1

1+(mu/~2k)2
, continuous model

4η sin2 k

(1−η)2+4η sin2 k
,TBM

. (31)

Note that the linear relation (30) betweenΓα andΦα

is valid only if T is small (weak coupling). With the
help of (30) one can map the density〈ρ̃ (E,Φ)〉 in the
(E,Φ)-plane, Eq. (28), onto the average DOR in the
(E,Γ)-plane:

〈ρ (E,Γ)〉 =
~T 2

Γ3
PE,L

(
θ = π, τ = T

~
Γ

)
. (32)

This formula relates the average DOR to the delay time
statistics. For a weak Gaussian white noise disorder
andL� ξ the distributionPE,L (θ, τ) does not depend
onθ and has the following form [24]:

(PE,L (θ, τ) =
τ0

2πτ2
e−τ0/τ +

1
π2τ

e−τ0/2τ

×
∞∫
0

ds
se−L(1+s2)/2ξ

1 + s2
sinh

πs

2
W1,is/2

(
τ0
τ

)
, (33)

whereτ0 = ξ/vg andW1,is/2 is the Whittaker func-
tion (the same result is obtained for the weak correlated
disorder [32]). Expression (33), via (32), immediately
yields the corresponding DOR.

In the limitL/ξ →∞, τ fixed, Eq. (33) reduces to

PE,∞ (θ, τ) =
1
2π

τ0
τ2
e−τ0/τ , (34)

so that

〈ρ (E,Γ)〉 =
ν0ξ

2Γ
e−Γ/Γ0 , (35)

whereν0 = (π~vg)
−1 is the density of states in the lead

per unit length and

Γ0 = T
vg~
ξ
. (36)

Equation (35) coincides with the former result (23) for
Γ/Γ0 � 1 and, in addition, gives an exponential sup-
pression of the resonance density forΓ/Γ0 > 1 (the
exact density of statesν in (23) reduces toν0 in the
weak disorder limit).

For finite size chain (L/ξ ≈ 5) and weak cou-
pling (T ≈ .0004) the distributionP (log Γ) =
(Γ/νL) 〈ρ (E,Γ)〉, calculated from (32),(33) is pre-
sented in Fig. 4 (solid line). For comparison, a nu-
merical Monte-Carlo simulation was performed for the
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Fig. 4. Weak coupling to the lead. The numerical simulation (dots)
was done for the TBM (7)-(10) witht = 1, E = −1.9, η = 0.001
and system lengthN = 401 sites. The uncorrelated disorder with
a box distribution was implemented, which produced localization
lengthξ = 77.6 sites. The analytical curve was calculated accord-

ing to Eqs. (32) and (33).

TBM at the energy close to the unperturbed band edge
(dots in Fig. 4). The agreement is quite good. Let
us discuss the example in Fig. 4 in more detail. First,
the exponential factorexp [−Γ/Γ0], which suppresses
the large-Γ probability, is present in both the semi-
infinite, Eq. (35), and finite-L, Eq. (33), case. For
Γ’s smaller than the characteristic valueΓ0, one can
distinguish two regimes. In the intermediate regime,
e−2L/ξ � Γ/Γ0 < 1, the behaviorP (log Γ) ≈ const
[i. e. 〈ρ (E,Γ)〉 ∼ 1/Γ, Eq. (35)] is valid, since the op-
posite closed boundary of the system has not yet come
into play. On the contrary, the regime of very narrow
resonances,Γ � Γ0e

−2L/ξ, is strongly affected by the
boundaryx = L. These resonances are associated with
the eigenstates localized close to this boundary and are
described by the nearly log-normal tail of the distribu-
tion.

Although the regime of the narrow resonances,Γ �
Γ0e

−2L/ξ is contained in the analytical expressions
(32),(33), it is worthwhile to give an independent, more
direct derivation. Let us recall that the localization
length ξ is defined for aninfinite system and, in this
limit, it is a self-averaging quantity. In a long but finite
size chain (L� ξ) the localizaton length, or more pre-
cisely its inverse (the Lyapunov exponentλ) is a fluctu-
ating quantity with nearly a Gaussian distribution (see
e. g. [25] and references therein)

Pλ (λ;L) =

√
Lξ

2π
e−Lξ(λ−ξ−1)2

/2 . (37)

The tail of the extremely smallΓ’s is related to the
eigenstates localized near the closed end of the sys-
tem, x = L, for which Φα ≈ Φ0e

−2Lλ, where the

pre-factorΦ0 ∼ ξ−1 is of minor importance. Then, ne-
glecting the pre-exponential factor, the probability for
Φα � Φ0e

−2L/ξ decays like

P (Φ) ∝ exp

[
−(ln (Φ/Φ0) + 2L/ξ)2

8L/ξ

]
. (38)

Using (30), one obtains thelog-normal cutoff of the
DOR

〈ρ (E,Γ)〉 ∝ exp

[
−(ln (Γ/Γ0) + 2L/ξ)2

8L/ξ

]
,

Γ
Γ0
� e−2L/ξ] . (39)

Similar cutoffs for the delay time and the average DOR
have been derived in Refs. [25] and [11] respectively.

So far the discussion was limited to the weak cou-
pling case, when a simple relation betweenΦα and
Γα [Eq. (30)] could be rigorously derived. When the
coupling parameterT increases and approaches unity,
the relation (30) ceases to be quantitatively accurate
and turns into an order of magnitude estimateΓα ∼
~vgΦα. This relation is physically reasonable for nar-
row, isolated resonances. Such resonances stem from
the eigenstates (of the closed system), which are local-
ized far away from the open boundaryx = 0, and their
width is much smaller than the mean level spacing. One
can then trace a particular resonance, i. e. its widthΓ as
a function of the increasing coupling strengthT , with-
out worrying about other resonances. It is therefore
intuitively clear that the small-T result, Eq. (30), can
be qualitatively extrapolated up to the perfect coupling
limit T = 1.

One can support the above argument by a more elab-
orated analysis. Consider the formal solution of the
one-channel scattering problem at energyE close to
a narrow isolatedresonancezr = Er − i

2Γ. For small
E−Er, using general analytical properties of the scat-
tering amplitude in the complex energy plane, the solu-
tion in the lead can be expanded as (see, e. g., Ref. [34])

ψ (x,E) = a

(
E − Er +

i

2
Γ
)
eikx

+ a∗
(
E − Er −

i

2
Γ
)
e−ikx , x < 0 , (40)

where, by identity (20), the complex constanta satisfies
(up to small corrections)

|a|2 =
1

~vgΓ

∫ L

0
|ψ (x)|2 dx . (41)
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EnergyEα at whichψ (x = 0, Eα) = 0 is the eigenen-
ergy of the closed system, and by (40)

Eα − Er =
Ima
2Rea

Γ . (42)

For the corresponding eigenfunction of the closed sys-
tem, using (40),(41) in the definition (24), one obtains

Φα ≈
Γ

2~vg

[(
Ima
Rea

)2

+ 1

]
≥ Γ

2~vg
. (43)

Both (42) and (43) are meaningful as long as(Eα−
(Er) . Γ, i. e.,

(
Ima
Rea

)2
. 1, since otherwise the linear

expansion (40) is not valid and higher orders should be
included. With this reservation, Eq. (43) relates narrow
isolated resonances to the well localized eigenstates of
the closed system. However, contrary to (30), relation
(43) is not deterministic, since it depends on the phase
of a (which is random for weak disorder). Replac-

ing the unknown coefficient
[(

Ima
Rea

)2
+ 1

]
by a phe-

nomenological constantβ−1 leads to

Γα = 2β~vgΦα . (44)

With the relation (44) at hand, all the steps done for
the weak coupling can be repeated, and Eqs. (32), (33)
and (35) apply with the transmission coefficientT re-
placed by4β and the characteristic valueΓ0 [Eq. (36)]
redefined as

Γ0 = 4β
vg~
ξ
. (45)

In the present case, however, the DOR obtained from
Eqs. (32), (33) is valid only forΓ � Γ0, since other-
wise the isolated resonance approximation implied in
the above argument is not applicable.

The above approximation was compared to the nu-
merical simulation for the perfect coupling to the lead,
Fig. 5. In both cases shown in Fig. 5,L/ξ ≈ 5 and
L/ξ ≈ 8, the same fitting valueβ ≈ 0.68 was used.
As expected, a good agreement between the numer-
ical simulation (dots) and the analytical result (solid
line) is obtained only forΓ < Γ0 (the deviation for
the extremely smallΓ’s is due to the numerical under-
sampling).

5. Strong disorder

In this section we consider the case of strong dis-
order, when the hopping amplitudet is much smaller
than the characteristic widthW of the site energy dis-
tribution q(ε). For a semi-infinite chain the problem

was considered in [14], making use of a recursion re-
lation for the self-energy. Here we employ the locator
expansion, i. e. perturbation theory int, which is the
appropriate tool for strong disorder [35, 36]. Our treat-
ment is not restricted to a semi-infinite chain and, in
particular, we address the question of the cutoff of the
(1/Γ)-tail in a chain of large but finiteN . Furthermore,
no restriction on the coupling strengthη is imposed in
our treatment.

For t = 0 the Hamiltonian (13) corresponds to un-
coupled sites and its eigenvalues coincide with the site
energiesεj (j = 1, 2, . . . , N ). When t is switched
on, some of these “unperturbed” eigenvalues acquire
a complex correction, due to the last term in (13), and
thus describe resonances. Our purpose is to find the
imaginary part of this correction, in the leading order
in t. (The small correction to the real part,εj , intro-
duces an unessential shift on the real axis of the com-
plex energy plane and will be ignored). We designate
the complex energỹE by z = E − i

2Γ and look for the
solutions,zj , of Eq. (14), which we rewrite as

z − ε̃1 − S1(z) = 0 , (46)

with

ε̃1 = ε1 − ηteik̃(z) . (47)

In order to see the mechanism by which the unper-
turbed solutions,z(0)

j = εj , acquire an imaginary cor-
rection, we employ the locator expansion for the self-
energyS1(z). It can be represented diagrammatically
as a sum over all paths which start at site1 and return to
this site only once [35, 36]. An example of such a path
is drawn in Fig. 6. This path goes from site1 to 2, pro-
ceeds from2 to 3 and returns back to1 . This path con-
tributes toS1 a termtg2tg3tg2t, wheregn = (z−εn)−1

is the Green’s function (the locator) for an isolated site
n. Thus, the general rule is that to a line connecting a
pair of sites one assigns the numbert, while to a site
n the corresponding locator is assigned. By inspecting
Eq. (46) it becomes clear that an imaginary correction
to the unperturbed solutionz(0)

j is produced by paths,
in the S1 - expansion, which connect site1 to site j.
Indeed, sitej has no direct knowledge about the con-
nection to the outside world: this information must be
transmitted to it from site1, via all intermediate sites.
To leading order, it suffices to keep the shortest path.
For site3 this is the path in Fig. 6. Generalization to
an arbitrary sitej is obvious and results in a path of
(j−1) loops which brings in a factort2(j−1). This path
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Fig. 5. Resonance width distribution for the perfect couplingT = 1. The analytical curve is calculcated according to Eqs. (32), (33) with
Γ0 given by (45). The numerical simulation was done as explained in Fig. 4, with the TBM parameterst = 1, E = −1.9, η = 1 and the
uncorrelated disorder resulting in the localization lengthξ = 77.6 sites. The system length is (a)N = 401 sites and (b)N = 601 sites. The

scatter of the numerical data for the extremely small values ofΓ/Γ0 occurs because of the insufficient numerical statistics.

produces the imaginary part ofzj , which is calculated
from Eq. (46):

Imzj = t2(j−1)
j−1∏
k=2

1
(εj − εk)2

Im
1

εj − ε̃1
. (48)

Since only the leading term (in powers oft) is kept,
we have replaced in all the locatorsz by z(0)

j = εj .

For the same reason,k̃(z) in the expression (47) can be
replaced byk(E). From the relationE = −2t cos k it
follows that

ε̃1 = ε1 + tη

E
2t
− i

√
1− E2

4t2

 . (49)

Note that the imaginary part in (49) exists only for
|E| < 2t, i. e. only bound states in this energy interval
(in a closed chain) turn into resonances upon coupling
the chain to the lead (the same energy interval has al-
ready been identified in Sec. 3). Eigenstates beyond
this energy interval remain strictly bound states. Sub-
stituting (49) into (48) and, again, keeping only leading
terms int, one finally obtains:

− Imzj ≡
Γj

2
= t2(j−1)η

√
t2−E

2

4

j−1∏
k=1

1
(εj−εk)2

.

(50)
The DOR in the(E,Γ)-plane is given by

ρ(E,Γ) =
N∑

j=2

δ (E − εj) δ (Γ− Γj) . (51)

Since the small shift of the eigenvalues along the real
axis is of no interest, we have setEj = εj in Eq. (51).

1 2 3 4 N
ε ε ε ε εɶ ⋯

Fig. 6. Calculation of the self-energy in the locator expansion.

For a fixedj, resonance widthΓj depends on the en-
ergies of all previous sites,k = 1, 2, . . . , j − 1, but
not on εj . Therefore, the twoδ-functions in (51) are
statistically independent, so that upon averaging

〈ρ(E,Γ)〉 = q (E)

〈
N∑

j=2

δ (Γ− Γj)

〉
, (52)

where, in the strong disorder limit, the site energy dis-
tribution functionq (E) coincides with the density of
states per site in the closed system. To avoid clutter-
ing the notation we setE = 0 (middle of the band) and
η = 1 (perfect coupling). (Extension to arbitraryE and
η requires some obvious minor modifications.)

For this case

〈ρ(E = 0,Γ)〉 = q (0)
N∑

j=2

〈
δ

Γ− 2t
j−1∏
k=1

t2

ε2k

〉 .

(53)
It is convenient to define a random variable

Aj = ln
j−1∏
k=1

t2

ε2k
= −2

j−1∑
k=1

ln
|εk|
t
. (54)
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This is a sum of independent random variables with the
average value

〈
ln |ε|

t

〉
=
∫
dεq (ε) ln |ε|

t ≡ α and vari-

ance
〈
ln2 |ε|

t

〉
− α2 ≡ β. For instance, for the An-

derson model, whenε is uniformly distributed within a
window− tW

2 < ε < tW
2 , one hasα =

(
ln W

2 − 1
)

andβ = 1. Note that, in the strong disorder limit,α
coincides with the inverse localization length (the Lya-
punov exponent) [37].

SinceN is a very large number, most of terms in
(53) correspond to largej, so thatAj has a Gaussian
distribution, Pj (A), with the average value〈Aj〉 =
−2 (j − 1)α and variance

〈
∆A2

j

〉
= 4βj, i. e.

Pj (A) =
1√

8πβj
exp

[
−(A+ 2jα)2

8jβ

]
, (55)

where(j − 1) was replaced byj. Equation (53) then
yields

〈ρ(E = 0,Γ)〉 =

q (0)
N∑

j=2

∫
δ
(
Γ− 2teA

)
Pj (A) dA =

q (0)
Γ

N∑
j=2

1√
8πβj

exp

[
−(ln (Γ/2t) + 2j/ξ)2

8jβ

]
, (56)

whereξ = 1/α is the localization length in the middle
of the band (E = 0). The lower limit of summation,
j = 2, should not be taken literally and it is of no im-
portance, since for small resonance widthΓ the sum is
dominated by large-j terms.

For narrow (but not too narrow) resonances, when
1 � − ln (Γ/2t) � N/ξ, the sum is dominated by
terms withj nearj0 ≈ − (ξ/2) ln (Γ/2t) � 1. Then,
the sum in (56) can be approximated by an integral and

〈ρ(E = 0,Γ)〉 ≈ q (0) ξ (0)
2Γ

, (57)

in agreement with the universal result in Eq. (23). This
1/Γ behavior is cut off sharply for very narrow res-
onances, such that− ln (Γ/2t) � N/ξ. These res-
onances stem from states which are localized in the
vicinity of the sample boundary atj = N . The sum
(56) is then dominated by the last term, i. e.

〈ρ(E = 0,Γ)〉 ≈

q (0)
Γ

1√
8πβN

exp

[
−(ln (Γ/2t) + 2N/ξ)2

8Nβ

]
, (58)

i. e. for− ln (Γ/2t) > 2N/ξ the DOR rapidly (faster
than any power ofΓ) approaches zero with decreasing
Γ. This kind oflog-normal tails are well known in the
theory of disordered electronic systems [27].

It is instructive to compare the strong disorder result,
Eq. (58), with the expression (39) which was derived
in the opposite case of weak disorder. The main dif-
ference between the two expressions, besides the fact
that in (39) the pre-exponential factor has not been writ-
ten down, is that the exponent in (39) contains the sin-
gle parameterL/ξ, whereas (58) depends in addition
on the parameterβ/α [indeed,8Nβ can be written as
8 (N/ξ) (β/α)]. The parameterβ/α is a non-universal
number which depends, for instance, on the chosen dis-
tribution for the site energies,q (ε). The same situation
is well known to occur in the study of the transmission
coefficientT through a disordered chain of lengthL.
The distribution oflnT is Gaussian. If the disorder
is weak, then there is a universal relation between the
mean and the variance oflnT (single parameter scal-
ing). On the other hand, for strong disorder the two be-
come independent of one another (two parameter scal-
ing) [38].

6. Conclusion

Statistics of resonances in disordered one-dimen-
sional chains is a formidable problem which does not
easily lend itself to a rigorous analysis. In this paper
we have reviewed some of the existing results and have
extended them in various directions. We consider both
a continuous random potential and the tight binding lat-
tice model, and we tackle a variety of different cases,
differing by sizeL of the chain, by strength of the disor-
der or by coupling strength between the system and the
external world. There is no efficient universal method
for treating the problem in its full generality. Differ-
ent techniques turn out to be appropriate in different
regimes. In particular, we presented in some detail
the method of locator expansion, most suitable for the
strongly disordered lattice model. On the other hand,
for weak disorder we were able to use some known rig-
orous results for the Wigner delay time problem to ob-
tain information on resonance statistics.

BS is indebted to H. Kunz for previous collabora-
tion on the subject. We acknowledge useful discussions
with A. Comtet, J. Feinberg and C. Texier.
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