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The paper is devoted to the problem of resonances in one-dimensional disordered systems. Some of the previous results are
reviewed and a number of new ones is presented. These results pertain to different models (continuous as well as lattice) and
various regimes of disorder and coupling strength. In particular, a close connection between resonances and the Wigner delay
time is pointed out and used to obtain information on the resonance statistics.
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1. Introduction The solution of Eq[(1) is

Asink(z — L), 0<az<L
2)

The problem of resonances, also referred to as _
metastable or quasi-stationary staftes [1], goes back to V(@)= {
the early days of quantum mechanic$é [2]. A simple
example of resonances| [3] is provided by a potentialMatching the function and its derivative at= 0 re-
depicted in Fig[[L. There is awall; = oo, forz > L sultsin
and a potential/ (z) = ué (z). Foru — oo, a part2i— (1 B z’yl?:L) tan kL = —kL 3)
cle of massn has bound states at energ%ns (%
[n = 1,2,...]. For any finiteu the spectrum be- Wherey = (aL)™' < 1. Fory = 0 one recovers the
comes continuous. However, the strictly stationary bound states},,L = 7n. For smally the solutions of
states which existed at = oo do leave a trace in the (3) are obtained by iteration:
continuum and turn into resonances. They correspond - 2\ . 2 9 3
to poles of the scattering matrik (E) on the unphys- Fnl =7n (1 -ty ) —i(m) " +0 (7 ) - @)
ical sheet of the complex energy plafne|[1, 4]. An al- One can immediately write down the “eigenenergies”,
ternative, more direct approach to the problem of res-E,, = r2k2/2m = E, — %Fn- The real part,E,,
onances amounts to solving the stationary Schrodingegives the position of the resonance on the energy axis,
equation with the boundary condition of an outgoing wheread",, determines the resonance width. komot
wave only [1]2]. Thus for the potential in Figl 1 one too large, namely; < y~!, the resonances are sharp,
has to solve the equation i. e., their width is much smaller than their spacing on
the energy axis. This simple example demonstrates
(a _ 2mU) (1) how true bound states in a closed system-{ oo)
turn into resonances, when the system is opened to the
outside world (finiteu, i. €. non-zero coupling constant
with the boundary condition’ (z = L) = 0 and the ),
outgoing wave conditiogy (z) = e~ for z < 0. The Open quantum systems can be described in terms of
latter condition makes the problem non-hermitian: the an effective, non-Hermitian Hamiltonian whose com-
eigenvalues fok, and for the corresponding “energies” plex eigenvalues give the position of the resonances in
E = h2l?:2/2m, will be generally complex. the complex energy plane (in addition, there might be

etk xz <0
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ué‘(x) V=w For a disordered systent)(E) and 7 (F) are ran-
dom quantities, characterized by the joint distribution
Pg 1, (0, 7) over the ensemble of realizations. There
exists a large body of work on the statistics of delay

—ikx

D — times for the scattering on disordered and chaotic sys-
tems [20-26]. In the presence of a sharp, well isolated
% - X resonances,, = E, — 5I',, delay time at the energy
£ =0 x=L close toF, is given approximately by [19]

Fig. 1. Anillustration to the problem of resonances in a potential

'y
comprised of a-function barrier and a hard wall. T(E) ~

(B, —E)?*+12/4’ ©

real eigenvalues which correspond to the bound states)yhich demonstrates the intimate relation between the
Such non-Hermitian Hamiltonians have been used for.oconance width and the delay time. Below (section

a_Iong time in scattering theory, including scatt_ering in IV) we obtain a relation between the delay time and

disordered and chaotic systems|[5-8]. There is a CoNy,e regonance width distributions which is exact in the

siderable amount of work on resonances in dlsordereqimit of weak coupling to the lead, and which enables

[ 9- -di i - . . . !

potentials [‘.3 1.7]' Aq exar_npl(? of one dlmen3|9na| faN" s to obtain information about resonances based on the

glom potential is deplcte'd n '.:' 2 The potentialz) existing knowledge of the delay time statistics.

![?1 Z?nrto :\(/)rla(; <0 andL 'tV'S |nf|in|te rfor:zi; ri fLﬁ tlinn Statistics of resonances and of delay times (or the

€ Intevalt < » < L, (z)isara om function | closely related “dwell times”) are of great interest in

of x, with zero mean and some well defined statisti- . : . ; . .

the physics of disordered media. For instance, in a dis-

cal properties. There is also a barrief(x) atz = 0 .
. . ordered conductor the current carriers can be trapped
which allows to tune the coupling strength to the ex- ) . o
for a long time, which lead to long tails in the decay

ternal world. For closed system) all states . . ;
u = oo | y ) of an electric current [27]. Although our discussion

are localized within the system. Two such localized . limited to “matt » obeving the Schradi
wave function are schematically shown in the figure: IS imited to "matier waves:, obeying the schrodinger

Yg (z) is a state of positive energy, localized far away equation, similar phenomena occur for electromagnetic
from the boundary: — 0, i.e. its localization center WaVeS as well. When a wave is injected into a random

2o is much larger than the localization length The dielectric mec_jium, it can spend there.a very long time,
functiony () corresponds to a negative energy state, P670reé escaping from the sample. This phenomenon of
which is localized essentially in a single deep potentialONg delay times has been extensively studied in exper-
well. Whenu is made finite the localized states (z) iments [28]. Resonances and long escape times might
will turn into a narrow resonance, with a widkhpro- ~ Pe also relevant to the phenomenon of “random lasing”,
portional toexp (—2x/¢), while the statebz (z) will when an active random dielectric medium without any
remain a true bound state. A theory of resonances irPrefabricated cavities, exhibits lasing above some exci-
disordered chains should consider the statistical ensenf&tion threshold [29].
ble of all possible realizations &f () and produce the The organization of the paper is as follows. In sec-
probability distributionP (T). tion[2 we introduce a tight binding model and, follow-
A quantity closely related to the resonance width is ing [14,/13] derive the effective non-Hermitian Hamil-
the Wigner delay time [18, 19] which is a measure of tonian for the resonance problem. Sectign 3 is de-
the time spent by the particle in the scattering regionvoted to the case when coupling between the disor-
and is defined as the energy derivative of the scatterdered chain and the external lead is weak. Both the
ing phase shift. For the single-channel scattering, agight binding model and a random continuous poten-
presented in the setup (b) in Ffg. 2, the solution of thetial are treated. In sectidén 4 a relation between the dis-
scattering problem amounts to finding the ph&$&) tributions of resonances and delay times is obtained,
of the reflected wave;~#*+(E)  due to the incident and used for studying properties of the resonances un-
wavee . The corresponding Wigner delay time is de- der various conditions (weak and strong coupling, finite
fined as and infinite chain). Sectidn 5 specializes to the case of
do (E) strong disorder, for the tight binding model, using the
T(E) = th . (5) locator expansion technique.
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Fig. 2. Schematic illustration of a 1D disordered system with one eng (L) closed, and the other one (= 0) coupled to the lead

through thej-function barrier. The resonance problem corresponds to (a): the outgoing wave condition is imposed and complexkvalues of

are found. The standard scattering problem is described in the set-up (b), where a particle witierefdy:> /2m is impinging on the
system.

solutionsE, = E, — 4T, of Egs. (7)) vield the
width of the resonances, as well as their position along
the energy axeg.

Along with the model of a continuous random po-  As has been explained in the Introduction, the con-
tential, described in the Introduction, we also considerdition of an outgoing wave makes the problem a non-
the tight binding (Anderson) model (TBM) depicted in Hermitian one. In particular, for the tight binding
Fig.[3. Black dotes, labeled by = 1,2,..., N, des-  model (Fig[3B) one can derive an explicit expression for
ignate sites in the chain. Each site is assigned a sitgyn effective non-Hermitian Hamiltonian whose eigen-
energye, chosen from some distributiarie). The en-  yajues correspond to the resonances, in addition to the
ergies on different sites are independent of each Othefpossible bound states. Using the plane wave solution
Open circles, labeled by = 0,-1,-2,..., repre-  y, « exp(—ikn) in the lead(n < 1), it is straight-
sent the perfect semi-infinite lead to which the chain istgrward to eliminate from Eqs[{7)=(L0) all,’s with
coupled. The lead simulates the free space outside thg - | (for details se€[[6]), thus reducing the problem
chain. All nearest neighbor sites of the chain are cou-j g system of equations for the amplitudison the

pled to each other by a hopping amplitudeand the  gjtes of the disordered chain alone< 1,2, ..., N):
same is true for all nearest neighbor sites of the lead. .
- t¢n+1 - t@[)n,1 + gn'@zjn = Ed)n

The only exception to this rule is the pair= (0,1)

which provides coupling between the chain and the (n=1,2,...,N), (11)
lead. The hopping amplitude for this pair is taken to

be equal’’. This allows us to tune the coupling from Wwith the boundary conditiong, = 1 = 0. Here

2. Atight binding model for resonances and its
effective Hamiltonian

t' = 0 (closed chain) t@’ = ¢ (perfect coupling). The
Schrédinger equation for the entire system (chain
lead) is a set of coupled equations:

— tns1 — thp1 =E¢y  (n<0), (7)
—typ_1 — 1 =Eyy (n=0), (8)
—tihg —t'Po + e =Ey  (n=1), %)

—t¢n+1 —tn 1 +€n1/}n = Ewn

with the Dirichlet boundary condition)y,; = 0.

(1<n<N), (10)

Egs. [T)-(ID) are to be solved subjected to the bound-

ary condition of an outgoing wave in the lead, i.
¥y, < exp(—ikn), for n < 0, with Rek > 0 (the wave

€n = €, forn =2,3,..., but not forn = 1. This end
site is assigned a complex energy
€] =€ — t'ne“; 5 (12)

where the parameter= (t’/t)2 describes the coupling
strength to the outside~world. Thus, the effective non-
Hermitian Hamiltoniar#, defined in), differs from
the Hermitian HamiltonianH, of the corresponding
closed system (i. e., with = 0) only by the complex
correction to the energy of the first site (the only site
coupled directly to the lead), i. e.,
H=H—tnet*p, (13)
e.

whereP is the projection on sita = 1. Note that the

propagates from right to left). The complex wave vec- effective Hamiltonianl depends, via, on E. There-

tor k is related toE by E = —2t cos k. The complex

fore Eq. [11) does not constitute a standard eigenvalue
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e—"k" turbation theory. In the latter approach, matching the
< internal solution to the outgoing wave in the lead, one
; : obtains
#2000 @008 - 00 o b (2= 0%,F) .
' (18)

n= -1 012 Bl W(e=0nk) k-

Fig. 3. Resonance problem for one dimensional TBM. Hered (m’ ]%> is the solution in the interval < z < L

problem and the eigenvalues &f have to be deter- for the energyE = ﬁgf, which satisfies the closed-
mined self-consistently. We denote the complex vari-

ableE = » = E — iT. Itis shown in [15] that the

resonances,, in the complexz-plane, correspond to

the roots (withimz, < 0) of the equation

end boundary conditior) (:c =1L, l?:) = 0 plus the
condition of the outgoing wave fox < 0. For

u — oo, Eq. [I8) gives the spectrum and the eigen-
states of the closed system, satisfying zero boundary

z—e —S1(2) + nte“%(z) =0, (14)  conditiony, (0,k,) = 0. For weak coupling to the
lead,g = gg;;z > 1, perturbative expansion of the

whereS; (z) is the self-energy for site = 1 andk(z)
is related toz by z = —2tcos k (in [15] the variablez
was measured in units of. 252 l 72 r W' (0, ka)

Ty )
wk (07 ka)

above secular equation in powersgof!, yields

(19)

2m | 2mu

3. Treating the coupling term in H as perturbation o _
wherey, (2, k) = 1 (x,k). Then, employing the

When the coupling to the lead is weak & 1), the  identity (see, e.g., Refs. [19,]25])

resonances can be obtained as small corrections to the B2 4 (ot d e
eigenvalues of the closed system. For the tight binding |¢|2 = = ( Yrdy P ¥ ) 7 (20)
effective HamiltonianH, Eq. ), first order perturba- 2mdy \ drv dE drdE

tion theory with respect to the coupling tertne’ P the resonance width is expressed as
gives

Bo = eq —nty? (1) et = B, — 2T,  (15) T (21)

2

wheree,, is the energy of the unperturbed eigenstate
o[the former notationy,, has been changed into
1a (n), Where subscriptv labels the eigenstates], re-
lated tok, by

Rk [B2ha )7 (0, ko)
- 2m | mu 2k2 ’

where,, is the normalized to unity eigenfunction of
: F 21.2
the closed system with the eigenenedgy = "*a

This expression is consistent with the exact éwf?ective
Hamiltonian for the continuous open systems derived
L o . 2 in Refs. [30] 31].
€q = —2tcosky = " = Y +iy 1 - ﬁ (16) Thus, both in the continuum and in TBM, for weak
coupling to the lead there is one-to-one correspon-
dence between the resonances and the eigenstates of
o2 , o2 5 1, the closed system, and the resonance width is related to
Lo = 2mpy (1) sinkq = 2nyg, (1) 4/t — G (A7) the tail of the corresponding eigenstate at the boundary.
In addition to the imaginary correction;il'/2, there _Cgrtain simplifications occur in the _Iirr_1it of a semi-
is also a real-valued correction, i.eE, = e, + |nf|n|_te c_ham._The TBM in théV — oo I|m|t_has been
studied in [15], where the smalll-asymptotics for the

np2 (1) e /2. This small energy shift on the real axis _ _
is of no interest. Note that the resonances exist only ford_enS'f[y of resonances _(DO_R)_ has been ngorously de-
rived in the weak coupling limit/f < 1). DOR in the

lea| < 2t, i.e. within the band of the lead. For energies ) T , _
outside the band only bound states exist (#g). E,T'-plane, for a given realization of the disorder, is

An expression analogous {o (17) is obtained also forgiven by

the cont'inL'Jous case depigted in F@ 2,. either as a con- p(E,T) = Z §(E — E)8(T —T,), (22)
tinuum limit of (1) or by direct application of the per- =

Thus, the resonance width is
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wherez, = E, — %Fa are solutions 04). For any 4. Relation between distributions of resonances
' # 0, this expression for DOR has a well defined and delay times
N — oo limit and no division of the sum by is
necessary, - in contrast to the usual case of the den- The rigorous asymptotic result of the previous sec-
sity of states (on the real axis) for a Hermitian prob- tion, Eq. [23), was obtained for semi-infinitechain
lem. Note that the probability distribution of resonance weaklycoupled to an external lead. Things get more
width P(T") (for some fixedE) does not have a well complicated if these restrictions are relaxed. In partic-
definedNV — oo limit and it approache§(T"). (Indeed, ular, the simple relation between the resonance width
for a semi-infinite chain an eigenstate will be localized, and the behavior of the corresponding eigenstate of the
with probability 1, at an infinite distance from the open closed system [Eqd. ([L7) ar{d [21)] breaks down when
end and, thus, will be ignorant about the coupling to thethe coupling between the system and the lead becomes
external world.) Thus, the appropriate quantity to look strong. In this section we discuss systems of finite size
at for a semi-infinite chain is the DOR, rather than the . and beyond weak coupling limit.
probability distribution of resonance width. This subtle  In the Introduction we have mentioned the problem
point is discussed in some detail in [14]. of the delay timer (E, L) and the corresponding phase
Although the general considerations in[15] pertain shiftd (E, L), for a particle of energy impinging on a
to any coupling strength, specific results for the av-  random chain of lengtii. We designate by’s . (6, )
erage DOR where obtained only in the weak couplingthe joint probability distribution ofl and for perfect
limit, where the width of all resonances becomes pro-couplingto the lead ¢ = 1, or u = 0) and relate
portional ton. The smallt’ asymptotics for the average this distribution to the average DOR (E,T)). Such
DOR (p(E,T')) is [15] (wherein the result is written in  relation is useful because it enables us to “transfer”
terms of some rescaled variables): the existing knowledge of the time delay in disordered
chains|[20-25] into the field of resonances. To this end

(p(E,T)) = U(Eglf(E) , (23)  we introduce the quantity
wherev(E) and¢(E) are, respectively, the usual den- o - L|%(0) ? (24)
sity of states (on the real energy axis) and the local- 2]k ’

ization length for an infinite disordered chain. Angular _ ) _ _
brackets denote averaging over the ensemble of all ranWhere v (x) is a normalized eigenfunction of the
dom realizations. This asymptoti¢ (T)- behavior is ~ losed system satisfying the boundary conditions
universal, in the sense that it holds for any degree of (0) = ¥ (L) = 0. The average density of points
disorder and for any-2¢ < E < 2t. {Ea, ®a} inthe(E, ®)-plane is
The 1/I"-asymptotics can be understood with the
hglp of asimp_le intuitive argument yvhich, in somewhat (5 (E,®)) = <Z §(E—Eo)8(® — q)a)> . (25)
different versions, has appeared [n[[9-12, 25]. The >
essence of the argument is that narrow resonances stem ) _ ' _ _
from states localized far away from the open boundary,Although (5 (E, ®)) is defined in terms of eigenval-
say, at distance. Such states will have an exponen- Ues and eigenfunctions of the closed system, it can be
tially small tail at the boundary, proportional t0%/¢, related_ to the dist.ributiorPE,L 0,7) whi_ch describes
and the corresponding resonances will be exponentiallyscattering properties of the corresponding open system.
narrow,I’ ~ e—2%/¢, The1/T- behavior then immedi- The relation stems from the fact that f(E) = =
ately follows from the assumption that the localization the scattering wave function vanishesrat 0, so that
centersg, are uniformly distributed in space. the eigenvalued’, are given by zeros of the function
One should keep in mind that, for a long but finite ¢ (E') — m. This observation results in the identity
chain of N sites, the(1/T")-tail will be cut off at very .
smallT" of the order ofexp (~2NV/¢). The extremely 50(E)—m)=Y" {d@ (E)} 5(E - By) =
narrow resonances with < exp (—2N/¢) originate dE
from states localized in the vicinity of the closed-end
siten = N and they should be treated separately (see h Z(S(E “E.) .
below). 7 (F)

(26)
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A generalization of this identity involves, in addition latter is realized by &-function potential in the con-
to the eigenvalues,, also the eigenfunction-related tinuum or by the weak hopping linK in the TBM, as

quantity®,,, (24), and it reads [32] described previously, so that
4 — 1 continuous model
_ — - _ 14+ (mu/h2k)
DO (E = Ea)d (= ®a) = g8 (0(8) — ) - e
o 4nsin2k TBM
5 (1—n)*+4nsin? k ’
X 5(7 (E) — q)) , (27)  Note that the linear relatiof (BO) betweEn and @,
Yg is valid only if T is small (weak coupling). With the
where v, = h—l% is the group velocity in the help of ) one canmap the ﬂens{ty(E,@)) n the h
lead. This identity, upon averaging over the distribution (g’l?)'pl ane', Eq.[(2B), onto the average DOR in the
Pg.1, (0,7) and using([(2p), yields the required relation ™ )-plane:
between the quantities characterizing the open and the B RT? B _h
closed system: {p(E,1)) = T3 L (9 =mT= Tr) - (32)
9 This formula relates the average DOR to the delay time
S(E.3)) — p o — _ 2\ . . ) . :
(p(E,®)) 77%@3(1)3 B.L ( T 0,0 statistics. For a weak Gaussian white noise disorder

andL >> ¢ the distributionPr, 1, (¢, 7) does not depend

(28) ond and has the following form [24]:

This expression holds for arbitrafyand has a well de-

fined L — oo limit [cf. the discussion after Eq. (22)]. (Pp1 (0,7) = 0 _-m/m 4 = .

Let us note that Eq[(28) constitutes the strictly one- Y 2mr? AT

dimensional counterpart of the similar relations de- . D(147) 26

rived in Ref. [33] for the one-channel scattering from % /ds se sinh ngsp (To> . (33)
0

—70/27

a higher-dimensional system. The results in Ref| [33] 1+ s? T

were obtained within the nonlinear sigma-model and, _ _

thus, do not include the strictly 1D case discussed hereWherery = /v, and Wy, is the Whittaker func-
Equations [(24);(28) correspond to the continuoustion (the same result is obtained for the weak correlated

model. A completely similar treatment for the TBM disorder[[32]). Expressiof (B3), via (32), immediately

ields precisely the same relatidn [28) [with= 1],  Yields the corresponding DOR.
)t;ut Witﬁq)a red)éﬁned as )| ) In the limit L/ — oo, 7 fixed, Eq. [[38) reduces to

1 T0 _
2 - - '0 T0/T
Yo edh 29) Proo 0 = g ™o B9
St so that
and the group velocity in the lead given by = ¢£ — Z
2t sin k. V=& (p(E,T)) = fe T/ ) (35)

The relation[(ZB) is rather general. It holds for an ar-
bitrary L, for any degree of disorder, and it is applicable
to lattice models as well as to continuous ones. How-
ever, to employ this relation for the resonance statistics Ty = T”Lh ) (36)
problem one more step is needed, namely, a relation §
betweend, andI',. For the weak coupling case such Equation|(3p) coincides with the former res{ilt|(23) for
a relation has been derived in the previous section forl'/T'y < 1 and, in addition, gives an exponential sup-
both the TBM [Eq.[(IJV)] and the continuous potential pression of the resonance density o’y > 1 (the
(27). The two expressions can be unified into a singleexact density of states in (23) reduces tay, in the
formula weak disorder limit).

o For finite size chain /¢ ~ 5) and weak cou-
ly=T-20,, (T<k1), (30) pling (' =~ .0004) the distribution P (logT") =
2 (T/vL){p(E,T)), calculated from[(32),(33) is pre-
whereT' is the transmission coefficient through the po- sented in Fig[ 4 (solid line). For comparison, a nu-
tential barrier separating the lead from the chain. Themerical Monte-Carlo simulation was performed for the

wherev = (rhv,) " is the density of states in the lead
per unit length and
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10 ‘ ‘ ‘ ‘ ] pre-factor®, ~ £~ is of minor importance. Then, ne-
glecting the pre-exponential factor, the probability for
, d, < doe 2L/¢ decays like
10 ¢
(In (®/®g) + 2L /)
o P(® — . 38
= ol ( )aexpl SLJE (38)
T Using (30), one obtains thizg-normal cutoff of the
107k DOR
(In (T/Ty) + 2L /¢)°
b L L L L L E, F € - 5
25 20 -15  -10 -5 0 (ol ) Xp[ 8L/¢
Log(l"/l"o)
Fig. 4. Weak coupling to the lead. The numerical simulation (dots) £ < 6—2L/§] ) (39)
was done for the TBM (7)F(30) with= 1, E = —1.9, 7 = 0.001 Iy

and system lengtftv. = 401 sites. The uncorrelated disorder with - .
a box distribution was implemented, which produced localization Similar cutoffs for the delay time and the average DOR

lengthe = 77.6 sites. The analytical curve was calculated accord- have been derived in Refs. [25] and [11] respectively.
ing to Egs.[(3R) and (33). So far the discussion was limited to the weak cou-
ling case, when a simple relation betweép and
TdB'}[A at t?f energchr:]Iose o the ur;pertur_lzed bagd eLdgt « [Eq. (30)] could be rigorously derived. When the
(SO ds"slcn S;%g')é ameI:gr:elfmez 'r:qu(;Jrlee dg?a?l .F'rgt coupling paramet€er’ increases and approaches unity,
us discu € example | [g- 4 ) L FISL the relation [(3P) ceases to be quantitatively accurate
the exponential factasxp [—I'/T'y], which suppresses : : :
o . . and turns into an order of magnitude estimBte ~
the largel’ probability, is present in both the semi- . L .
o . hvg®,. This relation is physically reasonable for nar-
infinite, Eq. [3%), and finite-, Eq. [33), case. For :
\ o row, isolated resonances. Such resonances stem from
I"s smaller than the characteristic vallig, one can . :
S ) . . . the eigenstates (of the closed system), which are local-
distinguish two regimes. In the intermediate regime, . )
ized far away from the open boundary= 0, and their

—2L/§ « T'/Ty < 1, the behavio® (logT) ~ t SO .
E e. (p é P/)>ON<1/1; Eq. [35)] is va(lli(()jg s?ncectzzsop— width is much smaller than the mean level spacing. One
posite closed boundary of the system has not yet com&?" the_n trace a parnculgr resonance, 1. e. Its \Mibhals
into play. On the contrary, the regime of very narrow a funcnon_ of the increasing coupling strenQ_fhwﬁh-
resonanced; < Toe—2L/%, is strongly affected by the out worrying about other resonances. It is therefore

boundaryr = L. These resonances are associated with'mu't've_Iy (;Iear that the smalk- result, Eq. [(3D), can
the eigenstates localized close to this boundary and ar8€ dualitatively extrapolated up to the perfect coupling

described by the nearly log-normal tail of the distribu- imit 7' = 1.
tion. One can support the above argument by a more elab-

Although the regime of the narrow resonandess orated analysis. ansider the formal solution of the
Toe~2L/¢ is contained in the analytical expressions ©N€-channel scattering problem at enefgyclose to
(32),[33), itis worthwhile to give an independent, more & Narrow isolatedresonance; = E, — ;T'. For small
direct derivation. Let us recall that the localization £ — £, using general analytical properties of the scat-
length ¢ is defined for arinfinite system and, in this tering amplitude in the complex energy plane, the solu-
limit, it is a self-averaging quantity. In a long but finite fioninthe lead can be expanded as (see, e. g., Ref. [34])

size chain [ > &) the localizaton length, or more pre- i ,
cisely its inverse (the Lyapunov exponev)tis a fluctu- Yz, E)=a(E - E, + 9t )€
ating quantity with nearly a Gaussian distribution (see
e.g. [25] and references therein j -
g- [29] ) —|—a*(E—ET—;F>e“”,x<O, (40)
LE _re(r—¢-1)?)2
A\ L) = \[ 9, ¢ By, (37)  where, by identity{(20), the complex constarsatisfies

_ _ up to small corrections
The tail of the extremely small's is related to the (up )

eigenstates localized near the closed end of the sys- 2 1 /L 2
tem,z = L, for which ®, ~ ®ye2L* where the jaf” = hogT Jo ¥ (@) da. (41)
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EnergyE,, at whichy (z = 0, E,) = 0 is the eigenen- was considered in [14], making use of a recursion re-

ergy of the closed system, and by|(40) lation for the self-energy. Here we employ the locator
Ima expansion, i.e. perturbation theory dinwhich is the
Eo — E, = QReaF' (42) appropriate tool for strong disordér [35,/36]. Our treat-

ment is not restricted to a semi-infinite chain and, in
particular, we address the question of the cutoff of the
(1/T)-tail in a chain of large but finitév. Furthermore,

For the corresponding eigenfunction of the closed sys-
tem, using[(4D),(41) in the definitiop (24), one obtains

o~ r Ima\ 2 1 > r (43) no restriction on the coupling strengghis imposed in
*™ 2hw, | \Rea = 2h, our treatment.
_ Fort¢ = 0 the Hamiltonian[(I3) corresponds to un-
Both (42) and[(4B) ";“e meaningful as long (@ — coupled sites and its eigenvalues coincide with the site
(Br) STie, (E%Z) < 1, since otherwise the linear  energiese; (j = 1,2,...,N). Whent is switched

expansion[(40) is not valid and higher orders should beon, some of these “unperturbed” eigenvalues acquire
included. With this reservation, Eq. (43) relates narrow a complex correction, due to the last term[in](13), and
isolated resonances to the well localized eigenstates ofhus describe resonances. Our purpose is to find the
the closed system. However, contrary[to] (30), relationimaginary part of this correction, in the leading order
(43) is not deterministic, since it depends on the phasen ¢. (The small correction to the real past, intro-
of a (which is random for weak disorder). Replac- duces an unessential shift on the real axis of the com-
ing the unknown coeﬁicien{(};{“gjf + 1] by a phe-  Plex energy plane and will be ignored). We designate
the complex energy by » = E — 3I" and look for the

i 1
nomenological constant™ leads to solutionsz;, of Eq. [I3), which we rewrite as

Lo = 20hvg®, . (44)

With the relation[(4#) at hand, all the steps done for
the weak coupling can be repeated, and Eqs. (82), (33ith
and [3%) apply with the transmission coefficiéntre- ~ i(2)
placed by4 and the characteristic valig [Eq. (36)] € = €1 —nte : (47)
redefined as

z—é& —51(2) =0, (46)

In order to see the mechanism by which the unper-
Ty = 45@ . (45)  turbed solutionszj(-o) = ¢, acquire an imaginary cor-
§ rection, we employ the locator expansion for the self-
In the present case, however, the DOR obtained fromenergyS;(z). It can be represented diagrammatically
Egs. [32),[(3B) is valid only fof* < I'y, since other-  as a sum over all paths which start at siend return to
wise the isolated resonance approximation implied inthis site only once [35, 36]. An example of such a path
the above argument is not applicable. is drawn in Fig[ 6. This path goes from siteo 2, pro-
The above approximation was compared to the nu-ceeds fron® to 3 and returns back tb . This path con-
merical simulation for the perfect coupling to the lead, tributes toS; a termtgotgstgot, whereg,, = (z—e,) ™"
Fig.[§. In both cases shown in Fig. /¢ ~ 5and s the Green’s function (the locator) for an isolated site
L/¢ = 8, the same fitting valug ~ 0.68 was used. p. Thus, the general rule is that to a line connecting a
As expected, a good agreement between the numerpair of sites one assigns the numbewhile to a site
ical simulation (dots) and the analytical result (solid 1, the corresponding locator is assigned. By inspecting

line) is obtained only fof” < T (the deviation for  Eq. (48) it becomes clear that an imaginary correction
the ex_tremely small's is due to the numerical under- 1, he unperturbed solutiozz}(-O) is produced by paths,
sampling). in the S - expansion, which connect siteto site ;.
Indeed, sitej has no direct knowledge about the con-
5. Strong disorder nection to the outside world: this information must be
transmitted to it from sitd, via all intermediate sites.

In this section we consider the case of strong dis-To leading order, it suffices to keep the shortest path.
order, when the hopping amplitudes much smaller  For site3 this is the path in Fid.]6. Generalization to
than the characteristic widtV of the site energy dis- an arbitrary sitej is obvious and results in a path of
tribution g(¢). For a semi-infinite chain the problem (j— 1) loops which brings in a facta??—1). This path
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Fig. 5. Resonance width distribution for the perfect couplihg= 1. The analytical curve is calculcated according to Hgs. (82}, (33) with

T'o given by [4%). The numerical simulation was done as explained if Fig. 4, with the TBM paratneters = —1.9,7 = 1 and the

uncorrelated disorder resulting in the localization length 77.6 sites. The system length is (&) = 401 sites and (b)V = 601 sites. The
scatter of the numerical data for the extremely small valuds/d%, occurs because of the insufficient numerical statistics.

produces the imaginary part of, which is calculated
from Eq. [46):

] j—1 1 1 .<><> .......
Imz; = 26=1) H Im . (48) .

k=2

(Ej - Ek)Q € — €1 & & & &y &y
Since only the leading term (in powers 8fis kept,
we have replaced in all the locatozsby Z(O) — Fig. 6. Calculation of the self-energy in the locator expansion.

For the same reasohyz) in the expressio?) can be
replaced byk(E). From the relation® = —2¢cos k it

For a fixedj, resonance widtt'; depends on the en-

follows that
ergies of all previous siteg; = 1,2,...,5 — 1, but
. E | E? not one;. Therefore, the twad-functions in [51) are
= tn|—=—-—i/1——|. 49 AT ' :
a=eatin (Qt ! 4t2) (49) statistically independent, so that upon averaging
Note that the imaginary part ifj (49) exists only for N
|E| < 2t, i.e. only bound states in this energy interval (p(E,T) =q(E) (D 6 ~T))), (52)
Jj=2

(in a closed chain) turn into resonances upon coupling

the chain to the lead (the same energy interval has alyyhere, in the strong disorder limit, the site energy dis-
ready been identified in Se¢] 3). Eigenstates beyondinytion functiong (E) coincides with the density of
this energy interval remain strictly bound states. Sub-giates per site in the closed system. To avoid clutter-
stituting [49) into[(48) and, again, keeping only leading i the notation we seff — 0 (middle of the band) and

terms int, one finally obtains: n = 1 (perfect coupling). (Extension to arbitrafyand
. g2 i1 1 n requires some obvious minor modifications.)
—Imz; =2 =20y 2= ] ——. For this case
2 45 (j—en)
(50) N izl 42
The DOR in the( E,T)-plane is given by (p(E=0,T)=q(0)> (d|T—2t]] =)
j=2 k=1"k
al (53)
p(E,T) =) 6(E~¢)d(l~Ty). (31)  Itis convenient to define a random variable
j=2
—1 —1
Sincg the small shift of the eigenvalue; along the real A = anH g _ _2]22 In lexl _ (54)
axis is of no interest, we have sB = ¢; in Eq. {51). =1 €k - ¢
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This is a sum of independent random variables with thei. e. for —In (I'/2¢) > 2N /¢ the DOR rapidly (faster

le]

average valu«{ln 7> = [ deq (e)In % = « and vari-

ance<ln2 ‘ti‘ — o? = . For instance, for the An-

derson model, wheais uniformly distributed within a
window — & < e < &%, one hasy = (ln% - 1)
ands = 1. Note that, in the strong disorder limit;
coincides with the inverse localization length (the Lya-
punov exponent]) [37].

Since NV is a very large number, most of terms in
(53) correspond to largg, so that4; has a Gaussian
distribution, P; (A), with the average valugd;) =
—2(j—1)aand varianc%AA§> =43j,i.e.

1 (A +2ja)?
P;(A) = NS exp l_SJﬁ] ) (55)

where(j — 1) was replaced by. Equation|[(5B) then
yields

N
g(0)>" / 5 (1 = 2te) Py (4) dA
j=2

(In (T/2t) + 25 /)

56
i . (56)

g(0) o~ 1 N
T Zm}‘p[

where{ = 1/« is the localization length in the middle
of the band £ = 0). The lower limit of summation,
j = 2, should not be taken literally and it is of no im-
portance, since for small resonance witltthe sum is
dominated by large-terms.

than any power of") approaches zero with decreasing
I'. This kind oflog-normal tails are well known in the
theory of disordered electronic systems|[27].

Itis instructive to compare the strong disorder result,
Eq. (58), with the expressiof (89) which was derived
in the opposite case of weak disorder. The main dif-
ference between the two expressions, besides the fact
that in [39) the pre-exponential factor has not been writ-
ten down, is that the exponent [n {39) contains the sin-
gle parametel. /¢, whereas[(58) depends in addition
on the paramete/« [indeed,8 N 5 can be written as
8 (N/&) (B/a)]. The parametef/« is a non-universal
number which depends, for instance, on the chosen dis-
tribution for the site energies,(¢). The same situation
is well known to occur in the study of the transmission
coefficientT through a disordered chain of length
The distribution oflnT" is Gaussian. If the disorder
is weak, then there is a universal relation between the
mean and the variance of T' (single parameter scal-
ing). On the other hand, for strong disorder the two be-
come independent of one another (two parameter scal-
ing) [38].

6. Conclusion

Statistics of resonances in disordered one-dimen-
sional chains is a formidable problem which does not
easily lend itself to a rigorous analysis. In this paper
we have reviewed some of the existing results and have

For narrow (but not too narrow) resonances, Whenextended them in various directions. We consider both

1 < —In(T/2t) < N/&, the sum is dominated by
terms withj nearjy ~ — (£/2)In (T'/2t) > 1. Then,

a continuous random potential and the tight binding lat-
tice model, and we tackle a variety of different cases,

the sum in[(5p) can be approximated by an integral anddiffering by sizeL of the chain, by strength of the disor-

q(0)€£(0)
2r ’
in agreement with the universal result in q.|(23). This
1/T" behavior is cut off sharply for very narrow res-
onances, such thatIn (I'/2¢t) > N/¢. These res-

(p(E = 0,1)) ~ (57)

onances stem from states which are localized in the

vicinity of the sample boundary gt = N. The sum
(56) is then dominated by the last term, i. e.

(p(E = 0,1)) ~

q(0) 1 (In (T'/2t) + 2N/€)?
T &agN P T 8NJ > (38)

der or by coupling strength between the system and the
external world. There is no efficient universal method
for treating the problem in its full generality. Differ-
ent techniques turn out to be appropriate in different
regimes. In particular, we presented in some detalil
the method of locator expansion, most suitable for the
strongly disordered lattice model. On the other hand,
for weak disorder we were able to use some known rig-
orous results for the Wigner delay time problem to ob-
tain information on resonance statistics.

BS is indebted to H. Kunz for previous collabora-
tion on the subject. We acknowledge useful discussions
with A. Comtet, J. Feinberg and C. Texier.
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