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Cyclotron spin-flip excitation in an even-integer quantum Hall system is the lowest-energy excitation separated from the
ground state by the gap slightly smaller than the cyclotron energy, and from the upper magnetoplasma excitation by the
Coulomb gap [1, 2]. At the filling factor ν = 2 in a real system these gaps are in the vicinity of 10 meV and 0.5 meV and
thus are much larger than the Zeeman gap (∼ 0.1 meV) and temperature (< 0.01 meV) respectively. Under these conditions
the cyclotron spin flip excitation can not relax in a purely electronic way but only with emission of a short-wave phonon
(k ∼ 3 107/cm). As a result the relaxation in a modern wide-thickness quantum well occurs very slowly, the characteristic
relaxation time being ∼ 1 s. The cyclotron spin-flip excitation in the narrow vicinity of filling factors ν = 2, 4, ... should
therefore be considered as a collective metastable excitation in the quantum Hall system.
Keywords: quantum Hall system, spin flip, cyclotron mode, spin relaxation, metastable quantum state, exciton condensate,
qubit realization
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Growing interest in the problem of excitation life-
times in low-dimensional electron systems has been
observed for at least two last decades. Particularly a
two-dimensional (2D) electron gas under quantum Hall
conditions represents an object of these investigations,
but all recent studies in this specific field have been in
fact devoted to spin relaxation in a spin-polarized sys-
tem (in other words, in the quantum Hall ferromag-
net, see Refs. [3–7] and references therein). These
researches are basically related to relaxation of low-
est energy excitations – spin waves separated from the
ground state only by a narrow Zeeman gap, εZ =
|gµBB| ∼1 K, much smaller than the cyclotron en-
ergy, εZ � ~ωc. Due to this circumstance, elemen-
tary processes actually determining spin-wave annihi-
lation/generaton can be purely electronic: loss of the
Zeeman energy can be compensated by a change in
the spin-wave “kinetic energy” originating from the e-e
correlation exchange [7–9].

Now I report on a study of the lowest-excitation
life-time in an unpolarized integer quantum Hall sys-
tem. In this case the excitation represents also a spin
flip but separated from the ground state by a wide gap
which is only somewhat smaller than the cyclotron one.
By contrast to the situation with quantum Hall ferro-
magnet, the cyclotron-energy loss is not compensated

electronically. This could occur non-radiatively only
due to the electron-phonon interaction leading to emis-
sion of acoustic phonons with “huge” energy ≈ ~ωc.
As a result, the relaxation turns out to be extremely
slow – according to the presented calculation by 5–6
orders slower than the spin-wave relaxation in quantum
Hall ferromagnet. The predicted relaxation time could
compete or even be longer than the record spin relax-
ation time T1 ∼ 100 ms, fixed experimentally at low
magnetic fields in a single-electron quantum dot [10].
Meanwhile, as opposed to the spin relaxation in a quan-
tum dot, relaxation of the ν = 2 lowest excitation in a
quantum well should sharply decelerate with increas-
ing magnetic field.

Spectrum of the lowest-energy excitation in an un-
polarized integer quantum Hall system (specifically in
the ν = 2 case) was studied earlier both theoretically
[1, 11] and experimentally [2]. The obtained results al-
low to consider this state as a cyclotron spin-flip exci-
ton (CSFE), i. e. a collective excitation where an elec-
tron is effectively promoted from a fully occupied Lan-
dau level to the next fully empty level with a spin flip
(for reference, the spin wave in a quantum Hall ferro-
magnet is a spin exciton where an electron is promoted
to the upper spin sublevel of the same Landau level).
The CSFE represents a triplet with the S = 1 and
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Sz = 0,±1 spin components separated by the Zeeman
gap. Accordingly, the Sz = 1 component is the lowest-
energy excitation. By analogy with previous works de-
voted to exciton spectra calculations [1, 12, 13] as well
as to the exciton relaxation [3, 7–9, 14–18], I employ
the excitonic representation technique, where exciton
states are used as a basis set instead of single electron
Fermi states. The exciton states are generated by exci-
ton creation operators, [19, 20]

Q†abq =
1√
Nφ

∑
p

e−iqxp b†
p+

qy
2

ap− qy
2
, (1)

acting on the ground state |0〉. In this definition ap
and bp are electron Fermi annihilation operators corre-
sponding to “initial” and “final” states of the promoted
electron, q is the exciton dimensionless momentum.
Index p labels intrinsic Landau level states which have
wave functions ψnp(r) = (2πNφ)−1/4eipyϕn(p + x)
in the Landau gauge. [ϕn(x) is the oscillator function,
where n is the Landau level number, Nφ is the number
of the magnetic flux quanta; in Eq. (1) and everywhere
below we measure length in units of lB , and wave vec-
tors in units of 1/lB (lB being the magnetic length).]
a and b are binary indexes indicating both the Landau
level number and the spin state. For example, for the
Sz = 1 component of the CSFE at ν = 2, these are
a = (0, ↓) ≡ 0 and b = (1, ↑) ≡ 1 (n and n are spin-up
and spin-down sublevels of the n-th Landau level. The
exciton operators on their own form a commutation Lie
algebra, namely:[
Q̂†cdq1

, Q̂†abq2

]
≡N−1/2

φ

(
e−i(q1×q2)z/2δb,cQ̂†adq1+q2

− ei(q1×q2)z/2δa,dQ̂†cbq1+q2

)
, (2)

where symbol δ is the Kronecker delta.
The basic property of the exciton states, Q†abq|0〉,

consists in the fact that they diagonalize a consider-
able part in the exact many-electron Coulomb interac-
tion Hamiltonian Hint. Sometimes these states even
represent eigen states of the Hamiltonian, if the many-
electron Srödinger equation is solved perturbatively in
terms of the small parameter rs = α(e2/κlB)/~ωc.
This situation, e. g., always takes place for lowest ex-
citations at an integer filling – in particular, for the spin
wave at ν = 1 and for the CSFE at ν = 2. rs is the
ratio of the characteristic Coulomb interaction energy
to the cyclotron gap (κ is the GaAs dielectric constant,
and α < 1 is the averaged form-factor arising due to
finiteness of the 2D electron-layer thickness). Besides,
at ν = 2 the excitonic representation of the CSFE state,

Q†
01,q
|0〉, allows at zero q to find first order corrections

to the state and thus to calculate the CSFE energy up
to second order in rs. Exactly this second-order result
yields the leading contribution to the Coulomb energy
in the case [1].

So, on the basis of the results [1, 2, 11] one can con-
clude that in the leading approximation in q and rs the
CSFE spectrum is

E(Sz, q) = ~ωc − εZSz −∆EC + q2/2Mx , (3)

where the negative value −∆EC is the Coulomb shift
exactly calculated to second order in rs, namely in the
ν = 2 case: [1]

∆EC =
∞∑
m=2

2− 22−m

mm!(m2 − 1)

∞∫
0

dpp2m+1[F (p)]2e−p
2

(4)
in units of 2Ry = (e2/κlB)2/~ωc = m∗ee

4/κ2~2,
and 1/Mx is the coefficient calculated to first order in
rs [11],

1/Mx =

∞∫
0

dpF (p)e−p
2/2(p2/2− p4/4) (5)

in units of e2/κlB . F (q) in Eqs. (4) and (5) is
the finite thickness form-factor: F (q) =

∫ ∫
dz1dz2

×e−q|z1−z2|/lB |χ(z1)|2|χ(z2)|2 (χ is the size-quantized
wave-function of an electron confined in the z-direc-
tion). ∆EC is definitely positive value, whereas the
sign of 1/Mx varies with F (q). In the ideal 2D case
F (q) = 1, and 1/Mx is negative (though at q >∼ 1
E(Sz, q) grows with q) [11]. In the case of modern
wide quantum-well structures F (q) is rapidly decreas-
ing with q, and 1/Mx becomes positive. I will consider
exactly this real situation, i. e. assume that 1/Mx > 0.
In practice the ∆EC and 1/Mx values should be found
from experimental data. For example, according to
Ref. [2] one gets ∆EC ≈ 0.35 meV. Yet, until now
there are no direct measurements yielding 1/Mx, and I
am forced to estimate this with the help of Eq. (5) by us-
ing some semi-empiric function F (p). Thus I find that
0.3 meV≤ ∆EC < 1/Mx ≤ 1 meV. Taking into ac-
count that εZ = 0.0255BmeV and ~ωc = 1.73BmeV
(B is in Teslas), one can see that the first term in Eq. (3)
is always much larger than all the rest terms.

How can the CSFE decay? This process is deter-
mined by two necessary conditions: by the availabil-
ity of an interaction that does not conserve the electron
system spin, and by a mechanism of energy dissipation
making the relaxation process irreversible. Evidently,
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hyperfine coupling of electrons to GaAs nuclei is irrel-
evant here: this mechanism of spin non-conservation
assumes that the irreversibility is realized in a purely
electronic way – by exciton-exciton scattering pro-
cesses reducing the total number of excitons. Due
to energy conservation law and impossibility to com-
pensate the energy of a decaying CSFE, the hyperfine
scattering relaxation mechanism is forbidden. Just the
same situation occurs if spin non-conservation is due to
the spin-orbit coupling, provided that the irreversibility
takes place due to an external smooth disordered poten-
tial or exciton-exciton Coulomb correlations [3]. The
only CSFE relaxation channel is thus governed by the
spin-orbit and electron-phonon couplings leading to the
acoustic phonon emission. The relaxation probability
is determined by the Fermi golden rule,

wfi = (2π/~)|Mfi|2δ(Ef − Ei) , (6)

where in the initial state |i〉 the number of SCFEs is
by one larger than in the final |f〉, and contrariwise the
number of phonons is lager by one in |f〉 than in |i〉,
Mfi being the relevant matrix element.

Methodically it is useful to develop the approach as
applied to the general case where ν = 2n + 2 (n =
0, 1, 2, ...). The spin-orbit coupling is described by a
single electron term of the total Hamiltonian, namely:

Ĥso =α (q̂× σ̂)z + β (q̂yσ̂y − q̂xσ̂x) ,

q̂ =−i∇+ eA/c~ . (7)

This operator, specified for the (001) GaAs plane, rep-
resents a combination of the Rashba term (∼ α) and
the crystalline anisotropy term (∼ β) [21, 22] and does
not violate translational symmetry. As usual [3, 7–
9, 17, 18] it is convenient to employ a bare single-
electron basis diagonalizing the single-electron Hamil-
tonian q̂2/2m∗e + Ĥso. To within the leading order in
the Ĥso terms one obtains the basis states,

Ψ(a)
np =

(
ψnp

v
√
n+ 1ψn+1 p + iu

√
nψn−1 p

)
and

Ψ(b)
np =

(
−v
√
nψn−1 p + iu

√
n+ 1ψn+1 p

ψnp

)
, (8)

where u = β
√

2/B~ωc and v = α
√

2/B~ωc are small
dimensionless parameters. Thus the single-electron
states acquire a chirality a or b instead of spin-up and
spin-down quantum numbers, and the spin flip actually
corresponds to the a � b processes. The definition
of the exciton creation operator formally remains the

same [Eq. (1)], although the ap and bp operators de-
scribe annihilation in some of states (8) now. In partic-
ular, in the case of the CSFE ap corresponds to anni-
hilation in the Ψ(b)

np state and b†p to creation resulting in
the Ψ(a)

n+1 p one. It is exactly this transition from Ψ(b)
np

to Ψ(a)
n+1 p that represents the n → n+ 1 promotion,

and my task now is to calculate the relaxation of the
Q†nn+1 q|0〉 state.

The Hamiltonian of electron coupling to 3D acoustic
phonons with momenta k = (q, kz) is written as

Ĥe−ph =

~1/2

LL
1/2
z

∑
q,kz ,s

U ′s(k) P̂k,sHe−ph(q) + H. c. (9)

(see Refs. [7] and [17, 18] and references therein),
where L2 = 2πNφl2B is the 2D area, and Lz is thick-
ness of the slab along ẑ,

He−ph(q) =
∫
eiqrΨ̂†(r)Ψ̂(r) d2r + H. c. ; (10)

P̂k,s is the phonon annihilation operator (index s de-
notes possible phonon polarizations),

Ψ̂(r) =
∑
np

[
anpΨ(a)

np + bnpΨ(b)
np

]
, (11)

and U ′s(k) is the renormalized vertex where integra-
tion with respect to z has been already performed:
U ′s(k) = Us(k)Φ(kz). The form-factor is

Φ(kz) =
∫
eikzz|χ(z)|2 dz . (12)

Further manipulations are simplified in view of a
basic feature of the studied relaxation process: only
‘hard’ phonons (with energy ≈ ~ωc) are generated at
the CSFE annihilation. Besides, the calculation shows
that only phonons emitted almost parallel to the ẑ-
direction are relevant, i. e.: q <∼ 1 � kz ≈ lBωc/sl.
[As a result, the key point of the studied mechanism is
an extreme smallness of the form-factor Φ(kz) if calcu-
lated for wide quantum wells where in common units
thickness is d ' 20 nm, and thus kzd � 1. It is ex-
actly this fact that determines the predicted very slow
CSFE decay.] In this connection, there are also obvious
simplifications for the vertex Us, namely: (i) the polar-
ization phonon field where the amplitude is inversely
proportional to phonon wave vector k may be ignored,
therefore only contribution of the deformation phonon
field where the amplitude is proportional to

√
k has to

be taken into account; (ii) only LA phonons (s = l)
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give rise to the deformation potential in the GaAs lat-
tice [23]. For the 3D vertex one needs only the expres-
sion for the square (c. f. Ref. [7]):

|Ul|2 = πεph(kz)/p3
0τD , (13)

where the phonon energy is considered to be propor-
tional to k: εph(k) = ~sl

√
k2
z + q2/lB (I recall that kz

and q are dimensionless), p0 = 2.52 · 106 cm−1 and
τD ' 0.8 ps are the material parameters of GaAs, (see
Refs. [23] and [7]). The ẑ-direction corresponds to the
direction Γ → ∆ → X in the conjugate space, and
therefore sl ≈ 4.5 · 105 cm/s [24].

So, the electron-phonon interaction model is com-
pletely determined by Eqs. (8)–(13). When substituting
Eq. (11) into Eq. (10), I keep there only the terms gov-
erning the CSFE annihilation processes (i. e. the decay
of theQ†nn+1q|0〉 state). As a result, the dimensionless
operatorHe−ph in terms of excitonic representation rel-
evant to the case takes the form:

He−ph(q) =
√
NφGn(q)Qnn+1q + H. c. , (14)

where Gn(q) = L1
n(q2/2)e−q

2/4
[
v(q+)2 + iuq2/2

]
/

(n + 1) [here q+ = −i(qx + iqy)/
√

2 , Lin is the
Laguerre Hamiltonian; in the derivation of Eq. (14)
the equivalences L2

n(x) − L2
n−1(x) ≡ L1

n(x) and
Ln(x)−Ln+1(x) ≡ xL1

n(x)/(n+ 1) have been used].
To calculate the transition matrix element Mfi

in Eq. (6) one has to choose the initial and final
states. These may correspond to a single exciton
decay: |i〉 = Q†nn+1q0

|0〉 → |f〉 = P̂k,l|0〉,
or to an exciton-exciton scattering process: |i〉 =
Q†nn+1q1

Q†nn+1q2
|0〉 → |f〉 = P̂k,lQ†nn+1q′ |0〉. Re-

spectively, the matrix element is equal to

M(1)
fi (kz,q0) =

1
lB

√
~

2πLz

×
∑
q

Ul(kz)Φ(kz)Gn(q)M1(q,q0) (15)

or to

M(2)
fi (kz,q′,q1,q2) =

1
lB

√
~

2πLz

×
∑
q

Ul(kz)Φ(kz)Gn(q)M2(q′,q; q1,q2) , (16)

where M1,2 are expectations: M1 =
〈

0|QqQ†q0 | 0
〉

and M2 =
〈

0|Qq′QqQ†q1Q
†
q2 | 0

〉
(the subscripts

are everywhere omitted, i. e. Qq actually stands for

Qnn+1q). The expectations are calculated with the
help of the commutation algebra 2 (see also Refs. [1,
3, 7–9, 12–18]):

M1 = δq,q0 , M2 = δq′,q2δq,q1 + δq′,q1δq,q2 −

− 2 cosφ
Nφ

δq1+q2,q′+q , (17)

where φ = (q′ × q 2 + q× q1)z /2.
Equations (6)–(17) allow finding the decay proba-

bilities
∑
f

wfi of both states Q†q0 |0〉 and Q†q1Q
†
q2 |0〉.

However, to calculate the CSFE relaxation rate one
should know the distribution Nq of excitons over the
q wave numbers. Although exciton operators (1) are
non-bosonic, the excitons obey Bose statistics because
their number in any state determined by a certain q
may, in principle, be macroscopically large. At any mo-
ment the CSFE distribution is quasi-equilibrium,Nq =
1/(e[E(1,q)−µ]/T − 1), and characterized by chemical
potential µ < E(1, 0) ≡ ~ωc −∆EC − εZ. (The ther-
modynamic equilibrium is certainly established much
faster than the CSFE decay processes occur.) Initially
the total number of excitons Nx =

∑
qN(q) is ac-

tually determined by a short external optical pulse. It
may be rather large, though still appreciably smaller
than Nφ. For a given number Nx one can find µ, and
using Eq. (3) obtain

Nq =
1− e−nx/MxT

eq2/2MxT − 1 + e−nx/MxT
, (18)

where nx = Nx/Nφ is the CSFE concentration.
Now, with the help of Eq. (6) and Eqs. (13)–(18)

one can calculate the relaxation rate, R =
∑
f,i

wfi. In

the case of single-exciton relaxation it yields

R1 =

2π
~
∑
kz ,q0

|M(1)
fi (q0)|2δ(~ωc − ~sl

√
k2
z + q20 /lB ) ≈

|Ul(ωc/sl)Φ(ωc/sl)|2

π~l2Bsl

∑
q0

Nq0 |Gn(q0)|2 . (19)

As a result, the equation governing temporal depen-
dence of the CSFE concentration, −dnx(t)/dt =
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= R1/Nφ, after performing summation
∑

q . . . = Nφ

×
∫
. . . qdq takes the following form:

− d(nx/MxT )
dt

=
1
τ1

∞∑
m=1

m−3
(

1− e−nx/MxT
)m

,

(20)
where

1
τ1

=
2ωc|MxTΦ(ωc/sl)|2(u2 + v2)

p3
0l

2
BslτD

. (21)

The inverse time 1/τ1 vanishes if T → 0. This means,
in particular, that the relaxation at nx > MxT is deter-
mined by the exciton-exciton scattering, that is by the
rate

R2 =
π

~
∑

kz ,q′,q1,q2

|M(2)
fi (kz,q′,q1,q2)|2

× δ(~ωc − ~sl
√
k2
z + q′2/lB )

≈ 2|Ul(ωc/sl)Φ(ωc/sl)|2

π~l2BslN 2
φ

×
∑

q1,q2,q′

Nq1Nq2

∣∣Gn(|q1 + q2 − q′|)
∣∣2 . (22)

Here the relevant values of q1 and q2 are taken into ac-
count to be of the order of

√
MxT � 1. Therefore the

dominant contribution to the rate is provided by the ∼
1/Nφ term of the second expectation (17), where also
φ ≈ 0 has to be set. Besides, the

∑
q1,q2,q′

... summation

in Eq. (22) is reduced to
∑

q1,q2

Nq1Nq2

∑
q′
|Gn(q′)|2 =

2NφN
2
x (u2 + v2). Finally, the equation −dnx(t)/dt =

R2/Nφ takes form −dnx/dt = n2
x/τ2 with character-

istic inverse relaxation time

1
τ2

=
4ωc|Φ(ωc/sl)|2(u2 + v2)

p3
0l

2
BslτD

, (23)

The SCFE density thus decays non-exponentially,
obeying the equation nx(t) = nx(0)/(1 + nx(0)t/τ2) .
The relaxation time τ2 is shorter than τ1, differing by a
small factor (MxT )2/2 ∼ 10−3 − 10−4. This feature
is a consequence of the phase volume enhancement in
the case of the exciton-exciton scattering. Yet note that
due to the non-exponentiality of the relaxation, the real
value which should be compared with experimental re-
sults is not τ2 but τ ′2 ∼ τ2/nx(0). If the CSFE is excited
optically, relevant magnitudes of the initial density are
nx(0) ∼ 0.01.

I focus on numerical estimates of τ2. When so do-
ing, one faces the basic difficulty related to uncertainty

in the Φ(ωc/sl) value. This one strongly depends on
the poorly observable function χ(z). However, it is
clear that for a wide quantum well with effective thick-
ness d ' 20 nm and for the magnetic field, e. g. equal
to 5 T, a considerable incommensurability of d and
ωc/sl = kz ' 3/nm takes place. This fact extremely
reduces the Fourier component of |χ(z)|2 [Eq. (12)].
When estimating χ(z) by means of three models: (i) of
Fang and Howard; (ii) of Takada and Uemura (see
Ref. [25] and references therein); (iii) of the simple
model where quantum-well walls are considered to be
infinitely high, one finds that |Φ(k)|2 ≈ C/(kd)6 where
C ≈ 4.7 · 104, 6.5 · 103, and 3.1 · 103 respectively.
(d/2 in all three models is set equal to the average
penetration length of the charge into the semiconduc-
tor.) Substitution of this estimate into Eq. (23) and
assumption that u2 + v2 = 10−3/B (B is in Teslas)
[7–9] yields for the quantum well with d = 20 nm:
τ2 ≈ 10−2B5/C , and hence τ ′2 ∼ B5/C. At B = 5 T
even for the ‘fastest’ Fang-Howard model describing
the χ(z) wave-function, one gets estimates ∼ 7 ms and
∼ 0.7 s for the τ2 and τ ′2 times respectively.

I concern also the relaxation scenarios of other ex-
citations in this system with energies close to the same
energy ~ωc. First, there is a spinless magnetoplasma
mode where electron is promoted from the zero Lan-
dau level to the first one without any spin change [it is
described excitonically as 2−1/2

(
Q†

01
+Q†01

)
|0〉]. Es-

timates reveal that this exciton should have a consider-
able radiative relaxation channel through emission of a
photon with energy ~ωc. For example, at B = 5 T the
magnetoplasma mode decays within ∼ 10 − 100µs.
Second, there are two other components of the CSFE
triplet. These are higher by εZ and 2εZ than the studied
lowest energy component of the CSFE, and have spin
numbers Sz = 0 and −1 respectively, see Eq. (3). [Ex-
citonically, these are 2−1/2

(
Q†

01
−Q†01

)
|0〉 andQ†

01
|0〉

excitons]. Both modes obviously relax in a cascade
manner by two stages. The initial stage is fast and gov-
erned by the exciton-exciton scattering, leading to con-
version of one of the excitons into the lowest CSFE
component. Calculation of this scattering rate should
account for several possible relaxation mechanisms (in-
cluding emitting of a phonon with energy ∼ εZ) sim-
ilar to those considered for spin-waves in a quantum
Hall ferromagnet [7]. The dominant process depends
on specific parameters B and T ; however, in any case
the relevant relaxation time turns out to be shorter than
1µs, i. e. much smaller than τ2. Thus, due to fast pro-
cesses the Sz = 0 and Sz = −1 modes convert into the
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Sz = 1 metastable mode. The latter for its part relaxes
slowly in the above studied way.

To sum up, I have studied relaxation of the lowest-
energy excitation in the unpolarized even-integer quan-
tum Hall system. This excitation, representing a cy-
clotron spin-flip mode, should actually be metastable
because even the fastest relaxation mechanism results
in the characteristic life time of the order of 1 s.
The estimate should be valid for wide quantum wells
(where thickness is >20 ns) and for magnetic fields
higher than 5 T. In fact, the studied relaxation is simul-
taneously the energy and spin relaxation process and,
if compared to an extremely long spin relaxation in
single-electron quantum dot [10], turns out even longer
than the latter. Meanwhile note that the filling factor
deviation from the number 2 (or 4, 6, . . .) should sub-
stantially accelerate the CSFE relaxation, because ap-
pearance of effective holes in the zero Landau level (if
ν < 2), or electrons in the first one (if ν > 2) will
increase the phase volume of the relaxation processes.

The author acknowledges support of the Russian
Fund of Basic Research.
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