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We describe a simple graphene nanoribbon and bottom gate system and present numerical algorithms for 
solving Poisson’s and Thomas–Fermi equations for electrons in the graphene nanoribbon. The Poisson’s equa-
tion is solved using finite difference and finite element methods. Using the Poisson and Thomas–Fermi equa-
tions we calculate an electrostatic potential and surface electron density in the graphene nanoribbon. Finally, 
the Poisson–Thomas–Fermi model for the graphene nanoribbon is compared to a tight-binding Hartree model. 
The results show a good correspondence with the tight-binding model. The developed solver of the Poisson’s 
equation can be used in the future calculations of more complex graphene and gate systems.
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1. Introduction

One of the most important discoveries in the con-
densed matter physics in the past decades is the ex-
perimental fabrication of graphene – a single sheet 
of carbon atoms arranged in a honeycomb lattice 
(Fig. 1). Since its discovery in 2004 [1], graphene 
has attracted an enormous attention because of its 
highly unusual electronic and transport properties 
that are strikingly different from those of conven-
tional semiconductor-based two-dimensional elec-
tronic systems [2]. Graphene is a semimetal with no 
gap and zero density of states at the Fermi energy. 
Its unusual properties are due to the linear disper-
sion with particle-symmetry implying the constant 
speed of electrons independent on momentum. Its 
Hamiltonian is similar to that of two-dimensional 
massless Dirac fermions, which leads, for exam-
ple, to such remarkable properties as Klein tunnel-
ling, i. e. the reflectionless penetration of electrons 
through high and wide potential barriers.

Fig. 1. Graphene lattice. The letters A and B indicate two 
different triangle sub-lattices.

While most of earlier studies have been focused 
on the basic properties of graphene which can be un-
derstood within one-electron picture, it is well rec-
ognised now that the electron–electron interaction 
can play an important role in understanding many 
electronic and transport properties of graphene [2, 
3]. The aim of this work is therefore to develop an 
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gate is included as the Dirichlet boundary condi-
tion in the bottom boundary of the rectangle re-
gion, V(r) |at the bottom gate = Vbg. In all other boundaries 
we use homogeneous Neumann boundary condi-
tions, ∂V(r) /∂n = 0, which indicate that the system 
is electrically neutral and there are no charges out-
side system’s boundaries.

In the next section we provide a more detailed 
description of the methods to numerically solve the 
Poisson’s equation and in the section 3 we describe 
the self-consistent method which we use to simul-
taneously solve both Poisson’s and Thomas–Fermi 
equations.

3. Numerical methods for the solution of 
Poisson’s equation

In order to solve the Poisson’s equation (3) numeri-
cally we use the finite difference and the finite ele-
ment discretisation. In this section we will describe 
both discretisation methods.

The finite difference method is one of the 
most easily implemented discretisation me-
thods. One has to introduce a three-dimensional 
structured grid, a set of points that the whole 
rectangular region is divided into a finite num-
ber of smaller cubes. Suppose that Nx, Ny and Nz 
are the numbers of cubes in each direction and 
that h is the size of the cube’s edge. Then the size 
of the region is Lx = h · Nx, Ly = h · Ny, Lz = h · Nz. 
The electrostatic potential and the volume elec-
tron density in each grid point is expressed as 
Vi,j,k  =  V(ih,  jh,  kh), ni,j,k

3D  =  n3D(ih,  jh,  kh). The 
Poisson’s equation is discretised by approximat-
ing the second derivatives ∂2V/∂q2, q  ≡ x,  y,  z 
(or additionally the first derivatives ∂V/∂q  if re-
quired) in the interior grid points (in the grid 
points which are not in the boundary) using the 
central difference formulas:

 (4)

and similar expressions for the other second de-
rivatives. For all interior grid points (i, j, k) we get a 
system of linear equations:

Vi+1,i,j + Vi–1,j,k + Vi,j+1,k + Vi,j–1,k+

 (5)

where the electrostatic potential values Vi,j,k are un-
knowns and the right- hand side is proportional to 
the volume electron density values ni,j,k

3D.
The boundary conditions are not imposed yet 

and the system of linear equations does not have a  
unique solution. The Dirichlet boundary condition 
in the bottom gate is included by setting Vi,j,0 = Vbg. 
Similarly the Neumann boundary conditions on 
all other boundaries are included by adding the 
auxiliary conditions V0,j,k  =  V1,j,k, VNx+1,j,k  =  VNx,j,k, 
Vi,0,k = Vi,1,k, Vi,  Ny+1, k = Vi,Ny,k and Vi,j,Nz+1 = Vi,j,Nz

 which 
are derived from the approximation of the first de-
rivatives of the potential V in these boundaries, for 
example,

 (6)

gives us the first auxiliary condition. By imposing 
all boundary conditions we relate the potential val-
ues in the boundaries with the values in the interior 
grid points and get a smaller number of unknowns 
Vi,j,k.

Although the finite difference method of discre-
tising the Poisson’s equation is simple, it has sev-
eral disadvantages. It is not convenient to use it in 
a domain with complex structures and boundaries. 
It also fails when we want to consider some parts 
of the domain with more precision than other, for 
example in our case we want to calculate the po-
tential in the graphene strip with more precision 
than the potential in the boundaries. In these cases 
one usually uses another popular method, the finite 
element method. The basic idea of this method is 
to divide the whole domain into a finite number of 
sub-domains (called elements) and then approxi-
mate electrostatic potential in each element with 
some interpolation function, which is character-
ised by some finite number of parameters. Finally, 
one constructs a system of linear equations, where 
these parameters are unknowns, solves it and uses 
the solution to calculate the potential in an arbi-
trary domain point or other quantities, for example 
the gradient field of the potential.

efficient numerical technique capable of treating 
the electron-electron interaction in graphene na-
noribbons. To this end, we will develop a numerical 
solver for the Poisson’s equation based on the finite 
difference and finite element methods (FDM and 
FEM), and combine them with the Thomas–Fermi 
approach for a system including a nanoribbon and 
a gate. By doing this, we test the Poisson solver and 
compare the results with the results of the quantum 
mechanical model of the same system based on the 
full tight-binding Hamiltonian with a Hatree poten-
tial [4], which will be introduced in the next section.

The development of the numerical Poisson-
Thomas–Fermi solver is the first step toward a de-
tailed quantum mechanical description of more 
complex quantum systems, for example graphene 
nanoribbons with edge disorder where the An-
derson localisation can occur [5]. Our subsequent 
works will be aimed at the integrating of the effi-
cient Poisson solver developed in the present paper 
with the full quantum-mechanical description of 
graphene nanoribbons.

2. System under study

We consider a graphene nanoribbon of the width ω 
situated on an insulating substrate with the relative 
permittivity εr. The dielectric is placed on a metal-
lic bottom gate separated by the distance d. This is 
the simpliest standard graphene–gate set-up used 
in experiments. For simplicity we suppose that the 
graphene nanoribbon is surrounded by the rectan-
gular insulating substrate, see Fig. 2.

Electrons in the graphene nanoribbon are de-
scribed by a Thomas–Fermi approximation, which 
provides a simplified way to solve the quantum-
mechanical problem. The dispersion relation of 
electrons in a graphene near the Dirac’s cones is 
approximately linear, E = ±ћνFkF and the Thomas–
Fermi equation reads

 (1)

where νF is the Fermi velocity, which for gra-
phene is expressed in the carbon–carbon distance 
a = 0.142 nm and the hopping integral t = 2.77 eV 
(see [2]),  We set the chemical poten-
tial to zero, µ = 0, which corresponds to the case 
when the graphene nanoribbon is grounded. The 
Coloumb’s interaction of electrons is considered at 
Hartree level and the full tight-binding Hamilto-
nian for this case reads

 (2)

where VH  (r) is the Hartree potential created by 
graphene electrons and mirror charges. The many-
body problem for this Hamiltonian is already 
solved [4] and our aim of the work is to solve the 
problem using the Thomas–Fermi equation (1) and 
compare it with the tight-binding approximation 
with the Hamiltonian (2).

The self-consistent potential V(r) is obtained 
from the solution of the Poisson’s equation:

 (3)

Here ε(r) is the relative permittivity, and ρ(r) is the 
charge density in the graphene nanoribbon, which 
is expressed in the volume electron density n3D(r), 
ρ(r) = –en3D(r) (e is the absolute value of an elemen-
tary charge). We write the subscript 3D to indicate 
that this density is three-dimensional. Later we will 
define a surface electron density without subscript. 
Note that in our graphene–bottom gate system (2) 
the relative permittivity is constant in the whole 
rectangle region ε(r) = εr. An effect of the bottom 

Fig. 2. Graphene nanoribbon – bottom gate system. The 
region is rectangle with the bottom gate in the bottom 
boundary. The graphene nanoribbon is grounded.
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4. Self-consistent calculation

The numerical solution (n(r),  V(r)) to both Pois-
son’s and Thomas–Fermi equations is calculated 
using a self-consistent method, which is graphically 
represented in Fig. 3.

In each iteration the input potential Vin can be 
constructed in various ways. The simplest con-
struction reads

 (15)

where k is an iteration number and δ is some small 
real positive parameter. Using this construction a 
single self-consistent calculation can take about 
500–2000 iterations. Note that we are currently 
implementing the Broyden’s second method [10] 
which can decrease the number of iterations sig-
nificantly.

5. Main results

A typical generated mesh used in our calculations 
is shown in Fig. 4. The mesh is fine and structured 
near the ribbon and rather coarse-grained in other 
parts of the computational domain. The purpose 
of the fine-structured mesh near the graphene na-
noribbon is to model the strip, which has the same 
thickness in all its points.

The main results of self-consistent calculations, 
distribution of electron density and electrostatic 
potential in the strip, are presented in Figs. 5 and 

Fig. 3. The schematic representation of the self-consis-
tent method.

Fig. 4. Generated mesh (only yz plane is presented). In 
the upper figure we show how mesh is generated near 
the graphene nanoribbon, which is extended in the x 
direction

We start with some initial guess for the potential 
Vin(r) and use it to calculate the electron density 
n(r) from the Thomas–Fermi equation (1). Then 
we use this electron density to calculate the new 
potential Vout(r) from the Poisson’s equation. In 
the discretised Poisson’s equation (5, 12) the elec-
trostatic potential is represented as a finite dimen-
sional vector V. Having the input and output vec-
tors Vin and Vout we calculate the relative difference 
between them, which we define as

 (14)

where ||·|| is an Euclidean (l2-norm) norm. If this 
norm is not small enough (the input and output vec-
tors differ too much), we construct the new potential 
Vin for the next iteration and solve the Thomas–Fer-
mi and Poisson’s equations again. In every iteration 
we check the convergence, the relative difference be-
tween the input and output potentials, and stop if it 
becomes very small. In our calculations we choose 
the convergence criterion r < 10–5.

In our calculations we discretise the Poisson’s 
equation (Eq.  3) using a standard finite-element 
Galerkin formulation [6]. We divide the whole 
rectangular domain into the simplest linear tetra-
hedron elements and construct a system of linear 
equations for each element e:

A(e)V(e) = b(e). (7)

Here A(e) is an elemental stiffness matrix, V(e) is 
a vector of the values of the electrostatic poten-
tial in the vertices of e-th tetrahedron, and b(e) is 
a right-hand side vector of the linear system. The 
electrostatic potential in an arbitrary point in the 
element is expressed in V(e) and shape functions 
u(e) = (u1

(e)(r),...,u4
(e)(r)):

V(e)(r) = u · V(e). (8)

The shape functions um
(e)(r) of the linear tet-

rahedron are the fractions of the volumes ∆P234, 
∆1P34, ∆12P4, ∆123P and ∆1234 of the tetrahedrons with 
the vertices {P,  2,  3,  4}, {1,  P,  3,  4}, {1,  2,  P,  4}, 
{1, 2, 3, P} and {1, 2, 3, 4}, respectively, where 1, 
2, 3 and 4 are the vertices of the whole element 
tetrahedron and P is an arbitrary point r ≡ (x, y, z)
inside the tetrahedron:

u1
(e)(r) = ∆P234/∆1234,

u2
(e)(r) = ∆1P34/∆1234,

u3
(e)(r) = ∆12P4/∆1234,

u4
(e)(r) = ∆123P/∆1234. (9)

If the point P is outside the element, the shape func-
tion of that element is equal to zero.

In the standard Galerkin finite-element formu-
lation entries of the stiffness matrix A(e) and r. h. s. 
vector b(e) are

 (10)

where we integrate in the whole tetrahedron vol-
ume Ω(e). Finally, electrostatic potential in an ar-

bitrary point of the whole rectangular domain is 
given as a sum of the potential in all tetrahedron 
elements,

 (11)

and the global system of linear equations

AV = b (12)

is constructed by assembling all elemental systems 
(Eq. 7) and changing into the global numbering of 
nodes: V = (V1, ..., VN), where N is the total num-
ber of nodes (points where the vertices of tetra-
hedrons resides). The system of linear equations 
(Eq.  12) with assembled systems, whose matrix 
and r.  h.  s. vector entries are given by (Eq.  10), 
automatically includes homogeneous Neumann 
boundary conditions. In the final part of the 
system construction we impose the Dirichlet 
boundary conditions using a boundary penalty  
method [7].

The Poisson’s equation (3) requires the volume 
electron density n3D(r), but the solution of the 
Thomas–Fermi equation is expressed in the surface 
electron density n(r). In order to numerically solve 
both equations, we need to relate these densities. 
In the finite difference approximation the relation 
between the surface and volume electron densities 
in the graphene strip is

n3D(r) = n(r)/h, (13)

where h is the distance between two nearest grid 
points of the finite difference approximation. In 
the finite element approximation this relation 
has the same form, but we define the distance h 
as a maximum height of the elements (maximum 
space in the z direction occupied by the element), 
which contain graphene strip points. In the sec-
tion 5 we will show that we generate a structured 
mesh near the strip, so all tetrahedron elements 
which contain strip points have the same height. 
We will call this height a strip thickness.

Both the finite difference and the finite element 
discretisation methods give us a sparse global stiff-
ness matrix A. For the actual calculation we use 
the LibMesh C++ finite element library [8]. For an 
automatic mesh generation we use the GMSH soft-
ware [9].
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strip width, distance from the bottom gate to the 
strip and relative permittivity have the same val-
ues as in the previously presented results.

Although the finite element method is more 
complex than the finite difference method, it re-
quires less computer memory and converges faster. 
The reason of this is that in FEM we need to con-
sider a smaller number of potential values in the 
computation domain than in FDM.

6. Conclusions

We developed the numerical solver of the Poisson’s 
equation (3) and tested it for a system consisting of 
a gate and graphene nanoribbon, in which electrons 
are described in the Thomas–Fermi approximation. 
The results of the self-consistent Poisson–Thomas–
Fermi calculations show a good correspondence 
with the results of the quantum-mechanical tight-
binding calculations [4].

The quantum-mechanical tight-binding calcula-
tions give more precise results than the semi-classi-
cal Thomas–Fermi equation, which may not include 
such edge effects as Anderson localisation. However, 
the self-consitent tight-binding calculation treats 
the bottom gate as a collection of mirror charges of 
electrons and it cannot be used for more complex 
systems. The results of this work show that the Pois-
son’s equation can be successfully used to calculate 
the self-consistent potential without mirror charges.
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GRAFENO JUOSTELĖS ELEKTROSTATINĖS UŽTŪROS MODELIAVIMAS TOMO IR 
FERMIO BEI PUASONO LYGTIMIS
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a Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
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Aprašomos paprastos grafeno juostelės ir lauko kon-
takto sistemos, pateikti skaitmeniniai metodai Puasono 
bei Tomo ir Fermio lygtims spręsti, kuriais modeliuoja-
mas elektronų judėjimas. Puasono  lygtis sprendžiama 
naudojant baigtinių skirtumų ir baigtinių elementų me-
todus. Naudojant Tomo ir Fermio bei Puasono  lygtis 

suskaičiuojama elektrostatinis potencialas ir paviršinis 
elektronų tankis grafeno juostelėje. Galiausiai nagrinėja-
mas modelis lyginamas su Hartrio modeliu. Pagrindiniai 
rezultatai rodo gerą modelių sutapimą. Aprašytas elek-
trostatinio potencialo skaičiavimo būdas taikant Puasono 
lygtį gali būti naudojamas sudėtingesnėse sistemose.

6. The distributions are averaged in the x direction 
because of a translational symmetry. The Thomas–
Fermi model is compared with a corresponding 
quantum-mechanical tight-binding model, which 
is described in Ref.  [4]. The size of the computa-
tional domain is {Lx, Ly, Lz} =  {100 nm, 1000 nm, 
500 nm}, the strip width is 20 nm, the distance from 
the bottom gate to the strip is d = 100 nm, the elec-
trostatic potential in the bottom gate is  Vbg = 5V 
and the relative permittivity of the dielectric media 
is εr = 3.9. We express the electrostatic potential in 
energy t units (for an electron 1 V corresponds to 
1 eV). In both figures the red line corresponds to 
the finite element Poisson–Thomas–Fermi model, 
the light blue line with points corresponds to the 
finite difference Poisson-Thomas–Fermi model and 
the blue points correspond to the tight-binding 
Hartree model.

The results show a good correspondence with 
the tight-binding model. Because of the electro-
static repulsion of electrons, the electron density 
near the edges is larger than in the nanoribbon 
center. Notice that in the model based on the tight-
binding approximation (blue points) electron 
density varies significantly near the edges of the 
graphene nanoribbon. This is because the model 
takes into account all graphene lattice points and 
electron density can differ in two graphene sub-
lattices significantly (in A and B sub-lattices, see 
Fig.  1). On the other hand, the Thomas–Fermi 
equation is not a very good approximation near 
the edges of the physical system when electron 
density varies rapidly.

By comparing the results of the finite element 
and finite difference methods, we see that FEM bet-
ter corresponds to the tight-binding method. FDM 
considers only several grid points in the width of 
the graphene nanoribbon and approximation is not 
as good as in FEM.

The convergence of the self-consistent algo-
rithm of Poisson’s and Thomas–Fermi equations 
mainly depends on the parameter δ (Eq.  15) and 
on the electrostatic potential of the bottom gate Vbg. 
Usually the number of self-consistent iterations de-
creases by increasing the parameter δ until some 
critical value δc, after which the iterations start to 
diverge (when δ > δc).

The results of one convergence test are present-
ed in Fig. 7. In each calculation we used different 
values of the parameter δ. The size of the region, 

Fig. 7. Convergence of the self-consistent algorithm of 
finding a solution to the Poisson’s (3) and Thomas–Fermi 
equations (1). k is the number of iterations, r is the relative 
error (14) and δ is a small real positive parameter (15).

Fig. 5. Distribution of surface electron density in the 
graphene nanoribbon width.

Fig. 6. Dependence of the electron energy difference be-
tween the graphene nanoribbon and the bottom gate on 
the position in the strip width. The energy difference is 
expressed in t = 2.77 eV units.


