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We report the experimental results obtained by the closed-aperture Z-scan technique where Nd:YAG minilaser short pulses
with different temporal pulse shapes have been used. It is shown that the nonlinear refractive index coefficient n2 of fused
silica (one of the smallest among the condensed media) can be successfully measured using the pulses with durations of about
1 ns and energies less than 1 mJ. Very good compatibility between the values for the same samples of fused silica is obtained
only if the temporal shapes of the used SBS-compressed, single longitudinal or multi longitudinal mode pulses are properly
taken into account. It is also shown that spatial properties of the used beams should be taken account of properly. By these
experiments we emphasize the significance of taking into account the temporal pulse shape profile for accurate determination
of the nonlinear refractive index by the Z-scan technique.
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1. Introduction

The characterization of nonlinear optical properties
of materials is of considerable interest, both from the
fundamental and applied points of view. In partic-
ular, great effort has been devoted to the determi-
nation of nonlinear refraction (NLR) and absorption
(NLA) mechanisms and magnitudes of different ma-
terials [1–4]. There are a number of methods for non-
linear refraction index n2 measurements, but the most
popular of them is the Z-scan method [1–11], intro-
duced about twenty years ago (the history of Z-scan
“discovering” see in [6]). A keen interest has lately
been shown to the accuracy and reliability of the results
obtained by means of this method, the main attention
being paid to the influence of the finite aperture size,
the thickness of samples, beam quality ratio, and sim-
ilar problems [1–14]. Although hundreds of papers on
Z-scan measurements were published and lasers with
different pulse shapes and durations were used, only
the original paper [5], the review papers [1–4, 7, 8],
and a few others [14, 15] obviously indicate that the
results must be temporally averaged properly when the
non-rectangular pulses are used. The detailed analy-
sis of the Z-scan theoretical background with empha-
sis on the temporal pulse shape dependence was pre-
sented in [16]. It gives a useful insight into impor-

tant aspects of the Z-scan technique that are usually
overlooked. In this paper we present the experimen-
tal results of the Z-scan measurements obtained us-
ing pulses with different pulse shapes for fused silica
for which magnitudes of the nonlinear coefficient n2

are well established using different measurement meth-
ods [3, 17–22]. The obtained results show that mea-
sured Z-scan data should be properly processed for ex-
tracting the correct values of the optical Kerr nonlinear
coefficient.

2. Experimental set-up for the Z-scan
measurements

For the measurements of n2 in fused silica with
different pulse shapes we used a standard closed-
aperture Z-scan experimental scheme for isotropic me-
dia (Fig. 1). Linearly polarized pulses were focused by
lens L1 onto a sample which was moved along the z
axis by the translation stage. The λ/2 phase plate and
dielectric polarizer P were used to change the energy
of the incident pulses. Laser pulses after the lens L1
were divided by a beam splitter BS. Reflected part of
pulses was directed to the reference photodiode PD1.
An aperture transmitting about 10% of the laser pulse
energy (without the sample) was placed in the far field
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Fig. 1. Experimental set-up: Nd:YAG minilaser with or without SBS-compressor, focusing lenses L1 and L2, beam splitter BS, photodiodes
PD1 and PD2, diaphragm D.

of the beam transmitted by the sample. The energy of
pulses transmitted through the aperture was measured
with the photodiode PD2 placed directly after the aper-
ture. Both photodiodes were synchronized with the
laser. The translation stage and photodiodes through
the controller were connected with a personal com-
puter. Therefore, getting and processing of the exper-
imental data were fully computer-assisted. At each z
position fifty measurements were done. For every laser
pulse the data got from the photodiode PD2 were di-
vided by data got from the photodiode PD1. Then
the average value and dispersion of these ratios were
accepted for further processing. We used fused silica
KU-1 plates with thickness of about 6 mm as samples
for the measurements.

It is well known that the nonlinear coefficient of the
optical Kerr effect in fused silica is rather low [17–22].
So, a high intensity of laser pulses is needed for Z-scan
measurements. Therefore, we have tried first to use
short pulses obtained from a SBS-compressor with
tetrachloride liquid cell [23]. The SBS-compressor was
pumped by a flash lamp pumped Nd:YAG master os-
cillator with an active electrooptical Q-switch Pockels
cell with negative feedback. It generated single longi-
tudinal mode (SLM) pulses with energy of about 4 mJ
and of 2–4 ns adjustable duration at a repetition rate of
5 Hz. Duration of the pulses and their shapes were mea-
sured with a system consisting of a fast photoelectric
cathode connected to the analogue C7-19 oscilloscope
having 5 GHz bandwidth. A typical digitized pulse
shape of compressed pulses with measured duration τm

is presented in Fig. 2(a). Taking into account the long
enough rise time τd ≈ 100 ps of the detection system,
the real pulse width of compressed pulses can be eval-
uated as τr = (τ2

m − τd)1/2 ≈ 190 ps (FWHM). The
energy of compressed pulses was about 2 mJ and could
be amplified up to 16 mJ by the two-pass Nd:YAG
amplifier. The amplified pulses were spatially filtered
and after the beam cleanup procedure their beam trans-
verse spatial profile was close to Gaussian. During

the Z-scan experiments the energy of pulses was con-
trolled by the attenuator consisting of λ/2 plate and a
dielectric polarizer. The experiments carried out with
the SBS pulse compression system have shown that
for the measurements of the nonlinear coefficient n2 of
fused silica using the Z-scan technique it is enough to
have pulses with energies in the interval of 0.85–1.3 mJ
when the focusing lens L1 with f = 30 cm is applied.

The diode pumped actively Q-switched Nd:YAG
minilaser (λp = 1064 nm, pulse repetition rate νp =
25 Hz) was used in the other set of experiments. The
main advantage of this laser is its ability to generate
not only SLM pulses (Fig. 2(b)) of about τp = 1.36 ns
(FWHM) duration, but also multi longitudinal mode
(MLM) pulses (Fig. 2(c)). The maximum pulse energy
Wp was about 1.7 mJ when the SLM pulses were gen-
erated. The transverse laser mode was also close to
the TEM00 mode (controlled with CCD camera) and
neither the laser transverse mode nor the beam waist
radius w0 did change practically while switching be-
tween SLM or MLM pulse generation regimes. The
pulse shapes were in-situ sampled using a fibre-coupled
fast InGaAs photodetector (DET01CFC/M, Thorlabs,
rise time τd = 100 ps) connected to the fast digital
oscilloscope having a 12 GHz bandwidth (TDS6124C,
Tektronix). We will not describe our laser in detail here,
but just indicate that switching from the SLM to MLM
pulse generation regime and vice versa is performed
by turning off or on the prelasing regime of the laser.
When prelasing regime is turned on and adjusted cor-
rectly, 99% of the generated pulses are SLM. When it is
turned off, the MLM pulses having slightly higher en-
ergy are generated. Thus, this laser allowed us to carry
out Z-scan experiments using SLM and MLM shaped
pulses in the same focusing geometry and see what the
difference in the measured Z-scan signal was and how
to correctly extract the values of the n2 coefficient from
measured data.
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Fig. 2. Shapes of pulses used in Z-scan experiments: (a) pulse
shape of SBS-compressor, (b) SLM pulse shape, (c) typical MLM
pulse shape. The durations τm measured by oscilloscope are shown

at the arrows.

3. Results and discussion

Before discussing the obtained results it is neces-
sary to clarify the definitions and notations used. Self-
action effects studied in nonlinear optics have a long
history [1–3, 24–27]. Therefore, the same notation n2

for the nonlinear index coefficient (NIC) is often used,

applying different definitions. Throughout this paper,
we will employ n2 for linear polarization defined via

δn(r, t) = n2 〈Ẽ2(r, t)〉 , (1)

where the change of the refractive index δn(r) locally
depends on the time-averaged square of the electric
field 〈Ẽ2(r, t)〉 in the medium. Taking into account
that the optical intensity in the medium is defined as
I = c n0 〈Ẽ2(r, t)〉/(4π), ignoring nonlinear correc-
tions for n(r) = n0 + δn(r), the change of the refrac-
tion index n due to the optical Kerr effect can be ex-
pressed in terms of nonlinear indices n2 (in esu units)
or γ2 (in SI units) through the relations

n(r, t) = n0 +
n

2
|E(r, t)|2 = n0 + γ2I(r, t) , (2)

where n0 is the linear part of the refractive index, E is
the complex amplitude of the electric field of the beam,

Ẽ(r, t) = Re E(r, t) exp[i(k0z − ωt)] , (3)

and I denotes the intensity of the laser beam within the
sample. k0 = n0ω/c is the modulus of the wave vec-
tor, ω is the circular frequency. Coefficients n2 and γ2

are related through the conversion formula n2 [esu] =
[c n0/(40π)]γ2 [m2 W−1], where c is the speed of light
in vacuum.

The study of the pulse shape influence is very im-
portant because in general the nonlinear refractive in-
dex is determined by several physical mechanisms, act-
ing in a broad range of time scales [1–3, 24–27]. In
non-resonant interactions and for pulse durations of
about 1 ns the main mechanisms that contribute to the
nonlinear index of refraction in solid state materials
(for example, in fused silica) are electronic polariza-
tion and lattice vibrations. These mechanisms are very
fast, with typical time responses of about ∼10−15 and
∼10−13 s, respectively [1–3]. Therefore, for pulse
durations longer than 1–10 ps the cw case is valid.
Vibrational (nuclear) contribution to the nonlinear in-
dex coefficient n2 is significant enough (10–20% in
glasses) [3]. The contribution of the electrostrictive
effect is also often considered [1, 3]. According to
[1], the electrostrictive NIC is nES

2 ∼ 10−19 m2 V−2,
which is higher than optical Kerr NIC (nK

2 ∼ 10−22–
10−21 m2 V−2) for typical transparent dielectrics. But
as shown by one of us previously [29], the contribution
of the optical Kerr nonlinearity to the nonlinear change
of the refractive index (∆nK

‖ (ω) = 11.5 · 10−14E2
0 ) in-

duced by the Gaussian beam with linear polarization is
by an order of magnitude stronger than the electrostric-
tive contribution (∆nES

‖ (ω) = 15.8 · 10−15E2
0 ) at the

axis of the beam for fused silica (here E0 is the peak
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strength of the electric field in esu units). It should
also be noted that contrary to the common claims of the
known textbooks and review articles [1, 3, 28], the elec-
trostrictive change of the refractive index strongly de-
pends on the polarization and the intensity distribution
of the beam [29, 30]. Our evaluation of electrostric-
tive nES

2 is consistent with a very rough estimate of the
magnitude of the electrostrictive nonlinear index given
in the new review [3]. It follows from [3] that the elec-
trostrictive γES

2 is proportional to p2
11 (pij are the elas-

tooptical coefficients in Voigt notation) and its value is
0.4·10−20 m2 W−1. It can be shown that in another lim-
iting case it is proportional to p2

12 [30]. These Voigt co-
efficients differ strongly enough for fused silica: p11 =
0.12 and p12 = 0.27 [30]. Thus, the electrostrictive
contribution to NIC has typically amounted to tens of
percent contribution to the Kerr effect in the stationary
case [3]. Besides, it is very important that the elec-
trostrictive response time, which is roughly equal to
the time required for an acoustic deformation to travel
across the diameter of the optical beam in the medium,
is of about ∼10 ns under our experimental conditions.
Thus, the electrostrictive response is very slow, and
therefore its contribution is very low as compared to the
electronic and nuclear Kerr effect and cannot strongly
influence our measurement results with short pulses.
Time scales of thermal and other physical mechanisms
of nonlinearities are even longer and do not contribute
to the nonlinear transmittance in our measurements at
low pulse repetition rates.

The detailed theoretical description of the procedure
of taking into account the pulse shape temporal profile
was done previously [16]. In the case of a small nonlin-
ear phase change |∆Ψ0(t)| � 1 at the beam waist posi-
tion of the sample z0 the theoretical normalized closed
aperture Z-scan energy transmittance can be written as

Tth(z, 〈∆Ψ0(t)〉) ∼=

1 +
4〈∆Ψ0(t)〉(z − z0)/zR[

9 + (z − z0)2/z2
R

] [
1 + (z − z0)2/z2

R

] , (4)

where

〈∆Ψ0(t)〉 =

∞∫
−∞

∆Ψ0(t) P (t) dt

∞∫
−∞

P (t) dt
, (5)

is power P (t) weighted time-averaged on-axial nonlin-
ear phase change at the beam waist.

When the pulse shape |fj(t)|2, the pulse energy WL,
and the intensity at the beam waist I0j can be mea-

sured (here and afterwards index j denotes the particu-
lar pulse shape used in the experiment), then the non-
linear refractive index can be found using formula

γ2 = η
(1)
j

〈∆Ψ0j(t)〉fit

k Leff I0j
, (6)

where ∆Ψ0j(t) = k Leff γ2 I0j |fj(t)|2, k = ω/c =
2π/λ is the wave number for the wavelength λ in vac-
uum, Leff = (1 − e−αL)/α, L is the thickness of the
sample, α is the linear absorption coefficient. The co-
efficient η

(1)
j describes the influence of the pulse shape

and can be calculated by the formula [16]

η
(1)
j =

∞∫
−∞

|fj(t′)|2dt′

∞∫
−∞

|fj(t′)|4dt′
, (7)

where |fj(t′)|2 is the experimentally sampled pulse
shape, normalized to unity at the peak. While calcu-
lating the coefficient η

(1)
j , it is commonly assumed that

the shapes of the pulse intensity and the pulse power
are identical.

It is seen from the formula (6) that for the calculation
of the nonlinear refractive index γ2 the on axis beam
intensity I0j should be calculated. For Gaussian and
near Gaussian beams with a known pulse shape this can
be done using the formula

WL =
π w2

0j

2
I0j τ0

∞∫
−∞

|fj(t′)|2dt′ , (8)

where the beam waist radius w0j is defined using the
second order moment method [31–33] and τ0 is the
time normalization unit. But simply measuring the
beam waist radius w0j is not enough because the trans-
mittance described by the formula (4) depends on the
Rayleigh length zR. Therefore, independent measure-
ment of zR should be carried out using the method of
the second order moments [31–33]. As was shown in
our papers [32, 33], the direct use of the alternative
propagation ratios measured by varying the aperture,
moving the knife or slit, which are not propagation in-
variants, is not appropriate for these purposes. But it
can be shown that using special processing of the mea-
sured data obtained by the moving knife method the
true invariant beam propagation ratio M2 can be estab-
lished not only for stigmatic beams [32, 33], but for
general astigmatic beams as well. This specially devel-
oped procedure of measured data processing was used
for measuring beam propagation ratios of SBS com-
pressed pulses (Fig. 3(a)) and Nd:YAG minilaser pulses
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Fig. 3. Beam radii measured by the moving knife method: (a) of
the Nd:YAG laser with SBS-compressor, (b) of the diode pumped

actively Q-switched Nd:YAG minilaser.

(Fig. 3(b)). This procedure allows getting values of
the beam radii and appropriate beam propagation ratios
pointed out in Fig. 3.

As follows from the formula (6), the main pa-
rameter needed for the determination of γ2 value is
the power-weighted time-averaged on-axial nonlinear
phase change at the beam waist 〈∆Ψ0(t)〉, which in the
Z-scan method is found by fitting the measured trans-
mittance data to the formula (4) of normalized transmit-
tance. The fitting procedure is not commonly described
in detail in the papers devoted to the measurement of

NIC of materials by the Z-scan technique. But as will
be shown in this paper the obtained values significantly
depend on the used fitting procedure. It should be noted
that the formula (4) is true only for the ideal case, when
the transmittance normalization is performed very ex-
actly and the scanning is done very perfectly. But it
is very difficult experimentally to avoid the walk-off
effect during scanning of the sample along the beam
propagation direction. Therefore, we used the follow-
ing formula for fitting of experimental data:

Texp(z, 〈∆Ψ0(t)〉) ∼=

1 +
4〈∆Ψ0(t)〉(z − z0)/zR[

9 + (z − z0)2/z2
R

] [
1 + (z − z0)2/z2

R

]
+ ∆T − a(z − z0) , (9)

where the ∆T term corrects for the normalization error
and the a(z − z0) term corrects for the walkoff effect.

First of all we present here the results of Z-scan
measurements (Fig. 4(a)) using SBS-compressed pulses
(Fig. 2(a)). For this pulse shape form calculated
by formula (7) the value of the coefficient η

(1)
SBS is

1.9. The energy WSBS of used pulses was 0.85 mJ,
w0 SBS = 84.5 µm, and the correspondent intensity
I0 SBS at the beam waist obtained using formula (8)
was 22.8 GW cm−2. Finally, to find 〈∆Ψ0(t)〉 and then
γ2, using formula (6), we should use proper fitting of
experimental data to formula (9). It should be noted
that we can carry out this fitting procedure in differ-
ent ways. Firstly, we can use the value of zR found by
independent measurement of M2 = 1.21 (Fig. 3(a)).
Another possibility is to assume that the used beam
has practically a Gaussian transverse profile of inten-
sity, and therefore we can fix M2 = 1.00 and use an
appropriate value of zR . And the third possibility is
to alternate all parameters during the fitting procedure,
including the values of zR. How the values of appro-
priate parameters are changing by using different fitting
procedures (Fig. 4(a)) can be seen from Table 1.

Table 1. Values of appropriate parameters obtained by different fitting procedures
in the case when SBS-compressed pulses were used.

M2 = 1.21 M2 = 1 All parameters fitted

z0 59.52±1.34 mm 59.32±1.78 mm 60.17±0.75 mm
zR 17.41 mm (fixed) 21.07 mm (fixed) 11.90±1.12 mm
a (4.01±1.89)·10−5 (7.47±2.43)·10−5 (−1.34±1.77)·10−5

∆T (2.6±0.77)·10−3 (2.7±0.92)·10−3 (2.1±0.62)·10−3

〈∆Ψ0(t)〉 (1.11±0.08)·10−1 (1.06±0.09)·10−1 (1.33±0.11)·10−1

γ2 2.78·10−16 cm2 W−1 2.65·10−16 cm2 W−1 3.33·10−16 cm2 W−1

n2 0.96·10−13 esu 0.92·10−13 esu 1.15·10−13 esu
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Fig. 4. Z-scan dependences of the normalized transmittance versus the sample position when different pulses were used: (a) SBS-
compressed pulses, (b) SLM pulses, (c) MLM pulses.

The same processing procedure applied to the data
obtained using SLM pulses (Fig. 2(b)) of the Nd:YAG
minilaser (Fig. 4(b)) with the pulse energy WL =
0.80 mJ gives the results presented in Table 2. It is
seen from these tables that the values of γ2 obtained
using values for zR of independent measurements no-
tably differ from the values of γ2 calculated using other
fitting methods. Although all obtained values for γ2

are consistent with values for fused silica known from
literature [3, 17–22], we assume that the values of γ2

obtained by taking into account independent measure-

ments of zR are preferable due to their more logical
determination. It is significant also to note that for cal-
culation of on-axis intensity the measured pulse profile
with τm = 210 ps pulse duration (Fig. 2(a)) was used.
The real pulse duration (as discussed previously) is no-
tably shorter, τr = 190 ps, and the real on-axis intensity
is higher. Therefore, we assume that the value of γ2

can be evaluated more exactly using approximate for-
mula γ∗2 ≈ γ2 τr/τm ≈ 2.52·10−16 cm2 W−1. Thus,
the agreement between two independent measurements
using different lasers is very good. It should also be

Table 2. Values of appropriate parameters obtained by different fitting procedures
in the case when SLM pulses were used.

M2 = 1.33 M2 = 1 All parameters fitted

z0 74.43±0.32 mm 74.54±0.38 mm 74.50±0.34 mm
zR 8.89 mm (fixed) 11.83 mm (fixed) 10.35±0.76 mm
a (−2.94±0.7)·10−5 (3.95±0.78)·10−5 (−1.28±1.12)·10−5

∆T (3.50±0.17)·10−3 (3.50±0.17)·10−3 (3.50±0.17)·10−3

〈∆Ψ0(t)〉fit (4.14±0.20)·10−2 (3.98±0.19)·10−2 (4.04±0.19)·10−2

γ2 2.55·10−16 cm2 W−1 2.45·10−16 cm2 W−1 2.49·10−16 cm2 W−1

n2 0.88·10−13 esu 0.85·10−13 esu 0.86·10−13 esu
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noted that the value of zR obtained from the Z-scan
data when all parameters of the transmittance formula
(9) are fitted differs significantly from the directly mea-
sured one. Therefore, the method of zR measurement
by the Z-scan technique proposed in [34] can be used
only if it is exactly known that the measured beam has
exactly a Gaussian transverse structure.

We should note that it is very significant to take into
account the real profile of used pulses. It can be il-
lustrated by the case when SLM pulses are used in the
Z-scan experiments. It can be seen from Fig. 2(b) that
the temporal profiles of the generated pulses are very
close to the Gaussian ones. Therefore, it seems that
the use of corresponding values for η

(1)
G =

√
2 and

IG0 = 4
√

ln 2WL/
(√

π3 τG w2
0G

)
= 8.78 GW cm−2

can be good enough. But the simple calculations
used in obtaining results presented in Table 2 show
that η

(1)
SLM = 1.56 and I0 SLM = 7.53 GW cm−2.

Thus, the approximation of the real SLM pulse pro-
file by the Gaussian profile leads to the value of γ2 =
1.97·10−16 cm2 W−1, i. e. 1.29 times lower than using
the procedure discussed above.

The situation was more complicated when MLM
pulses were used in the experiments. In this case due to
interference of all existing modes in the resonator the
temporal structure of the generated pulse shape is more
complex (Fig. 2(c)). It should be noted that the shape
of every generated pulse is always changed slightly, but
the shown pulse shape is a typical one. The experi-
ments show that the MLM pulses have practically the
same energy WL and spatial profile, i. e. the average
waist radius (w2

0 ≈ w2
0j) and the Rayleigh length zR

are practically equal to the same for SLM pulses. It
is appropriate enough to assume that in this case the
nonlinear refractive index can be found using properly
averaged previously used formula (6):

γ2 = η
〈∆Ψ0j(t)〉fit

k Leff Ī0
, (10)

where 〈∆Ψ0j(t)〉fit is again obtained from the fitting
procedure for MLM pulses, Ī0 = 2WL/

(
πw2

0τ0
)

is the
reference intensity, and

η =
1
N

N∑
j=1

[ ∞∫
−∞

|fj(t′)|2dt′
]2

∞∫
−∞

|fj(t′)|4dt′
, (11)

is a new averaged form-factor for MLM pulses. It is
implicitly assumed that using every time large enough
number of pulses for the averaging procedure this

form-factor will be not changed. It seems that such
data processing was used in [15], though it is not
described in detail. Two types of the MLM pulses
with durations of 7 and 20 ns were used in [15], and
a high value of 16 γ2 = (3.9±0.5)·10−16 and γ2 =
(4.9±0.6)·10−16 cm2 W−1 at 1064 nm were respec-
tively obtained. This great dependence upon the pulse
duration has been explained by the influence of elec-
trostriction. As discussed above, this is not true in
our opinion. Hence, the other reasons for explaining
this significant deviation of obtained γ2 values from the
known ones for fused silica should exist. We think that
the use of MLM pulses is not the best choice for the
Z-scan experiments because the procedure of measur-
ing and processing the data is very tedious and cannot
ensure the true results.

Hence, we present here the results obtained using
the MLM pulses for illustrative purposes only. We did
not use the whole required procedure described above
for processing the data obtained with MLM pulses. We
have assumed that in our case most of generated pulses
have the time profiles close to those shown in Fig. 2(c).
Therefore, it has been assumed that the averaged val-
ues are practically the same as for this typical pulse.
Using a previously described technique we calculated

the coefficient η
(1)
MLM ≈ 1.9. Then the described pro-

cessing procedure was applied to the data obtained with
MLM pulses of the Nd:YAG minilaser with the pulse
energy WL = 0.68 mJ (Fig. 4(c)). The obtained re-
sults are presented in Table 3. First of all, it is seen
from Fig. 4(c) that error bars are much larger than in
Fig. 4(b). Secondly, from Fig. 4(c) we can see that the
registered phase change 〈∆Ψ0j(t)〉fit is notably higher
(1.4 times). It means that the on-axis intensity and the
transmittance induced by MLM laser pulses are also
higher, although lower pulse energies have been used.
It is seen from Tables 1–3 that a very good compatibil-
ity between the values of γ2 is obtained using differ-
ent pulses. Thus, practically the same values of non-
linear coefficient γ2 for the samples of fused silica are
obtained when using the Z-scan technique only if the
temporal shapes of the used pulses are properly taken
into account.

4. Conclusion

It is shown that the nonlinear refractive index coef-
ficient n2 of fused silica (one of the smallest among
the condensed media) can be successfully measured by
the Z-scan techniques using the pulses of simple and
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Table 3. Values of appropriate parameters obtained by different fitting procedures
in the case when MLM pulses were used.

M2 = 1.33 M2 = 1 All parameters fitted

z0 75.67±0.19 mm 74.54±0.38 mm 74.67±0.19 mm
zR 8.89 mm (fixed) 11.83 mm (fixed) 8.91±0.29 mm
a (5.53±2.64)·10−6 (1.92±3.43)·10−6 (5.61±3.00)·10−6

∆T (0.00±1.11)·10−4 (0.00±1.38)·10−4 (0.00±1.12)·10−4

〈∆Ψ0(t)〉fit (5.81±0.14)·10−2 (5.16±0.15)·10−2 (5.80±0.15)·10−2

γ2 2.59·10−16 cm2 W−1 2.30·10−16 cm2 W−1 2.58·10−16 cm2 W−1

n2 0.90·10−13 esu 0.80·10−13 esu 0.89·10−13 esu

robust actively or passively Q-switched diode pumped
Nd:YAG minilasers with durations of about 1 ns and
energies less than 1 mJ. Good compatibility between
the values of n2 or γ2 for the same samples of fused
silica is obtained only if the temporal shapes of the
used SBScompressed, SLM or MLM pulses are prop-
erly taken into account. It is also shown that spatial
properties of the used beams should be taken into ac-
count properly. The obtained results confirm our opin-
ion that the contribution of electrostriction to the value
of n2 is small enough (less than 15%) for stationary
conditions and is practically negligible for used pulses
shorter than 1 ns.
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Z SKENAVIMO MATAVIMŲ PRIKLAUSOMYBĖ NUO ERDVINIŲ IR LAIKINIŲ IMPULSŲ
PARAMETRŲ

N. Slavinskis, E. Murauskas, A.S. Dementjev

Fizinių ir technologijos mokslų centro Fizikos institutas, Vilnius, Lietuva

Santrauka
Pateikiami Z skenavimo su uždara apertūra eksperimentiniai re-

zultatai, kuriems gauti naudoti Nd:YAG minilazerio trumpi impul-
sai su skirtingomis laikinėmis impulsų formomis. Parodyta, kad
netiesinio lūžio rodiklis n2 kvarciniam stiklui (vienas iš mažiausių
kondensuotoms terpėms) gali buti sėkmingai išmatuotas naudojant
impulsus, kurių trukmė apie 1 ns ir energija mažesnė negu 1 mJ. La-
bai geras išmatuotų verčių suderinamumas gaunamas tik tada, kai

apdorojant rezultatus yra deramai atsižvelgiama į priverstinės Bri-
jueno sklaidos kompresijos metu gaunamas ir vienos bei kelių išil-
ginių modų generuojamų impulsų formas. Taip pat parodyta, kad
apdorojant rezultatus reikia teisingai įskaityti naudojamų pluoštų
erdvinius parametrus. Šiais eksperimentais akcentuojama impulsų
formos įskaitymo svarba vertinant medžiagų netiesinį lūžio rodiklį
iš Z skenavimo eksperimentinių duomenų.
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