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The study is devoted to interrelations between two perturbative expansions for molecules and molecular systems, namely
between terms of power series for one-electron density matrices on the one hand, and those for respective representation
matrices of non-canonical (localized) molecular orbitals (MOs) on the other hand, as well as to the relevant implications. As
the most outstanding example of the latter, simple proportionalities are established between alterations in populations of basis
orbitals due to chemical interaction and delocalization coefficients of respective localized MOs (LMOs). The proof of these
proportionalities is valid for members of power series to within the fifth order inclusive that were shown previously to be
sufficient for investigations of the most important organic reactions. As a result, classical interpretations of early stages of
these reactions in terms of shifts of respective localized pairs of electrons (cf. the so-called ‘curly arrow chemistry’) acquire a
quantum-chemical support. Moreover, the results of the present study allow comparisons of relative extents of delocalization
of LMOs for alternative routes of the same process. On this basis, predominant (allowed) routes of organic reactions are shown
to be characterized by enhanced delocalization of respective principal pairs of electrons as compared to alternative (forbidden)
routes.
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1. Introduction

The local perspective on chemical reactivity is
known to be prevalent in the classical chemistry [1–6].
In particular, a definite functional group is usually re-
garded as taking part in the given process directly and
it is referred to as the reaction centre [1]. Again, the
remaining parts of molecules are supposed to partici-
pate in the same process indirectly by exerting certain
electron-donating or accepting effects upon this centre.
Extinction of these effects when the distance between
the given fragment and the respective reaction centre
becomes larger is also among the expectations.

To enable the quantum-chemical study of the above-
specified different roles, the so-called semilocalized
approach to chemical reactivity has been suggested and
applied [7–9]. The approach is based on expressions
for one-electron density matrices (DMs) of molecules
and molecular systems derived previously in the form
of power series [10]. Electron density redistributions
between orbitals of elementary fragments of the whole
reacting system (the so-called fragmental orbitals, FOs)
was the principal characteristic under study in this ap-

proach. (More efficient charge redistributions were
shown to imply a more significant stabilization of the
whole system [11].) Individual chemical bonds along
with lone electron pairs (if any) usually play the role
of fragments, although other types of the latter (e. g.
phenyl rings) are also possible. Anyway, FOs always
may be classified into initially-doubly-occupied (bond-
ing) and initially-vacant (antibonding) orbitals. Appli-
cations of the semilocalized approach to the case of
two weakly-interacting molecules of any structure [8]
show that local charge redistributions inside and be-
tween the relevant reaction centres are expressible in
terms of power series of lower orders, whilst redistri-
butions between orbitals of more remote fragments are
represented by terms of higher orders. Thus, the deci-
sive role of redistributions of the former type has been
supported. Moreover, the predominant routes of spe-
cific reactions have been shown to be accompanied by
more efficient charge redistributions between the rele-
vant principal FOs [9].

Interpretations of organic reactions in terms of shifts
of separate pairs of electrons [1, 4–6, 12] (cf. the
so-called ‘curly arrow chemistry’) also represent the
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above-described local perspective. Models of this
type are based on the fundamental classical concept of
electron pairs pertinent to individual chemical bonds
[4, 5, 13], which is commonly ascribed to Lewis [14].
It is also essential in the present context that only a few
pairs (usually those referring to the reaction centre) are
assumed to undergo essential shifts and thereby to play
an important role in a given reaction, whilst the remain-
ing electrons are considered inactive. The original form
of the above-discussed semilocalized approach [7, 8],
however, is still insufficient to reflect the concepts un-
derlying the ‘curly arrow chemistry’ and/or to find their
quantum- chemical analogues. This important point
deserves a more detailed discussion.

The occupation number (population) of a certain ba-
sis function is defined in quantum chemistry as a sum of
increments of all occupied one-electron states (molec-
ular orbitals) and thereby of all electrons of the given
system (see e. g. [15, 16]). This general definition ev-
idently embraces populations of FOs of the semilocal-
ized approach too. To achieve the above-specified ends,
however, a relation is required between an alteration in
the population of a certain basis orbital due to chem-
ical interaction and reshaping of the respective single
pair of electrons. Such a relation (if established) would
provide us with a simple interpretation of the above-
discussed local charge redistributions in terms of shifts
of respective local pairs of electrons.

In the present study, we will confine ourselves to
the most common case of molecules representable by
a single principal Lewis structure (electron dot dia-
gram) [13, 17, 18]. A shift and/or reshaping of a certain
pair of electrons may be then ascribed to the changing
extent of its delocalization. Moreover, a kind of paral-
lelism between charge redistribution and delocalization
seems to be among immanent features of the above-
specified systems.

To illustrate these statements, let us assume for a
moment that contributions of extra Lewis structures
may be ignored in the initial compounds. The rele-
vant initial charge distribution is then defined by su-
perposition of increments of localized pairs of elec-
trons attached to separate bonds and/or other frag-
ments, whereas the subsequent charge redistribution
due to chemical interaction necessarily implies a cer-
tain extent of delocalization of these pairs, especially of
those participating in the given process directly. (Note
that a shift of electrons along the axis of the ‘own’
bond, cf. the so-called bond polarization, is equivalent
to an intrabond delocalization of the relevant bonding
orbital over the antibonding one [19].) It is also worth

adding here that parallelism between charge redistribu-
tion and delocalization is assumed implicitly when dis-
cussing relative stabilities of particular reaction inter-
mediates (especially of ions) [2, 20]. Indeed, stability
of such an intermediate is usually traced back to better
conditions for delocalization and/or for redistribution
of an initially-localized positive or negative charge. Be-
sides, both charge redistribution and delocalization are
supposed to be weak effects in these discussions [2].

In summary, our principal task consists in relat-
ing the actual population of a certain initially-doubly-
occupied FO to the extent of delocalization of the re-
spective single pair of electrons.

Quantum chemical descriptions of many-electron
systems in terms of predominantly localized (or weakly-
delocalized) pairs of electrons are known to be achiev-
able in the framework of the non-canonical method
of molecular orbitals (MOs) [21], where various types
of the so-called localized MOs (LMOs) may be con-
structed (see e. g. [22–25] for review). (Note that the
most popular canonical MOs (CMOs) usually are de-
localized over the whole system for symmetry reasons
[16, 21].) Moreover, LMOs may be obtained both di-
rectly [10, 19, 24–42] and indirectly (i. e. by trans-
forming the set of CMOs into that of LMOs using var-
ious localization criteria [43–46]). Invoking the Bril-
louin theorem [10, 19, 26–29, 40–42] and related ap-
proaches [24, 35, 38, 39] is among the most efficient
ways of their direct derivation.

The power series for the one-electron DM [10] un-
derlying the semilocalized approach of Refs. [7, 8] re-
sulted from a direct solution of the so-called commuta-
tion equation for this matrix [47]. Analysis of the latter
in comparison to the Brillouin theorem has been car-
ried out in Ref. [10] to within the second order mem-
bers of perturbative expansions inclusive. It turns out
that these two fundamental non-canonical one-electron
problems yield similar intermediate equations. Conse-
quently, the first three terms of power series for the rel-
evant representation matrices (i. e. for the charge-bond
order (CBO) matrix P and for the respective LMO rep-
resentation matrix C) have been shown to consist of
the same submatrices (blocks) and thereby to be in-
terrelated. Proportionality between the actual popula-
tion of a certain basis function (FO) and the so-called
delocalization coefficient [42] of the respective single
LMO then straightforwardly followed from the above-
mentioned interrelation and also accordingly embraced
terms referring to the order parameter k = 0, 1, and 2.

It should be mentioned, however, that members of
the power series for the CBO matrix P just of higher
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orders have been shown to play the decisive role when
describing chemical reactions (terms to within the fifth
order inclusive prove to be important as discussed in
Ref. [9] and in Sec. 5). Meanwhile, the validity of the
above-overviewed results for k > 2 is far from being
self-evident. Thus, the aim of the present study is to
extend both interrelations between LMOs and DM and
their implications to the case of higher values of the or-
der parameter (i. e. for k = 3, 4, and 5). On this basis,
we are about to demonstrate a possibility of interpreta-
tion of organic reactions in terms of variable extents of
delocalization of LMOs.

In spite of the above-formulated seemingly modest
aim, the present study is not a direct continuation of the
previous analysis [10]. Quite the reverse, the overall
scheme of the paper is chosen so as to emphasize new
important aspects of the whole problem. Early achieve-
ments are also considered from another perspective. To
outline the latter, let us start with the notation that a
set of non-canonical (localized) MOs is not a unique
characteristic of a molecule [16, 21, 25], in contrast to
both CMOs and DM. It is no surprise, therefore, that
the Brillouin theorem as such does not yield a unique
set of LMOs, and some additional conditions and/or
criteria are required to obtain them. In this connec-
tion, the original study [10] started with solution of the
commutation equation for the CBO matrix P, whilst
the LMO representation matrix C was chosen so as
to resemble the matrix P as closely as possible in the
subsequent application of the Brillouin theorem. That
is why the zero order member (C(0)) of the power se-
ries for the matrix C was taken equal to the unit matrix
(I) and thereby LMOs of the basis-orbital-and-tail con-
stitution were actually chosen. Moreover, submatrices
(blocks) occupying the diagonal positions within cor-
rections C(1) and C(2) were assumed to be Hermitian
(symmetric) matrices. This scheme of analysis may
create an impression that derivation of the LMO repre-
sentation matrix is a kind of attachment to the principal
problem of obtaining the unique DM.

The overall situation, however, changed after reveal-
ing the nature of perturbative expansions of Refs. [10,
19, 41, 42]. Indeed, the latter were shown [48,
49] to be based on a generalization of the standard
Rayleigh–Schrödinger perturbation theory (RSPT) [16,
50], wherein the usual Hamiltonian matrix elements
are replaced by multidimensional parameters coincid-
ing with submatrices (blocks) of the initial Hamilto-
nian matrix. In this new context it appeared [48] that
the above-mentioned two additional conditions (i. e.
C(0) = I and the Hermitian nature of particular blocks

of corrections C(1) and C(2)) have nothing to do ei-
ther with the Brillouin theorem itself or with similarity
between matrices C and P: these prove to be analo-
gous generalizations of the relevant conditions of the
usual RSPT [50]. This implies that derivation of the
LMO representation matrix may be carried out without
any reference to the DM. Moreover, the DM and/or the
CBO matrix P was subsequently shown to be obtain-
able on the basis of a projector to the set of occupied
LMOs [51], i. e. as a second step of the whole theory
as usual. In summary, the two principal non-canonical
one-electron problems become mutually independent
and equivalent.

As already mentioned, the present study is orientated
mostly towards applications of LMOs to chemical re-
actions. In this connection, we start with the direct ob-
taining of LMOs on the basis of the Brillouin theorem
(Sec. 2) and derive formulae for members of the power
series for the matrix C to within the fifth order (k = 5)
inclusive. Respective members of perturbative expan-
sions for delocalization coefficients of LMOs are also
exhibited in the same section. Thereupon, we turn to
the general definition of an occupation number (pop-
ulation) of a certain basis function as a sum of incre-
ments of all occupied LMOs and obtain an expression
for this characteristic via the delocalization coefficient
of the respective single LMO (Sec. 3). Demonstration
of how the increments of the remaining LMOs vanish
in this expression is also among aims of this derivation.
Section 4 contains a discussion of the practically im-
portant case of the theory corresponding to all interor-
bital interactions of the first order magnitude. The final
section is devoted to consideration of specific organic
reactions.

2. Expressions for localized molecular orbitals and
their principal properties

Let the total basis set of FOs {Φ} to consist of
two subsets {Φ1} and {Φ2}, the first one containing
initially-occupied FOs (IOFOs) and the second subset
embracing the initially-vacant orbitals (IVFOs). Con-
venient subscripts (+) and (−) introduced and used
previously [7–11, 19, 41, 42, 48, 49, 51] will also be
preserved for individual orbitals so that ϕ(+)i and ϕ(−)l

will stand for the ith IOFO and for the lth IVFO, re-
spectively. Orbitals of different subsets are assumed to
be separated by a substantial energy gap in addition and
the intersubset interactions are regarded as first order
terms versus this gap. The actual number of molecules
is not essential here.
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Let the total one-electron Hamiltonian matrix of our
system (H) be expressed as a sum of zero- and first-
order matrices, i. e.,

H = H(0) + H(1), (1)

where

H(0) =

∣∣∣∣∣E(+) 0
0 −E(−)

∣∣∣∣∣ , H(1) =
∣∣∣∣ S R
R+ Q

∣∣∣∣ . (2)

Submatrices E(+) + S and −E(−) + Q of the matrix
H contain intrasubset interactions (resonance parame-
ters) along with one-electron energies of FOs, whilst
the off-diagonal block R involves intersubset interac-
tions. The minus sign in front of E(−) is introduced for
convenience. The superscript + here and below des-
ignates the Hermitian-conjugate matrix. Besides, zero
order intrasubset interactions are generally allowed in
Eq. (2) and these are included into submatrices E(+)

and E(−).
Let us introduce now an additional unitarity con-

dition for the LMO representation C as previously
[10, 19, 41, 42, 48, 49, 51], i. e.,

C+C = I , (3)

and turn to the Brillouin theorem [21, 25]. Among par-
ticular forms of this theorem there is a zero value re-
quirement for an off-diagonal element of the Fockian
(or Hamiltonian) operator referring to an occupied and
a vacant one-electron orbital (MO). In its matrix form,
this requirement resolves itself into the zero matrix
condition for the occupied–vacant (i. e. off-diagonal)
block (submatrix) of the total Fockian (Hamiltonian)
matrix in the basis of LMOs being sought [10, 41, 42].
For the matrix H of Eqs. (1) and (2), we then obtain the
following requirement:

{C+HC}12 = {C+HC}21 = 0 , (4)

where Eq. (3) is also taken into consideration. The
subscripts 12 and 21 stand here for the off-diagonal
block of the total matrix product within the braces. An
alternative form of Eq. (4) coincides with the block-
diagonality condition for the transformed Hamiltonian
matrix, namely,

H′ = C+HC =
∣∣∣∣E1 0
0 E2

∣∣∣∣ , (5)

where E1 and E2 are the so-called eigenblocks of the
matrix H [42]. The relation (5) represents the block-
diagonalization problem for our Hamiltonian matrix.

It is evident that the total set of LMOs {Ψ} is also di-
visible into two subsets {Ψ1} and {Ψ2} containing oc-
cupied and vacant orbitals, respectively. Further, both
LMOs and FOs may be collected into row-matrices, the
latter being designated by respective ket-vectors, e. g.
| Ψ1〉, | Ψ2〉, | Φ1〉, etc. Bra-vectors (e. g. 〈Ψ1 |) will
accordingly stand for column-matrices of the relevant
orbitals. The interrelation between the total ket-vector
of LMOs (| Ψ〉) and that of FOs (| Φ〉) is then as fol-
lows:

| Ψ〉 =| Φ〉C . (6)

Let the total matrix C be represented in terms of four
submatrices (blocks), too,

C =
∣∣∣∣C11 C12

C21 C22

∣∣∣∣ . (7)

Substituting Eq. (7) into Eq. (6) then yields the follow-
ing expression for the ket-vector of occupied LMOs:

| Ψ1〉 =| Φ1〉C11+ | Φ2〉C21 . (8)

The vector of vacant LMOs | Ψ2〉 may also be ex-
pressed analogously.

Constitution of the initial Hamiltonian matrix H
shown in Eq. (1) allows the LMO representation ma-
trix C to be sought in the form of power series, i. e. as
a sum of corrections C(k) of various orders (k). The
same form also refers to separate submatrices of the
matrix C. As already mentioned, we will confine our-
selves to LMOs of the basis-orbital-and-tail constitu-
tion. Consequently, the equality C(0) = I will be ac-
cepted. In summary, we will look for the matrix C of
the following form:

C = I+
∞∑

k=1

C(k) . (9)

For separate blocks of the LMO representation matrix
C, we accordingly obtain

C11 = I+
∞∑

k=1

C(k)
11 , C22= I+

∞∑
k=1

C(k)
22 ,

C12 =
∞∑

k=1

C(k)
12 , C21=

∞∑
k=1

C(k)
21 , (10)

where the order parameter (k) now takes the upper po-
sition for convenience.

One-to-one correspondence between FOs and LMOs
may be easily seen after substituting Eq. (10) into
Eqs. (7) and (8). This allows the same subscripts (i. e.
(+)i, (+)j, (−)l, etc) to be used to designate both
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types of orbitals. As for instance, an individual occu-
pied LMO ψ(+)i takes the form

ψ(+)i = ϕ(+)i

+
∞∑

k=1

[(IOFOs)∑
(+)j

ϕ(+)jC
(k)
11,ji +

(IVFOs)∑
(−)l

ϕ(−)lC
(k)
21,li

]
(11)

and contains the principal (i. e. zero order) contribu-
tion of the respective FO ϕ(+)i and a tail consisting of
increments of other FOs. Sums over (+)j and (−)l
embrace here the initially-occupied and initially-vacant
FOs, respectively, as indicated above the sum signs,
whilst C(k)

11,ji and C(k)
21,li correspondingly stand for el-

ements of submatrices C(k)
11 and C(k)

21 of Eq. (10). On
the basis of the above formulae we may also assert that
elements of submatrices C(k)

21 and C(k)
12 reflect tails of

LMOs of the intersubset type (i. e. the intersubset delo-
calization), whereas those of the remaining submatrices
(C(k)

11 and C(k)
22 ) represent tails of the intrasubset type

(intrasubset delocalization). Inasmuch as diagonal ele-
ments C(k)

11,ii, k = 1, 2, . . . describe renormalization of
the IOFO ϕ(+)i when building up the respective LMO
ψ(+)i, the total matrix C11 will be called the renormal-
ization matrix for convenience. The same refers also to
the matrix C22.

To derive formulae for individual corrections of
Eq. (10), Eqs. (7), (9), and (10) should be substituted
into Eqs. (3) and (4). Thereupon, terms of the same or-
der should be collected and studied separately. This
procedure is described in the Appendix A in detail.
Thus, let us confine ourselves here to the relevant prin-
cipal results.

The off-diagonal blocks C(k)
12 and C(k)

21 of correc-
tions C(k) (k = 1, 2, 3, . . .) are determined by the Bril-
louin theorem (block-diagonalization problem) itself.
Moreover, these blocks are interrelated and expressible
via a single matrix G̃(k):

C(k)
12 = −C(k)+

21 = G̃(k) . (12)

Matrices G̃(k), k = 1, 2, 3, . . ., in turn, are condi-
tioned by specific matrix equations (see Eqs. (A11)
and (A14)) containing entire submatrices of our initial
Hamiltonian matrix, i. e. E(+), E(−), S, Q, and R.
In the particular case of diagonal zero order Hamilto-
nian matrices (i. e. of diagonal submatrices E(+) and
E(−) consisting of one-electron energies of FOs only),
separate elements G̃(k)il are expressible algebraically
as discussed in Sec. 4. The additional symbol ‘~’

serves here to distinguish between the principal ma-
trices of the present study (i. e. those determining the
off-diagonal blocks of the LMO representation matrix
C) and matrices G(k), k = 1, 2, 3, . . . arising in the
off-diagonal positions of corrections P(k) of the rele-
vant CBO matrix P [10]. Actually, however, the dis-
tinction concerned manifests itself starting with k =
3 only, i. e. G̃(1) = G(1) and G̃(2) = G(2). (Inter-
relations between matrices G̃(3) and G(3), as well as
between G̃(4) and G(4) are studied in the Appendix B
and exhibited in Eqs. (B8) and (B9).) From Eqs. (11)
and (12) we obtain

C12 = G(1) + G(2) + G̃(3) + G̃(4) + . . . ,

C21 =−(G+
(1) + G+

(2) + G̃+
(3) + G̃+

(4) + . . .) . (13)

Hence, tails of LMOs of the intersubset type prove to be
determined by elements of sums of the right-hand sides
of Eq. (13). As for instance, the tail of the LMO ψ(+)i

over the IVFO ϕ(−)l is represented by the following
element:

C21,li = −(G+
(1)li+G

+
(2)li+G̃

+
(3)li+G̃

+
(4)li+. . .) . (14)

Interpretations of these elements are discussed in
Sec. 4.

As opposed to the above-considered submatrices
C12 and C21, members of the power series for renor-
malization matrices C11 and C22 (i. e. for C(k)

11 and
C(k)

22 ) follow from the unitarity condition of Eq. (3)
only (see Appendix A). Moreover, these members are
expressible algebraically in terms of products of ma-
trices G̃(k) of lower orders as exhibited by Eqs. (A16)
and (A23)–(A25).

Let us return again to the intersubset tails of LMOs
shown in Eq. (14) and define the so-called partial delo-
calization coefficients [42] of LMOs ψ(+)i and ψ(−)m

over particular FOs, e. g. over ϕ(−)l and ϕ(+)j , respec-
tively. Let these coefficients be correspondingly de-
noted by d(+)i,(−)l and d(−)m,(+)j . The defitions con-
cerned are as follows:

d(+)i,(−)l =| C21,li |2=

| G+
(1)li +G+

(2)li + G̃+
(3)li + G̃+

(4)li + . . . |2 ,

d(−)m,(+)j =| C12,jm |2=

| G(1)jm +G(2)jm + G̃(3)jm + G̃(4)jm + . . . |2 .(15)
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It is easily seen that the partial delocalization coeffi-
cients are also expressible in the form of power series,
i. e.,

d(+)i,(−)l =
∞∑

k=2

d
(k)
(+)i,(−)l ,

d(−)m,(+)j =
∞∑

k=2

d
(k)
(−)m,(+)j . (16)

In contrast to Eq. (11), the series of Eq. (16) start with
k = 2. Moreover, from Eq. (15) we obtain

d
(k)
(+)i,(−)l = d

(k)
(−)l,(+)i (17)

for any k, where

d
(2)
(+)i,(−)l = | G(1)il |2 ,

d
(3)
(+)i,(−)l =G(1)ilG

∗
(2)il +G∗

(1)ilG(2)il ,

d
(4)
(+)i,(−)l =G(1)ilG̃

∗
(3)il +G∗

(1)ilG̃(3)il+ | G(2)il |2 ,

d
(5)
(+)i,(−)l =G(1)ilG̃

∗
(4)il +G∗

(1)ilG̃(4)il +G(2)ilG̃
∗
(3)il

+G∗
(2)ilG̃(3)il , (18)

and ∗ designates the complex-conjugate counterpart of
the respective matrix element. The second order contri-
butions d(2)

(+)i,(−)l to partial delocalization coefficients
always are positive quantities as Eq. (18) shows. Mean-
while, the signs of the remaining members of the same
series cannot be established a priori.

Let us define now the total (intersubset) delocaliza-
tion coefficients [42] of LMOs ψ(+)i and ψ(−)m over
all IVFOs and all IOFOs, respectively, i. e.,

D(+)i =
(IVFOs)∑

(−)l

d(+)i,(−)l ,

D(−)m =
(IOFOs)∑

(+)j

d(−)m,(+)j . (19)

From Eqs. (15) and (19) it follows that D(+)i and
D(−)m actually coincide with diagonal elements of the
following matrices:

D(+) = C+
21C21, D(−) = C+

12C12, (20)

i. e. D(+)i ≡ D(+)ii and D(−)m ≡ D(−)mm. In this
connection, let D(+) and D(−) be further referred to
as the intersubset delocalization matrices. Substituting
Eq. (13) into Eq. (20) yields members of power series
for these matrices. For instance, we obtain

D(2)
(+) = G(1)G

+
(1) ,

D(3)
(+) = G(1)G

+
(2) + G(2)G

+
(1) ,

D(4)
(+) = G(1)G̃

+
(3) + G̃(3)G

+
(1) + G(2)G

+
(2) ,

D(5)
(+) = G(1)G̃

+
(4) + G̃(4)G

+
(1) + G(2)G̃

+
(3)

+ G̃(3)G
+
(2) . (21)

Before finishing this Section, let us note useful inter-
relations between members of power series for renor-
malization matrices C11 and C22 on the one hand, and
those for delocalization matrices D(+) and D(−) on the
other hand. For the first subset, these interrelations are
as follows:

C(2)
11 =−1

2
D(2)

(+), C(3)
11 = −1

2
D(3)

(+) ,

C(4)
11 =−1

2
D(4)

(+) −
1
2
C(2)

11 C(2)
11 ,

C(5)
11 =−1

2
D(5)

(+) −
1
2
(C(2)

11 C(3)
11 + C(3)

11 C(2)
11 ) , (22)

and easily result from the comparison of formulae for
C(k)

11 (see Eqs. (A23)–(A25)) to those of Eq. (21). Sim-
ilar relations may be derived for the second subset, too.

3. Proportionality between populations of basis
orbitals and delocalization coefficients of
respective localized MOs

As discussed already, the direct solutions of inde-
pendent non-canonical one-electron problems (i. e. of
the commutation equation and of the block-diagonali-
zation problem) yield expressions for the CBO matrix
P and for the LMO representation matrix C in terms
of generally different principal submatrices G(k) and
G̃(k), respectively (Appendix A). In this connection,
an alternative approach (i. e. the indirect way of obtain-
ing the matrix P based on employment of one-electron
states (MOs) of any type [15, 16, 51]) seems to be
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more promissing when looking for a relation between
the actual population of a certain FO and characteris-
tics of the respective LMO. The most general form of
the above-mentioned indirect approach consists in con-
structing a projector [15, 16] to the relevant set of oc-
cupied MOs as demonstrated in the Appendix B. The
usual definition of the population of a basis function
as a sum of increments of all occupied MOs actually
is a certain simplified version of the same approach.
Just the latter is employed in the present section. Fi-
nally, LMOs of Sec. 3 play the role of underlying one-
electron states (MOs) in our case.

Let us consider the occupation number (population)
X(+)i of an initially-occupied FO ϕ(+)i defined as fol-
lows [15, 16]:

X(+)i = 2
(OLMOs)∑

(+)j

| C11,ij |2 , (23)

where the sum over (+)j embraces now all occupied
LMOs (OLMOs) of the system (ψ(+)j) in contrast to
Eqs. (11) and (19), and C11,ij coincides with the re-
spective element of the renormalization matrix C11

(see Eq. (7)). After taking Eqs. (10) and (11) into
consideration, the definition of Eq. (23) may be con-
veniently rewritten as a sum of two increments Ai and
Bi(j), the former representing the contribution of the
‘own’ occupied LMO of the ith fragment (i. e. of ψ(+)i)
and the latter embracing the increments of all the re-
maining LMOs (ψ(+)j , j 6= i). We obtain

X(+)i = Ai +Bi(j) , (24)

where

Ai = 2 | C11,ii |2 , Bi(j) = 2
(OLMOs)∑
(+)j( 6=i)

| C11,ij |2 .

(25)
Let us consider these contributions separately.

For further convenience, let us start with the second
increment Bi(j). The coefficient at the FO ϕ(+)i in the
LMO ψ(+)j , j 6= i (C11,ij) is expressible in the form of
power series,

C11,ij = C
(2)
11,ij + C

(3)
11,ij + . . . . (26)

Note that C(0)
11,ij = 0 for i 6= j (see Eq. (10)), whilst

the first order member vanishes as C(1)
11 = 0 (see

Eq. (A13)). The series of Eq. (26) should be now sub-
stituted into the second relation of Eq. (25). We obtain

Bi(j) = 2
(OLMOs)∑
(+)j( 6=i)

[
C

(2)
11,ij · C

(2)∗
11,ij + C

(2)
11,ij · C

(3)∗
11,ij

+ C
(3)
11,ij · C

(2)∗
11,ij + . . .

]
, (27)

where terms to within the fifth order inclusive are ex-
plicitly shown and * designates the complex-conjugate
counterpart of the respective coefficient. It is seen that
the increment Bi(j) generally takes a non-zero value.
This conclusion may be traced back to tails of occu-
pied LMOs of the intrasubset type (intrasubset delocal-
ization).

Let us turn now to the increment Ai containing the
diagonal element (C11,ii) of the same matrix (C11).
Employment of the power series for this element yields
the following expression:

Ai = 2 + 4C(2)
11,ii + 4C(3)

11,ii + 4C(4)
11,ii + 4C(5)

11,ii

+ 2(C(2)
11,ii)

2 + 4C(2)
11,ii · C

(3)
11,ii + . . . . (28)

Note that C(k)
11 are Hermitian (symmetric) matrices

(Appendix A) and thereby C(k)∗
11,ii = C(k)

11,ii. After in-
voking the relations of Eq. (22), equation (28) may be
reformulated as follows

Ai = 2 − 2D(2)
(+)ii − 2D(3)

(+)ii − 2D(4)
(+)ii − 2D(5)

(+)ii

− 2{C(2)
11 · C(2)

11 }ii − 2{C(2)
11 · C(3)

11 }ii

− 2{C(3)
11 · C(2)

11 }ii + 2(C(2)
11,ii)

2

+ 4C(2)
11,ii · C

(3)
11,ii + . . . . (29)

It is seen that the contribution of the ‘own’ LMO ψ(+)i

to the actual population X(+)i of the FO ϕ(+)i con-
tains the relevant initial population (2), members of the
power series for the total delocalization coefficient of
this LMO (D(+)ii ≡ D(+)i), and terms related to renor-
malization matrices of lower orders. Moreover, terms
of the last type may be represented in a more compact
form. Indeed, contributions of the LMO ψ(+)i to ith

diagonal elements of products C(2)
11 ·C(2)

11 , C(2)
11 ·C(3)

11 ,
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and C(3)
11 ·C(2)

11 and the last two terms of the right-hand
side of Eq. (29) cancel each other out and we obtain

Ai = 2(1 −D(+)i) − 2
(OLMOs)∑
(+)j( 6=i)

[C(2)
11,ij · C

(2)
11,ji

+ C
(2)
11,ij · C

(3)
11,ji + C

(3)
11,ij · C

(2)
11,ji + . . .] . (30)

Now, it remains to sum up the increments Bi(j) and
Ai shown in Eqs. (27) and (30), respectively, in accor-
dance with Eq. (24). It is easily seen that terms of the
renormalization origin cancel each other out in the final
expression for the occupation number X(+)i (note that

C(k)
11,ji = C(k)∗

11,ij). Consequently, sums over occupied
LMOs ψ(+)j , j 6= i also vanish in this expression. The
result then takes the following simple form:

X(+)i = 2(1 −D(+)i) . (31)

Hence, the actual population of the basis function ϕ(+)i

of the ith fragment is determined only by the shape of
the respective ‘own’ LMO ψ(+)i. Moreover, the popu-
lation of the FO ϕ(+)i lost due to the interorbital inter-
action is proportional to the total intersubset delocaliza-
tion coefficient of the above-specified exclusive LMO.
In other words, the one-to-one correspondence between
FOs and LMOs (see Eq. (11)) is now replenished by
the following rule: the more delocalized the FO ϕ(+)i

becomes when building up the respective LMO ψ(+)i,
the more charge it loses and vice versa. Thus, paral-
lelism between charge redistribution and delocalization
is proven for each individual pair of electrons. This re-
sult may be also interpreted as a kind of simultaneous
separability of both charge redistribution and delocal-
ization into increments of individual pairs of electrons.
The origin of these principal conclusions easily follows
from the above derivation, namely it consists in oppo-
site signs and in coinciding absolute values of terms of
the intrasubset nature in the contribution of the ‘own’
LMO ψ(+)i and in that of the remaining LMOs to the
occupation number X(+)i. Finally, the relation (31) in-
dicates irrelevance of the intrasubset delocalization in
the formation of charge redistribution. This result evi-
dently causes no surprise.

An analogous analysis of the occupation number
X(−)m of an initially-vacant basis orbital ϕ(−)m yields
the following relation:

X(−)m = 2D(−)m . (32)

Thus, the more delocalized the orbital ϕ(−)m becomes
due to interorbital interaction, the more population it
actually acquires and vice versa.

Let us dwell now on implications of relations (31)
and (32), as well as on their possible extensions. First,
generalized matrix forms of these relations may be
mentioned that are derived and analysed in the Ap-
pendix B (see Eqs. (B5) and (B6)). In this case, the
relations embrace the intersubset delocalization matri-
ces D(+) and D(−) of Eqs. (20) and (21) on the one
hand, and the so-called intrasubset population matrices
X(+) and X(−) on the other hand, diagonal elements of
the latter coinciding with occupation numbers of FOs
(i. e. X(+)i ≡ X(+)ii and X(−)m ≡ X(−)mm). The
second (and the opposite) direction of extending our
principal formulae (31) and (32) consists in passing to
the relevant partial characteristics. To this end, let us
recall the definitions of total delocalization coefficients
D(+)i and D(−)m in terms of partial ones shown in
Eq. (19) and substitute them into the right-hand sides
of Eqs. (31) and (32). As a result, populations X(+)i

and X(−)m are expressible as follows:

X(+)i = 2

(
1 −

(IVFOs)∑
(−)l

x(+)i,(−)l

)
,

X(−)m = 2
(IOFOs)∑

(+)j

x(−)m,(+)j , (33)

where

x(+)i,(−)l = 2d(+)i,(−)l , x(−)m,(+)j = 2d(−)m,(+)j

(34)

coincide with the partial population donated by the
IOFO ϕ(+)i to the IVFO ϕ(−)l and with that accepted
by the IVFO ϕ(−)m from the IOFO ϕ(+)j , respectively.
Besides, the relation

x(+)i,(−)l = x(−)l,(+)i (35)

is the analogue of Eq. (17) and represents now the
charge conservation condition. The results of Eq. (34)
show that the more population is transferred between
FOs ϕ(+)i and ϕ(−)m, the larger is the partial delo-
calization coefficient of the LMO ψ(+)i over the same
IVFO and vice versa. If we recall the definition of this
coefficient as a square of the relevant tail of the LMO
ψ(+)i (see Eq. (15)), we may also conclude a more sig-
nificant tail of this LMO over the IVFO ϕ(−)l to corre-
spond to a more efficient charge transfer between FOs
ϕ(+)i and ϕ(−)l and vice versa.
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Finally, we may turn to terms of particular order (k)
within Eqs. (31), (32), and (34). We then obtain

X
(k)
(+)i = −2D(k)

(+)i , X
(k)
(−)m = 2D(k)

(−)m (36)

and

x
(k)
(+)i,(−)l = 2d(k)

(+)i,(−)l , x
(k)
(−)m,(+)j = 2d(k)

(−)m,(+)j .

(37)

The above relations may also be verified directly as de-
scribed in the Appendix B.

Therefore, parallelism between charge redistribution
and delocalization manifests itself at four different lev-
els that are accordingly representable by above-derived
proportionalities: (i) between total changes in occu-
pation numbers of FOs and total delocalization coef-
ficients of LMOs (Eqs. (31) and (32)), (ii) between
partial populations transferred between orbitals of op-
posite initial occupation and the relevant partial de-
localization coefficients of LMOs (Eq. (34)), as well
as between increments of the kth order to (iii) the
above-mentioned total characteristics (Eq. (36)) and to
(iv) their partial analogues (Eq. (37)). In summary, the
overall pattern of the interorbital charge redistribution
is predicted to resemble that of delocalization.

4. The case of first order interorbital interactions.
Interpretation of total energies in terms of
delocalization of LMOs

In this section, we will dwell on the practically im-
portant case of the above-outlined theory referring to
all interorbital interactions of the first order magnitude.
In this connection, let us assume E(+) and E(−) of
Eqs. (2) to be diagonal matrices, i. e.

E(+)im = ε(+)iδim , E(−)lr = ε(−)lδlr , (38)

where ε(+)i and ε(−)l correspondingly represent one-
electron energies of FOs ϕ(+)i and ϕ(−)l. Let us sup-
pose also that our energy reference point is chosen in
the middle of the energy gap between IOFOs and IV-
FOs and the energy unit is a negative quantity in ad-
dition. Consequently, ε(+)i and ε(−)l are positive pa-
rameters, whilst the sum ε(+)i + ε(−)l represents the
relevant energy gap (the minus sign in front of E(−) of
Eq. (2) should also be taken into account here). Two
important implications of our principal assumption of
Eq. (38) deserve attention in the present context and
are discussed below.

First, elements (G̃(k)il) of matrices G̃(k) are express-
ible algebraically in this case in terms of those of the

first order matrices S, Q, and R of Eq. (2) in a close
analogy with matrices G(k) arising in the CBO matrix
P [10]. Let the above-specified elements Sij , Ril, and
Qlr be represented as follows:

Sij = 〈ϕ(+)i | Ĥ | ϕ(+)j〉 , Ril = 〈ϕ(+)i | Ĥ | ϕ(−)l〉 ,

Qlr = 〈ϕ(−)l | Ĥ | ϕ(−)r〉 , (39)

where the respective basis orbitals (FOs) are indicated
inside the bra- and ket-vectors. As already mentioned
(Sec. 2), the first two members of the series G̃(k), k =
1, 2, . . . coincide with those of the former series G(k),
k = 1, 2, . . ., i. e. G̃(1) = G(1) and G̃(2) = G(2).
The same coincidence evidently refers to the relevant
elements. Thus, the expressions of Ref. [10] may be
invoked here along with respective interpretations. For
instance, the first order element G(1)il takes the form

G(1)il = − Ril

ε(+)i + ε(−)l
(40)

and describes the direct interaction between basis or-
bitals ϕ(+)i and ϕ(−)l. The second order element
G(2)il, in turn, is expressible as follows:

G(2)il =
1

ε(+)i + ε(−)l

{ (IOFOs)∑
(+)j

SijRjl

ε(+)j + ε(−)l

−
(IVFOs)∑

(−)r

RirQrl

ε(+)i + ε(−)r

}
. (41)

This element represents the indirect interaction be-
tween the same orbitals (ϕ(+)i and ϕ(−)l) by means
of a single mediator. Both IOFOs (ϕ(+)j) and IVFOs
(ϕ(−)r) are able to play this role. To be an efficient me-
diator, however, the orbitals concerned should interact
directly with both ϕ(+)i and ϕ(−)l.

As opposed to the above-considered first and second
order elements, the expression for G̃(3)il does not co-
incide with that for G(3)il (Appendix A). Nevertheless,
it may be easily derived on the basis of Eq. (A28) af-
ter employment of Eq. (A21). Moreover, the element
G̃(3)il may be shown to describe an indirect interac-
tion between FOs ϕ(+)i and ϕ(−)l by means of two
mediators as it was the case with G(3)il [52, 53]. An
analogous state of things refers to elements of matrices
G̃(k) of higher orders too. Let us recall now that the
tail of the occupied LMO ψ(+)i over the IVFO ϕ(−)l

is determined by the sum over the order parameter k
of elements G̃(k)il (see Eqs. (11) and (14)). The same
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refers also to the relevant partial delocalization coef-
ficient d(+)i,(−)l defined by Eq. (15). We may con-
clude on this basis that both the coefficient d(+)i,(−)l

and the above-specified tail depend on the sum of all
possible (direct and indirect) interactions between or-
bitals ϕ(+)i and ϕ(−)l. The non-local nature of matrix
elements G(2)il, G̃(3)il, G̃(4)il, etc also deserves men-
tioning, and the expression of Eq. (41) illustrates this
statement (the first order element G(1)il makes an ex-
ception here). Hence, the both partial characteristics
d(+)i,(−)l and x(+)i,(−)l also are non-local in their na-
ture.

The second important implication of Eq. (38) con-
sists in the possibility of expressing each member of
the power series (E(k)) for the total energy of our
system (E) in terms of contributions of the same or-
der (d(k)

(+)i,(−)l) to partial delocalization coefficients
d(+)i,(−)l. The simplest way of performing this proce-
dure consists in employment of the results of Ref. [11].
Indeed, the above-specified increments E(k), k > 2
concerning any system described by the matrix H of
Eqs. (1) and (2) have been expressed in this study
in terms of partial populations of the same order
(x(k)

(+)i,(−)l) transferred between orbitals (FOs) of op-
posite initial occupation, namely,

E(k) =
1

k − 1

(IOFOs)∑
(+)i

(IVFOs)∑
(−)l

x
(k)
(+)i,(−)l(ε(+)i + ε(−)l) ,

(42)
Besides, the sum of the initial members of the same
series (i. e. E(0) + E(1)) coincides with the total en-
ergy of isolated IOFOs (Appendix C). The expression
of Eq. (42) indicates that the more population is gener-
ally transferred between IOFOs and IVFOs, the more
stabilized the whole system becomes versus the set of
isolated IOFOs and vice versa. It also deserves adding
here that Eq. (42) has been obtained using the CBO
matrix P, the latter resulting from solution of the com-
mutation equation.

If we recall now the above-established proportional-
ity between x(k)

(+)i,(−)l and d(k)
(+)i,(−)l shown in Eq. (37),

we obtain an alternative form of E(k) in terms of coef-

ficients d(k)
(+)i,(−)l, i. e.,

E(k) =
2

k − 1

(OLMOs)∑
(+)i

(IVFOs)∑
(−)l

d
(k)
(+)i,(−)l(ε(+)i+ε(−)l) ,

(43)
where d(k)

(+)i,(−)l are shown in Eq. (18).

An alternative way of deriving Eq. (43) lies in em-
ployment of the expression for E(k) in terms of in-
tersubset delocalization matrices D(+) and D(−) of
Eq. (C12) (Appendix C). As opposed to Eq. (42), the
relation (C12) results from the solution of the block-
diagonalization problem for our Hamiltonian matrix
(Sec. 2). After an additional invoking of Eq. (38), we
obtain

E(k) =
2

k − 1

[(OLMOs)∑
(+)i

D
(k)
(+)iiε(+)i

+
(VLMOs)∑

(−)l

D
(k)
(−)llε(−)l

]
, (44)

where D(k)
(+)ii ≡ D

(k)
(+)i and D(k)

(−)ll ≡ D
(k)
(−)l coincide

with total delocalization coefficients of LMOs ψ(+)i

and ψ(−)l defined by Eq. (19). Substituting (19) into
(44) followed by invoking Eq. (17) yields Eq. (43) in
accordance with the expectation.

It is seen, therefore, that the charge transfer energy
of Ref. [11] is actually equivalent to the energy of the
intersubset delocalization of occupied LMOs over IV-
FOs. Moreover, stabilization (or destabilization) of
our system due to interorbital interaction proves to
be directly related to the extents of delocalization of
the initially-localized pairs of electrons. This princi-
pal conclusion causes little surprise if we recall popu-
lar classical assumptions about an interdependence be-
tween stabilization and delocalization (Sec. 1).

5. Illustration of the results by consideration of
specific reactions

The principal relations of the present study shown
in Eqs. (31), (32), and (34)–(37) along with the above-
demonstrated equivalence of Eqs. (42) and (43) pro-
vide us with an efficient tool for a new interpretation
of organic reactions. Indeed, let a certain route of reac-
tion be characterized by a more efficient charge transfer
from the IOFO ϕ(+)i of the ith fragment to the IVFO
ϕ(−)l of the lth one versus the alternative routes as it
was the case with numerous specific processes stud-
ied previously [7–9] and discussed below in this sec-
tion. We may then expect a more significant tail of the
LMO ψ(+)i to arise over the same IVFO. The relevant
initially-localized pair of electrons of the ith fragment
is accordingly predicted to be delocalized more effi-
ciently over the lth one. Thus, an interpretation of the
reaction in terms of variable extents of delocalization
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of separate pairs of electrons actually follows. Inas-
much as more efficient charge redistributions between
FOs of the relevant reaction centre and of its nearest
neighbourhood [8] were shown to be peculiar to pre-
dominant (allowed [9]) routes of reactions, just these
exclusive routes may be anticipated to be characterized
by an enhanced delocalization of the principal pairs of
electrons.

To verify and to illustrate these general predictions,
let us turn now to specific examples. Let us start with
the well-known bimolecular nucleophilic substitution
(SN 2) process between a substituted alkane Z–CαH2–
CβH2–. . . and nucleophile (Nu) [1–6, 54, 55], where
Z stands for a heteroatom (nucleofuge). A back at-
tack of the reagent and not a frontal one is commonly
assumed to give rise to a subsequent substitution pro-
cess. These routes of reaction have been correspond-
ingly considered as allowed and forbidden ones [9].
In respect of efficiencies of charge redistribution be-
tween FOs, comparison of the same alternatives has
been made in Refs. [8, 9, 56]. To this end, the in-
teractions (resonance parameters) between the princi-
pal electron-donating orbital of nucleophile (ϕ(+)N )
and the electron-accepting (antibonding) orbital of the
Cα−Z bond (ϕ(−)a) were assumed to take coinciding
absolute values for both positions of the reagent (sim-
ilar values of these parameters are expected on the ba-
sis of the relevant estimations [56]). Consequently, the
second order contributions (x(2)

(+)N,(−)a) to respective
partial populations (x(+)N,(−)a) are uniform for both
attacks, i. e.,

x
(2)back
(+)N,(−)a = x

(2)front
(+)N,(−)a > 0 . (45)

(Positive signs of these contributions follow directly
from Eqs. (18) and (37).) Meanwhile, the relevant third
order increments were shown to be of opposite signs,

x
(3)back
(+)N,(−)a > 0 , x

(3)front
(+)N,(−)a < 0 . (46)

When added to their second order counterparts of
Eq. (45), the corrections of Eq. (46) ensure a more ef-
ficient partial charge transfer between orbitals ϕ(+)N

and ϕ(−)a for the back attack (versus the frontal one)
and thereby a larger value of the relevant increment to
the overall stabilization energy (see Eq. (42)). After
employment of Eq. (37), we accordingly obtain

d
(2)back
(+)N,(−)a = d

(2)front
(+)N,(−)a > 0 (47)

and

d
(3)back
(+)N,(−)a > 0 , d

(3)front
(+)N,(−)a < 0 . (48)

The above relations indicate a more significant par-
tial delocalization coefficient d(+)N,(−)a to refer to the
predominant (allowed) back attack of nucleophile. In
other words, better conditions are ensured for delocal-
ization of the lone pair of electrons of nucleophile over
the reacting Cα–Z bond, if the reagent takes the back
position with respect to the reactant. Just this fact may
be concluded to determine the enhanced reactivity in
this case. The above conclusions are entirely based on
analysis of third order terms of power series derived in
the present study.

The aromatic electrophilic substitution (SE2) reac-
tion of pyridine [55, 57–59] may be discussed here as
another example of processes governed by third order
terms [9]. Exclusively the meta-substituted pyridines
are known to result from these reactions in contrast to
uniform reactivities of all positions of benzene. More-
over, even the most reactive meta-positioned carbon
atoms of the heterocycle are considerably less reactive
as compared to particular atoms of the parent hydrocar-
bon. In respect of charge redistributions, this process
has been analysed in Ref. [60]. The usual (canonical)
MOs of benzene played the role of FOs in this study
along with a single IVFO of electrophile (ϕ(−)E). The

third order member (x(3)
(+)2,(−)E) of the power series for

the partial population x(+)2,(−)E transferred between
the principal electron-donating (initially-occupied) or-
bital of the reactant (ϕ(+)2) and that of electrophile
(ϕ(−)E) was shown to be responsible for the alteration
in the relative reactivity after introducing the nitrogen
atom. [The orbital ϕ(+)2 coincides with the HOMO of
benzene of the appropriate symmetry (symmetric rel-
atively to the plane embracing the first and the fourth
carbon atoms, the former corresponding to the site of
the nitrogen atom).] Furthermore, analysis of expres-
sions for corrections x(3)

(+)2,(−)E showed them to be
negative quantities, whatever the direction of the at-
tack. Using Eq. (37) we may then conclude that the
suppressed overall reactivity of pyridine versus that of
benzene may be traced back to worse conditions for
delocalization of the principal pair of electrons of the
reactant over the orbital of the approaching reagent in
the case of the heterocycle. So far as different reac-
tivities of separate carbon atoms of pyridine are con-
cerned, these have been accounted for in Ref. [60] by
the smallest absolute value of the correction x(3)meta

(+)2,(−)E

as compared to those of x(3)para
(+)2,(−)E and x(3)ortho

(+)2,(−)E . In
terms of delocalization, this implies somewhat better
conditions for this effect in the case of meta-oriented
process as compared to the remaining alternatives.
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Organic reactions governed by corrections of power
series of higher orders (k = 4 and 5) [9] may be inter-
preted similarly. To avoid a lengthy discussion, let us
confine ourselves to an overview of final conclusions.

Let us consider the bimolecular electrophilic
addition (AdE2) process of substituted ethenes
H2Cβ=CαHZ analysed in Ref. [7], where Z stands for
a substituent. The alternative routes under comparison
coincide now with additions to Cα and Cβ atoms (the
so-called α- and β-additions). For an electron-donating
substituent Z=D, the β-attack is known to be of con-
siderably greater reactivity versus the α-attack (see the
Markovnikov rule [1–4, 6]). In terms of delocalization
of LMOs, these trends may be interpreted as follows:
the lone pair of electrons of the substituent D becomes
delocalized more significantly both over the antibond-
ing orbital of the ethene fragment (C=C bond) and over
the IVFO of electrophile, if the reagent approaches the
Cβ atom versus the Cα atom. Similarly, the initially-
localized pair of electrons of the C=C bond proves
to be delocalized more substantially over the IVFO of
electrophile in the case of the β-attack. On the whole,
these results imply a kind of an enhanced attractive ef-
fect of electrophile upon both pairs of electrons of the
reactant in the case of the predominant (allowed [9])
β-attack versus the alternative (forbidden) one. In the
case of an electron-accepting substituent (Z=A), the
Cα atom is known to be more reactive towards elec-
trophiles as compared to the Cβ atom [2, 3, 6]. Analo-
gously, the pair of electrons of the C=C bond becomes
delocalized more substantially over the IVFO of elec-
trophile just for the α-attack.

Furthermore, the trans β-elimination is known to
predominate over the relevant cis process in the con-
certed bimolecular elimination (E2) reactions of sub-
stituted alkanes [2, 3, 5]. Analysis of electron density
redistributions among orbitals of separate bonds of the
reactant and of an external base has been performed in
Ref. [61]. Terms of the fifth order (k = 5) were shown
to play the decisive role in this case. Invoking these
results along with the relation (37) shows that both the
lone pair of electrons of the base and that of the H–Cβ

bond become delocalized over the antibonding orbital
of the Z–Cα bond more significantly just for the trans
elimination as compared to the relevant cis process.

Finally, pericyclic reactions may also be considered
similarly. For illustration, let us refer to the ther-
mal electrocyclic closure of polyenes and to the Diels–
Alder reactions studied by means of the semilocalized
approach in Refs. [53, 62]. More significant elec-
tron density redistributions among initially-occupied

and initially-vacant orbitals of both first-neighbouring
and second-neighbouring C=C bonds were shown to
be peculiar to allowed routes of these processes versus
the forbidden ones. On the basis of the present results,
just the former (predominant) routes may be concluded
to be accompanied by better conditions for delocaliza-
tion of pairs of electrons of C=C bonds over antibond-
ing orbitals of neighbouring bonds.

Therefore, the expectation about predominant (al-
lowed) routes of organic reactions to be characterized
by enhanced delocalization of the principal pairs of
electrons appears to be supported by analysis of spe-
cific examples.

6. Conclusions

1. The principal achievement of the above study con-
sists in establishing direct proportionalities be-
tween characteristics of charge redistribution due
to chemical interaction on the one hand, and their
counterparts representing the extents of delocal-
ization of separate pairs of electrons on the other
hand. Moreover, the total energy of the system
is shown to be alternatively expressible either in
terms of interorbital charge transfer or via delocal-
ization coefficients of LMOs. This implies charge
redistribution and delocalization to be interdepen-
dent effects or even to represent different aspects
of the same phenomenon.

2. The population lost by a certain initially-doubly-
occupied basis orbital (FO) due to interorbital in-
teraction is shown to be determined by reshap-
ing of only a single LMO. Thus, a one-orbital
representation of the lost population actually fol-
lows from the non-canonical method of MOs.
This state of things closely resembles the one-
orbital representation of ionization potentials in
the canonical MO method known as the Koop-
mans’ theorem (see e. g. [16, 21]). If we recall that
representations of this type are not achievable for
ionization potentials and for charge redistributions
in the NCMO and the CMO methods respectively,
the present results support the complementary na-
ture of the above-mentioned principal approaches
of quantum chemistry [63].

3. The results of the above study demonstrate sep-
arability of the overall charge redistribution into
increments of individual pairs of electrons in the
space of localized basis functions (FOs). In this
respect, the present approach may be regarded as a
quantum-chemical analogue of the classical ‘curly
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arrow chemistry’. In contrast to the latter, how-
ever, the approach suggested allows comparisons
of relative extents of shifts of separate pairs of
electrons for alternative routes of the given reac-
tion.

4. Predominant (allowed) and alternative (forbidden)
routes of both heterolytic and pericyclic organic
reactions are shown to be correspondingly charac-
terized by enhanced and suppressed delocalization
of the principal pairs of electrons. This implies
better conditions for delocalization of initially-
localized pairs of electrons to be the driving force
of the above-mentioned processes.

5. The results obtained give us a new insight into the
nature of local models of organic reactions. In par-
ticular, confinement to a local set of basis func-
tions (FOs) of a certain fragment (e. g. of the re-
action centre) actually implies taking into account
only a limited number of semi-localized pairs of
electrons, namely of those attached to the given
fragment of the whole system. Reshaping of these
pairs due to intermolecular chemical interaction,
however, is generally governed by constitution of
the nearest neighbourhood of the principal frag-
ment, too.

Appendix A

Solution of the block-diagonalization problem

Let us dwell here on the block-diagonalization prob-
lem shown in Eqs. (4) and/or (5) and referring to the
Hamiltonian matrix defined by Eqs. (1) and (2). The
additional unitarity requirement for the LMO represen-
tation matrix (C) being sought is shown in Eq. (3).

As already mentioned (Sec. 2), the matrix C is rep-
resentable in the form of power series (see Eq. (9)). Let
us now substitute this series into Eqs. (3) and (4). Col-
lecting terms of the same order (k) then yields the fol-
lowing relations:

C+
(1)+C(1) = 0 , (A1)

C+
(2)+C(2) + C+

(1)C(1) = 0 , (A2)

C+
(3)+C(3) + C+

(1)C(2) + C+
(2)C(1) = 0 , (A3)

C+
(4)+C(4) + C+

(1)C(3) + C+
(3)C(1) + C+

(2)C(2) = 0 ,
(A4)

etc. Similarly, from Eq. (4) we obtain

{C+
(1)H(0) + H(0)C(1) + H(1)}12 = 0 , (A5)

{C+
(2)H(0) + H(0)C(2) + C+

(1)H(0)C(1) + C+
(1)H(1)

+ H(1)C(1)}12 = 0 , (A6)

etc, along with analogous conditions for the remaining
off-diagonal block 21. Let us now express C+

(k) via
C(k) on the basis of Eqs. (A1)–(A4) and substitute the
resulting formulae into Eqs. (A5), (A6), etc to elimi-
nate C+

(k) from the latter. The general form of relations
obtained is as follows:

{[H(0),C(k)]− + U(k)}12 =

{[H(0),C(k)]− + U(k)}21 = 0 , (A7)

where

U(1) = H(1) ,

U(2) = [H(1),C(1)]− + C+
(1)H(0)C(1)

− C+
(1)C(1)H(0) , (A8)

and the notation [. . . , . . .]− stands for the commutator
of matrices.

Let us now invoke the expressions for corrections
C(k) in terms of four blocks C(k)

IJ , I, J = 1, 2 (see
Eqs. (7) and (10)). From Eq. (A7) we then obtain the
following matrix equations:

E(+)C
(1)
12 + C(1)

12 E(−) + R = 0 , (A9)

− E(−)C
(1)
21 − C(1)

21 E(+) + R+= 0 , (A10)

determining the off-diagonal blocks of the first order
correction C(1), i. e. C(1)

12 and C(1)
21 . As in our previous

studies [7–11, 19, 48, 49, 52, 53, 56, 60–62], let C(1)
12 be

denoted by G(1). The principal equation conditioning
the latter then takes the form

E(+)G(1) + G(1)E(−) + R = 0 , (A11)

whereas C(1)
21 coincides with −G+

(1) as Eq. (A10) indi-

cates. Moreover, zero diagonal blocks C(1)
11 and C(1)

22

follow from Eq. (A1), provided that Hermitian (sym-
metric) nature of these blocks is additionally assumed,
i. e.,

C(1)
11 = C(1)+

11 = 0 , C(1)
22 = C(1)+

22 = 0 . (A12)
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In summary, the total first order member of the power
series for the LMO representation matrix takes the fol-
lowing anti-block-diagonal form:

C(1) =

∣∣∣∣∣ 0 G(1)

−G+
(1) 0

∣∣∣∣∣ . (A13)

The second order correction C(2)
12 = G(2) may be de-

rived analogously. We obtain

E(+)G(2) + G(2)E(−) + V(2)= 0 (A14)

instead of Eq. (A11), where

V(2) = SG(1) − G(1)Q . (A15)

Moreover, the relation C(2)
21 = −G+

(2) also easily re-
sults from Eq. (A7). The diagonal blocks of the second
order correction (i. e. C(2)

11 and C(2)
22 ), in turn, follow

from Eq. (A2) and are non-zero matrices in contrast to
their first order counterparts. The total second order
member C(2) of the power series concerned takes then
the form

C(2) =

∣∣∣∣∣−
1
2G(1)G

+
(1) G(2)

−G+
(2) −1

2G
+
(1)G(1)

∣∣∣∣∣ . (A16)

The above formulae have been originally derived in
Ref. [10]. As already mentioned (Sec. 1), corrections
C(1) and C(2) of Eqs. (A13) and (A16) closely resem-
ble the respective members of the power series for the
CBO matrix P, i. e. P(1) and P(2). The latter have
been derived in Ref. [10] on the basis of a direct solu-
tion of the so-called commutation equation for the one-
electron DM and contain the same matrices G(1) and
G(2) in analogous positions,

P(1) =−2

∣∣∣∣∣ 0 G(1)

G+
(1) 0

∣∣∣∣∣ ,

P(2) =−2

∣∣∣∣∣G(1)G
+
(1) G(2)

G+
(2) −G+

(1)G(1)

∣∣∣∣∣ . (A17)

Common structures of matrices C(1) and P(1), as
well as of C(2) and P(2) played the decisive role in
establishing direct proportionalities between occupa-
tion numbers of FOs and delocalization coefficients of
LMOs to within k = 2 inclusive [10, 42]. For higher
values of the order parameter k, however, the extent of
similarity between corrections C(k) and P(k) become
significantly lower. Let us discuss this important point
in more detail.

The above-mentioned close resemblance between
C(1) and P(1), as well as between C(2) and P(2), was

based on the fact that the commutation equation for
the DM also yields intermediate relations like those of
Eq. (A7), where the matrices

W(k) = [H(1),P(k−1)]− (A18)

stand instead of U(k). Hence, the extent of similar-
ity between C(k) and P(k) generally depends on that
between the off-diagonal blocks of matrices U(k) and
W(k) for the given value of k. For k = 1 and k = 2,
these blocks were shown to be mutually proportional.
[In the case of k = 2, contributions of the second
and third terms of the matrix U(2) of Eq. (A8) to the
above-mentioned off-diagonal blocks vanish, and the
matrix U(2) may be actually replaced by the commuta-
tor [H(1),C(1)]−, the latter being similar to the matrix
W(2) as Eq. (A18) indicates. That is why the relevant
corrections C(2) and P(2) closely resemble each other.]
For k = 3, 4, etc, however, there is no direct propor-
tionality between the off-diagonal blocks of matrices
U(k) and W(k).

Let us return again to our block-diagonalization
problem and consider the third order members as an ex-
ample. An intermediate equation like that of Eq. (A7)
may be derived for k = 3 as well, where

U(3) = [H(1),C(2)]−

+ C+
(1){[H(0),C(2)]− + [H(1),C(1)]−}

− (C(2) + C+
(1)C(1))[H(0).C(1)]− . (A19)

As opposed to U(2) of Eq. (A8), the above-exhibited
matrix U(3) cannot be replaced by the first term
[H(1),C(2)]−, because the remaining terms of Eq. (A19)

also contribute to its off-diagonal blocks U(3)
12 and

U(3)
21 . Consequently, a new matrix G̃(3) is now ob-

tained that serves to express the off-diagonal blocks of
the correction C(3):

C(3)
12 = G̃(3), C(3)

21 = −G̃+
(3). (A20)

Equation conditioning the matrix G̃(3) resembles that
of Eq. (A14), where the analogue of the matrix V(2)

takes the form

Ṽ(3) = SG(2) − G(2)Q

− 1
2
(RG+

(1)G(1) + G(1)G
+
(1)R + G(1)R

+G(1)) .

(A21)
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Distinction between matrices G̃(3) and G(3) (the latter
taking the off-diagonal positions in the correction P(3)

of the CBO matrix P) deserves an additional emphasiz-
ing here. Indeed, the term V(3) conditioning the matrix
G(3) is [11]

V(3) = SG(2)−G(2)Q−(RG+
(1)G(1)+G(1)G

+
(1)R)

(A22)

and does not coincide with Ṽ(3) of Eq. (A21). Conse-
quently, dissimilar off-diagonal blocks prove to be pe-
culiar to corrections C(3) and P(3). Meanwhile, the
relevant diagonal blocks remain mutually proportional.
From Eq. (A3), we obtain

C(3)
11 =−1

2
(G(1)G

+
(2) + G(2)G

+
(1)) ,

C(3)
22 =−1

2
(G+

(1)G(2) + G+
(2)G(1)) . (A23)

The same procedure may be easily performed also
for higher values of the order parameter k. For k > 4,
however, dissimilarity between submatrices of correc-
tions C(k) and P(k) embraces both diagonal and off-
diagonal positions. Thus, the overall distinction be-
tween members of power series concerned grows under
increasing values of the order parameter. To achieve
the ends of the present study, we may confine ourselves
to diagonal submatrices of corrections C(4) and C(5).
For k = 4, the relevant formulae follow from Eq. (A4),
where the product C+

(2)C(2) plays an important role.
Indeed, just this term yields renormalization matrices
of the second order in the final expressions for C(4)

11

and C(4)
22 . For instance, we obtain

C(4)
11 = C(4)+

11 =

− 1
2
(
G(1)G̃

+
(3) + G̃(3)G

+
(1) + G(2)G

+
(2)

)
− 1

2
C(2)

11 C(2)
11 . (A24)

The fifth order analogue of the above expression, in
turn, takes the form

C(5)
11 = C(5)+

11 =

− 1
2
(
G(1)G̃

+
(4) + G̃(4)G

+
(1) + G(2)G̃

+
(3) + G̃(3)G

+
(2)

)
− 1

2
(
C(2)

11 C(3)
11 + C(3)

11 C(2)
11

)
(A25)

and contains renormalization matrices of both second
and third order.

Before finishing this appendix, let us dwell on solu-
tion of matrix equations conditioning our principal ma-
trices G̃(k) and/or G(k) and exemplified by Eqs. (A11)
and (A14). We have to do here with equations of the
general form

AX + XB + C = 0 , (A26)

where X stands for the matrix being sought. The for-
mal solution of Eq. (A26) is representable as an inte-
gral [64]. Application of the latter to express the matrix
G̃(k) yields the result

G̃(k) =
∞∫
0

exp(E(+)t)Ṽ(k) exp(E(−)t) dt , (A27)

which offers no local relations between elements of
matrices G̃(k) and Ṽ(k). Given that E(+) and E(−) are
diagonal matrices (i. e. the equality (38) is assumed),
equations concerned may be solved algebraically. Sep-
arate elements G̃(k)il take then the form of fractions,

G̃(k)il = −
Ṽ(k)il

ε(+)i + ε(−)l
. (A28)

Substituting matrices R and SG(2) − G(2)Q for Ṽ(1)

and Ṽ(2) respectively (see Eq. (A15)) yields the ex-
pressions for elements G(1)il and G(2)il exhibited in
Eqs. (40) and (41).

Appendix B

One-electron density matrix as a projector to the
subset of occupied localized MOs

Submatrices of the LMO representation matrix C
are generally determined by matrix equations as dis-
cussed in Sec. 2 and in the Appendix A. This im-
plies that elements of the matrix C are not expressible
explicitly in contrast to the usual numerical forms of
canonical MOs. Nevertheless, the indirect way of ob-
taining the CBO matrix P on the basis of projector to
the entire subset of occupied LMOs does not lose its
importance in the present case too. Moreover, appli-
cation of this approach yields useful interdependences
between matrices G̃(k) and G(k) for k = 3, 4, . . .
and thereby allows us to verify our principal relations
shown in Eqs. (31)–(37) directly.

Let us start with the general definition of the one-
electron DM of any molecular system as a projector
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to the relevant subset of occupied one-electron states
(see e. g. [15]). Both canonical MOs and their non-
canonical counterparts (including LMOs) of any type
are able to play the role of one-electron orbitals here.
Moreover, the projector itself is additionally multiplied
by the occupation number 2. Let the row-matrix of oc-
cupied LMOs (see Eq. (8)) be designated by the ket-
vector |Ψ1(r)〉, where r represents the position of an
electron in the real space. The above-specified defini-
tion of the DM P (r | r′) then takes the form

P (r | r′) = 2 |Ψ1(r)〉
〈
Ψ1(r′)

∣∣ , (B1)

where 〈Ψ1(r′)| is the relevant bra-vector (column-
matrix). After substituting an expression for |Ψ1(r)〉
like that of Eq. (8), we obtain

P (r | r′) =
2∑

I,J=1

|ΦI(r)〉PIJ

〈
ΦJ(r′)

∣∣ , (B2)

where PI,J (I = 1, 2; J = 1, 2) are multidimensional
elements (blocks) of the representation of the DM in
terms of two subsets of FOs {Φ1} and {Φ2} introduced
in Sec. 2. The expression (B2) serves as a matrix gen-
eralization of the well-known bilinear form of the DM
in terms of individual basis functions. For blocks PIJ ,
we accordingly obtain

P11 = 2C11C+
11 , P22 = 2C21C+

21 ,

P12 = 2C11C+
21 , (B3)

where submatrices of the matrix C (see Eq. (7)) are
contained.

Let us dwell first on submatrices P11 and P22 tak-
ing the diagonal positions in the CBO matrix P. Di-
agonal elements of these submatrices (P11,ii and P22,ll)
correspondingly coincide with populations (occupation
numbers) of IOFOs (X(+)i) and of IVFOs (X(−)l). In
this connection, let submatrices P11 and P22 be alter-
natively designated by X(+) and X(−), respectively,
and called the intrasubset population matrices. Sub-
stituting the power series for C11 shown in Eq. (10)
into the first relation of Eq. (B3) followed by employ-
ment of the interdependences between C(k)

11 and D(k)
(+)

of Eq. (22) yields the result

X(+) = 2
(
I − D(2)

(+) − D(3)
(+) − D(4)

(+) − . . .
)

(B4)

or

X(+) = 2(I − D(+)) . (B5)

The second relation of Eq. (B3) may be reformulated
analogously. We obtain

X(−) = 2D(−) . (B6)

Thus, intrasubset population matrices prove to be pro-
portional to respective intersubset delocalization ma-
trices. The relations (B5) and (B6) evidently are ma-
trix generalizations of Eqs. (31) and (32), respectively.
Thus, passing to diagonal elements within the former
serves to verify the latter directly.

Let us turn now to the last relation of Eq. (B3) deter-
mining the off-diagonal blocks of the matrix P. Sub-
stituting the power series shown in Eq. (10) for both
C11 and C+

21 and collecting terms of the same order
(k) within the right-hand side of the relation concerned
yields expressions for separate members (P(k)

12 ) of the
power series for the block P12. These are as follows:

P(0)
12 = 0 , P(1)

12 = 2C(1)+
21 , P(2)

12 = 2C(2)+
21 ,

P(3)
12 = 2

(
C(3)+

21 + C(2)
11 C(1)+

21

)
,

P(4)
12 = 2

(
C(4)+

21 + C(2)
11 C(2)+

21 + C(3)
11 C(1)+

21

)
, (B7)

etc. Let us recall now that C(k)+
21 coincide with − G̃(k)

for any k as Eq. (12) indicates, whereas P(k)
12 equals

to −2G(k) [10]. From the second and third relation
of Eq. (B7) we then obtain that G̃(1) = G(1) and
G̃(2) = G(2) as discussed already in Sec. 2. The last
two relations of Eq. (B7), in turn, yield the following
interdependences between matrices G(3) and G̃(3), as
well as between G(4) and G̃(4):

G(3) = G̃(3) −
1
2
G(1)G

+
(1)G(1) , (B8)

G(4) = G̃(4) −
1
2
(
G(1)G

+
(1)G(2)

+ G(1)G
+
(2)G(1) + G(2)G

+
(1)G(1)

)
. (B9)

These relations allow a direct proof of our principal re-
sults of Eqs. (31)–(37). For instance, use of Eq. (B8)
permits the expression of Eq. (18) for 2d(4)

(+)i,(−)l to be
rewritten as follows:

2d(4)
(+)i,(−)l = 4G(1)ilG(3)il + 2 | G(2)il |2

+ 2G(1)il{G(1)G
+
(1)G(1)}il , (B10)

where equalities G∗
(k)il = G(k)il and G̃∗

(k)il = G̃(k)il

are additionally accepted. This formula coincides with
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that for x(4)
(+)i,(−)l derived previously [8, 9, 11] from so-

lution of the commutation equation for the matrix P.
Thus, the first relation of Eq. (37) is verified for k = 4.

On the whole, interdependences like those of
Eqs. (B8) and (B9) allow us to conclude the corrections
P(k) and C(k) to be interrelated even for k = 3, 4, . . .,
although the relations concerned take somewhat more
involved forms versus those established previously for
k = 1 and k = 2 (Sec. 2).

Appendix C

Derivation of expressions for total energies

Let the Hamiltonian matrix of our system (H) be
block-diagonalized as shown in Eq. (5) and thereby to
contain the eigenblocks E1 and E2 in its diagonal posi-
tions. The relevant total energy (E) is then expressible
as follows:

E = 2TrE1 , (C1)

where the subscript 1 is assumed to refer to the sub-
set of occupied LMOs {Ψ1}. An alternative form of
Eq. (C1) also results from Eq. (5), i. e.,

E = 2Tr{C+HC}11 , (C2)

where C is the LMO representation matrix. In our
case, the matrix H is defined by Eqs. (1) and (2) and
contains zero and first order members. This form of
the initial Hamiltonian matrix may be substituted into
Eq. (C2) along with the consequent power series for the
matrix C (see Eq. (9)). Thereupon, terms of the same
order (k) may be collected to build up members of the
power series for the submatrix {C+HC}11 and/or E1

and thereby for the resulting total energy (E). The first
two members of the latter series are

E(0) = 2Tr{H(0)}11 = 2TrE(+) ,

E(1) = 2Tr{H(1)+C+
(1)H(0)+H(0)C(1)}11 = 2TrS ,

(C3)

where E(+) and S are submatrices of our matrix H of
Eq. (2). It is evident that the sum E(0) + E(1) coincides
with the total energy of isolated IOFOs.

Members of the same series of higher orders (k =
2, 3, . . .) may be conveniently represented as sums of
two components containing the zero order Hamiltonian
matrix H(0) and the relevant first order member H(1),
respectively. Let these components acquire additional
superscripts (α) and (β). For the kth order corrections

to the eigenblock E1 and to the total energy E , we cor-
respondingly obtain

E1(k) = E(α)
1(k) + E(β)

1(k) , E(k) = E(α)
(k) + E(β)

(k) (C4)

and

E(α)
(k) = 2TrE(α)

1(k) , E(β)
(k) = 2TrE(β)

1(k) . (C5)

Expressions for particular components E(α)
1(k) and E(β)

1(k)

are as follows:

E(α)
1(2) =

{
C+

(2)H(0) + H(0)C(2) + C+
(1)H(0)C(1)

}
11 ,

(C6)

E(β)
1(2) =

{
C+

(1)H(1) + H(1)C(1)

}
11 , (C7)

E(α)
1(3) =

{
C+

(3)H(0) + H(0)C(3) + C+
(2)H(0)C(1)

+ C+
(1)H(0)C(2)

}
11 , (C8)

E(β)
1(3) =

{
C+

(2)H(1) + H(1)C(2) + C+
(1)H(1)C(1)

}
11 ,

(C9)

etc. Let us invoke now Eqs. (2) and (7) and turn to sep-
arate blocks within the right-hand sides of Eqs. (C6)–
(C9). Thereupon, let us employ the expressions for sep-
arate submatrices of the corrections C(k) derived in the
Appendix A (see also Sec. 2). As a result, we obtain
the following principal relations:

(k − 1)E(β)
(k) = −kE(α)

(k) (C10)

and

E(α)
(k) = −2Tr

(
D(k)

(+)E(+) + D(k)
(−)E(−)

)
, (C11)

where D(k)
(+) and D(k)

(−) are shown in Eq. (21). Use of
Eqs. (C4), (C10), and (C11), in turn, yields an expres-
sion for the kth order energy E(k) in terms of intersubset
delocalization matrices of the same order, namely,

E(k) =
2

k − 1
Tr
(
D(k)

(+)E(+) + D(k)
(−)E(−)

)
. (C12)

This expression indicates the energy alteration due to
interorbital interaction to originate from the intersubset
delocalization.

To demonstrate the derivation of Eqs. (C10)–(C12),
let us start with the second order terms (k = 2). After
substituting Eqs. (2) and (A13) into Eq. (C7), we obtain

E(β)
1(2) = −RG+

(1) − G(1)R
+ . (C13)
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Similarly, Eqs. (2), (A13), (A16), and (C6) yield

E(α)
1(2) =−1

2
G(1)G

+
(1)E(+)

− 1
2
E(+)G(1)G

+
(1) − G(1)E(−)G

+
(1) . (C14)

Let us invoke now the matrix equation (A11) and use
it to replace the products G+

(1)E(+) and E(+)G(1) of
the first two terms of (C14) by −E(−)G

+
(1) − R+ and

−G(1)E(−) − R, respectively. Instead of Eq. (C14),
we then obtain

E(α)
1(2) =

1
2
(
RG+

(1) + G(1)R
+) . (C15)

Comparison of Eqs. (C13) and (C15) provides us with
relations

E(β)
1(2) = −2E(α)

1(2) , E1(2) = −E(α)
1(2) , (C16)

as well as with a compact expression for the second or-
der correction to the eigenblock E1 originally derived
in Ref. [65],

E1(2) = −1
2
(
RG+

(1) + G(1)R
+) . (C17)

The relation (C10) for k = 2 follows straightforwardly
from Eq. (C16). Finally, Eqs. (21), (C4), and (C14)
yield an expression for the second order energy E(2)

in terms of matrices D(2)
(+) and D(2)

(−), which coincides
with Eq. (C12) for k = 2 and may be found also in
Ref. [66].

An analogous derivation may be performed for
higher values of the order parameter k too, although
the relevant relations become somewhat more cumber-
some. Let us consider the third order terms as an ex-
ample. After invoking Eq. (A11) we obtain

E(α)
1(3) =− 1

2
(
G(1)G

+
(2)E(+) + E(+)G(2)G

+
(1)

+ G(1)E(−)G
+
(2) + G(2)E(−)G

+
(1)

− RG+
(2) − G(2)R

+) (C18)

instead of Eq. (C15). Meanwhile, the remaining com-
ponent E(β)

1(3) may be reformulated as

E(β)
1(3) =

1
2
(
G(1)G

+
(2)E(+) + E(+)G(2)G

+
(1)

+ G(1)E(−)G
+
(2) + G(2)E(−)G

+
(1)

)
−
(
RG+

(2) + G(2)R
+) , (C19)

where Eqs. (A14) and (A15) are used to replace
SG(1) − G(1)Q by −E(+)G(2) − G(2)E(−). After
summing up Eqs. (C18) and (C19), the total third or-
der correction to the eigenblock E1 takes the form

E1(3) = −1
2
(
RG+

(2) + G(2)R
+) , (C20)

as originally derived in Ref. [65]. Furthermore, em-
ployment of cyclic transpositions of matrices inside the
Tr signs along with Eqs. (A11) and (C5) allows the
components of the third order energy E(3) to be rep-
resented in the following simple forms:

E(α)
(3) = 4Tr(G(2)R

+) , E(β)
(3) = −6Tr(G(2)R

+) .
(C21)

The relation of Eq. (C10) for k = 3 follows immedi-
ately after comparison of these expressions. Finally,
invoking the definition of matrices D(3)

(+) and D(3)
(−) of

Eq. (21) along with the initial formula for E(α)
1(3) result-

ing from Eq. (C8) allows the α-component of the third
order energy to be represented as shown in Eq. (C11).
The total third order energy then takes the form of
Eq. (C12) for k = 3.
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KRŪVIO PERSISKIRSTYMO IR DELOKALIZACIJOS TARPUSAVIO ATITIKIMAS IR JO
TAIKYMAI ORGANINĖMS REAKCIJOMS TIRTI

V. Gineitytė

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka
Krūvio persiskirstymas molekulėse ar molekulinėse sistemose

dėl cheminės sąveikos dažnai yra siejamas su atskirų lokalizuotų
elektronų porų daline delokalizacija. Klasikinėje chemijoje ši prie-
laida padeda interpretuojant organinių reakcijų tarpinių būsenų ar
produktų santykinius stabilumus. Darbe siekiama pagrįsti tokią
sąsają lyginant molekulinių sistemų vienelektronių tankio matricų
ir jų nekanoninių (lokalizuotų) molekulinių orbitalių (MO) trikdžių
teorijos eilutes tarpfragmentinių sąveikų atžvilgiu. Šiam tikslui api-
brėžti vadinamieji lokalizuotųjų MO (LMO) delokalizacijos koe-
ficientai ir nustatytas jų proporcingumas atitinkamų bazinių orbi-

talių užpildymo skaičių pokyčiams dėl minėtųjų sąveikų tikslumu
iki penktos eilės narių imtinai. Gautieji rezultatai pritaikyti inter-
pretuojant pagrindines organines reakcijas. Klasikinės šių reak-
cijų ankstyvųjų stadijų interpretacijos naudojantis vadinamosiomis
lenktosiomis strėliukėmis dabar įgauna kvantmechaninį pagrindą.
Be to, skirtingai nuo minėtojo klasikinio interpretacijos būdo, darbe
pasiūlytoji metodika įgalina kiekybiškai palyginti alternatyvius ti-
riamosios reakcijos kelius pagal santykinius LMO delokalizacijos
laipsnius. Tuo pagrindu parodyta, kad vyraujantys (leidžiami) re-
akcijų keliai pasižymi didesne LMO delokalizacija negu kiti (drau-
džiami) keliai.


