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We model the formation of ordered structures in systems consisting of up to 52 identical particles interacting by Coulomb
repulsion forces and confined within a two-dimensional parabolic trap. Our algorithm consists of a number of Metropolis steps
followed by the steepest-descent minimization of the total potential energy of the system. The role of the first (Metropolis)
stage is to create a random canonically distributed configuration, while the subsequent minimization locates the closest local
minimum starting from this random configuration. In most cases we find that more than one stable configuration may be
formed, and often the lowest-energy configuration is not the most probable one. The concept of configurational entropy is
introduced to quantify the uncertainty due to the availability of several alternative structures.

Keywords: Wigner crystallization, Monte Carlo simulation, entropy

PACS: 05.20.-y, 61.46.Bc

1. Introduction

The formation of ordered structures in systems con-
sisting of a finite number of strongly interacting parti-
cles is of considerable interest for researchers working
in diverse areas of physics, in particular, low dimen-
sional nanostructures [1–3] and plasma physics [4–6].
In line with tradition, such structures are often re-
ferred to asWigner crystalsas it was Eugene Wigner
who proposed, back in 1934, that a crystal lattice may
be formed by an electron gas of sufficiently low den-
sity [7].

As a matter of fact, the formation of a three-
dimensional lattice of electrons was never realized,
however, its two-dimensional analogue turns out to be
feasible in electron systems confined on the surface of
liquid helium [1, 8] as well as in semiconductor het-
erostructures [9, 10].

In recent years, investigations of ordered structures
have been gradually shifting from electronic systems
towards systems consisting of larger and heavier par-
ticles. In particular, most of recent successful ex-
periments have been performed with micrometre-sized
particles carrying electrostatic charges of around sev-
eral thousand elementary units that are formed in a
radio-frequency discharge and captured by electrostatic
traps [5, 6].

The underlying physics of these systems is the same
as envisioned by Wigner as the crystallization is still
induced by the domination of the Coulomb repulsion
energy over the kinetic energy. On the other hand, the
time and length scales are much more advantageous for
direct observation [6]. The trajectories of microparti-
cles can be recorded with the aid of ordinary CCD cam-
eras, and typical periods of their normal-mode oscilla-
tions are on the order of seconds [11]. The behaviour
of these crystals can be analysed within a completely
classical or quasiclassical approach [12].

The most basic issue pertaining to the study of static
properties of Wigner crystals is the determination of
energetically stable configurations formed by a certain
number of particles captured in a trap of a given shape
and dimensionality.

It turns out that in typical situations one finds not
one but several distinct stationary configurations, and
the number of such configurations grows very rapidly
(exponentially) with the number of particles [4]. The
stationary configuration with the lowest energy corre-
sponds to the global energy minimum and is commonly
referred to as theground state. Other configurations
corresponding to local energy minima and character-
ized by higher energy values are known asmetastable
states.

In order to give an illustration to what has just been
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Fig. 1. Ground and metastable configurations of five- and 21-particle systems. The concentric circles mark equipotential lines of the
parabolic trap.

said, in Fig. 1 we show the two competing configu-
rations present in a five-particle system and the three
competing configurations that we have found in a sys-
tem of 21 particle. The configurations are arranged
in the order of increasing energy and are marked by
their shell-structure. One can clearly see in the graphs
that due to the circular shape of the confining poten-
tial particles tend to arrange themselves into nearly cir-
cular shells. Thus, is it handy to identify configura-
tions by enumerating the numbers of particles in each
shell starting with the innermost one. For example,
the ground state configuration of 21-particle system is
(1, 7, 13), while the arrangement of particles in two
metastable states is(2, 7, 12) and(2, 8, 11). We note,
however, that when the number of particles exceeds 30
it is not always possible to discern the shell structure in
some configurations. The reason for that is the compe-
tition between the circular confinement and the hexag-
onal lattice symmetry that appears in the interior of the
trap.

Simulation studies often concentrate on the quest to
determine the global potential energy minimum. Vari-
ous algorithms, based on the simulated annealing [13]
and dissipative molecular dynamics [4, 14] are con-
structed and applied. A certain uneasiness is felt when
the optimal configuration obtained in a simulation does
not reproduce that observed experimentally.

However, recent experiments performed on three-
dimensional particle clusters [4] have shown that meta-
stable states may be formed with significantly higher
probabilities than the ground state. It has been argued
that this happens when a metastable state controls a
larger basin of attraction. Here, the meaning of the
word “basin” is best portrayed as the drainage basin
of a river, that is, the area from which a river collects
its waters.

In order to illustrate this concept we present Fig. 2.
This figure shows a simple one-dimensional sketch of a
certain function intended to represent the potential en-
ergy. This function has a global minimum (marked by

GM

LM

Fig. 2. One-dimensional function with two minima. The global
minimum (GM) controls a smaller basin of attraction than the local
minimum (LM). Vertical dotted lines delimit the different basins.

GM on the graph) which is situated at the bottom of
a rather narrow valley and is thus characterized by a
small basin of attraction. In contrast, the local mini-
mum (LM) is much more shallow, and its basin of at-
traction is much larger. The basins of attraction are de-
limited by vertical lines. It is clear that a particle placed
at a random point and allowed to roll down towards the
nearest stationary point would most likely end up in a
metastable state.

The phase space defined by all possible configura-
tions ofN two-dimensional particles is2N -dimension-
al and, undoubtedly, the distribution of its minima and
separating barriers is rather complicated. However, it is
still possible to analyse the phase space by locating the
energy minima and partitioning the phase space into a
set of basins of attraction adjacent to these minima. The
definition of the basin of attraction in many dimensions
is as simple as in one dimension: a given pointP be-
longs to the basin of attraction of a stable configuration
C if a straightforward downhill minimization algorithm
starting from the pointP converges to the minimumC.

The goal of the present work is to perform a numer-
ical study in order to determine all (both ground and
metastable) stationary states in a system of up to 52
charged particles in a two-dimensional parabolic trap,
and thus gain insight into the occurrence probabilities
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of various minima. We propose a quantitative measure
for the probabilities, and introduce a useful concept of
configurational entropy.

2. Model and computational approach

Let us consider a system consisting of a given num-
ber N 6 52 of identical two-dimensional particles of
massm and electrostatic chargeq. The in-plane motion
of particles is confined by the trap potential which shall
be assumed to be isotropic and of a parabolic shape
with the characteristic confining frequency denoted by
ω. Thus the classical Hamilton function of the system
may be written as

H =
N∑

i=1

p2
i

2m
+

N∑
i=1

mω2r2
i

2
+

N∑
i>j

q2

4πε0|ri − rj |
. (1)

Here, the two-dimensional vectorsri andpi stand, re-
spectively, for the radius-vector and the momentum of
the ith particle. The last term of the Hamilton func-
tion (1) represents the pairwise Coulomb interactions
between the particles.

Looking for stationary equilibrium configurations,
the kinetic energy term is discarded and one is con-
cerned with the minimization of the total potential en-
ergy which is given by the second and the third term of
Eq. (1). Obviously, these two terms are in competition:
the Coulomb repulsion tends to spread the particles as
far apart as possible while the confinement tries to hold
them together.

Convenient scaling properties of the potential are
easy to spot and exploit. It may be shown that by us-
ing proper units for the coordinates and the energies
the problem is reformulated as the minimization of the
dimensionless interaction energy

E =
1
2

N∑
i=1

r2
i +

N∑
i>j

1
|ri − rj |

, (2)

which will be our main concern hereafter.
It is interesting to observe that our model closely

resembles the so-called Thomson problem which con-
siders the equilibrium distribution of a numberN of
equal charges on a sphere. This problem stems from
the Thomson model of the atom proposed in 1904 and
is of more academic nature. Nevertheless, the Thom-
son problem recently attracted considerable attention.
Ground state configurations have been studied [15, 16]
mostly concentrating on their energies and symmetry
properties.

2.1. Algorithm

The algorithm employed to determine the stable
states and estimate their occurrence probabilities (as a
measure of the adjacent basin of attraction) is a combi-
nation of a sequence of standard Metropolis steps [17,
18] followed by the steepest-descent [19] energy min-
imization. A similar approach was used before in a
three-dimensional set-up [4].

Let us briefly remind the reader that a Metropolis
step is a possibility for the simulated system to perform
a change of its current configuration. A small random
modification of the coordinates of one of the particles is
proposed (by a Mersenne twister [20] random number
generator) and either accepted or rejected. The proba-
bility of acceptance may be written as

p = min(1, e−∆E/kT ) . (3)

Here,∆E is the change in the total potential energy
of the system due to the proposed move, and the func-
tion min(a, b) selects the smaller value of its two ar-
guments. In simple terms this means that the changes
that lower the energy are accepted always, while the
steps upwards in the energy scale are accepted with an
exponentially decaying probability.

The quantitykT is the “temperature” of the simula-
tion. When this temperature is high the simulated sys-
tem is more likely to perform moves that increase its
energy. Note, that normally temperatures and energies
are measured in different units and the Boltzmann con-
stantk is used as a factor of unit conversion. In our
case, since we work in dimensionless units we treatkT
as an indivisible symbol and simply call it the temper-
ature.

When a sufficiently large number of Metropolis
steps have been performed (we typically use 103 to 104

steps in our work) the canonical distribution is estab-
lished. Then the current configuration of the system is,
in essence, randomly drawn from all possible configu-
rations with the probability proportional to the Boltz-
mann factore−E/kT .

The next stage of the algorithm is to make the sys-
tem to roll down to the nearest energy minimum, ei-
ther global or local. This is achieved by employing the
steepest descent minimum search supplemented by the
parabolic extrapolation [22].

The above cycle of two stages – thermalization and
sudden cooling – is repeated a number (typically 104

to 105) of times and statistics of the minima found
is collected. In this way we are able to calculate the
probabilities that the configuration of our system will



408 E. Anisimovas et al. / Lithuanian J. Phys.50, 405–411 (2010)

1E-3 0.01 0.1
0.0

0.2

0.4

0.6

0.8

1.0

(2,7,12)

(1,8,12)

 P

kT

N = 21

(1,7,13)

Fig. 3. Typical temperature dependences of the probabilities. The
case of 21 particles in a trap is shown. Note that the ground state

(1, 7, 13) is not the most probable at high temperatures.

be within the basin of attraction of a given minimum.
Also, having repeated the described numerical experi-
ment a large number of times at different temperatures
we are confident that the complicated multidimensional
phase space of configurations is explored reasonably
well and all stable states that have realization probabil-
ities higher than 10−5 have been determined.

Let us study a typical result. Figure 3 shows the case
of N = 21 electrons in a trap. As we mentioned before,
three stable configurations are possible and can be la-
beled by their shell structure.

When the temperature of simulation is low, the sys-
tem can oscillate randomly only in the vicinity of the
global minimum. Thus, Fig. 3 shows that as long
as kT . 3·10−3 the global-minimum configuration
(1, 7, 13) is found with probability close to unity, and
the remaining two stable configurations remain un-
reachable.

As the temperature of the simulation increases it be-
comes possible to explore larger areas of the configu-
rational phase space and the system may cross the po-
tential barriers into the basins of attraction of the other
minima. Evidently, the metastable state(2, 7, 12) is at
the bottom of a substantially larger basin of attraction,
therefore, its probability becomes the largest.

Note that at high temperatures the temperature de-
pendences of the probabilities pertaining to various
minima level off. That means that the temperature has
become significantly higher than the differences be-
tween the minima and separating barrier heights. Thus,
the high-temperature limit of the studied probability is
a well defined and temperature-independent measure of
the phase-space volume surrounding different minima.
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Fig. 4. Number of stable configurations of aN -particle system in a
trap.
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Fig. 5. Energy bandwidth in aN -particle system.

3. Results

With this preparatory material in our background let
us turn to the obtained results.

Figure 4 shows the dependence of the number of sta-
ble configurations on the number of particles in a cir-
cular two-dimensional trap. We see that only systems
consisting ofN = 2, 3, 4, 7, 8, 11, and 13 particles have
uniquely defined configurations. As long as the num-
ber of particles does not exceedN = 29 one has up to
three stable configurations, and afterwards the number
of configurations takes off. One sees that in general the
number of configurations grows rather rapidly, and this
growth is quite erratic.

On the other hand, in Fig. 5 we show the width of the
energy band. This width is defined as the difference of
the highest and the lowest possible energies among all
stable configurations. In other words, it is the range of
available energies. We see that this dependence is also
rather erratic, however, there is no visible widening of
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Fig. 6. Typical temperature dependences of the probability.

the band. Thus, as the number of particles in the trap
increases, various stationary states become closer and
closer in energy and eventually become impossible to
separate. As a consequence, for larger systems, when
the number of distinct stable states reaches several tens
or more, it makes little sense to study individual con-
figurations and the useful concept that survives is the
energy band.

Another very important point to note is that the re-
alization probabilities of metastable states may be very
different. Let us take a look at Fig. 6 where we show
three typical behavioural patterns of the temperature
dependence of probabilities to end up in a given stable
state. The three panels correspond to traps containing
14, 29, and 36 particles. Figure 3 that we considered
earlier as an illustration of the algorithm may also be
regarded as a supplement of this figure.

A 14-particle system has only two stable configura-
tions, which in terms of their shell structure are labeled
(4, 10) for the ground state and(5, 9) for the metastable
state. Naturally, at low temperatureskT . 0.01 only
the ground state is available while at higher tempera-
tures both states may be realized with comparable prob-
abilities.

A system of 29 particles has three stable configu-
rations which are, in the order of increasing energy:
(4, 10, 15), (5, 10, 14), and(4, 11, 14). As one can see
from the corresponding graph, in the high-temperature
limit the probabilities of all three states are of compara-
ble magnitude. The ground state has the highest prob-
ability, followed by the first excited state, and then fol-
lowed by the second excited state that has the highest
energy.

However, such a clear-cut arrangement is not always
realized. The last panel pertaining to the 36-particle
system illustrates the point. Here one finds in total
five stable configurations. At high temperatures the
most probable is not the ground state(1, 6, 12, 17) but
the second one(1, 7, 12, 16). The third lowest state

is (1, 6, 13, 16) and at high temperatures also becomes
more probable than the ground state. The remaining
two configurations –(1, 7, 13, 15) and(1, 7, 11, 17) –
have rather low probabilities. The probability of the
highest-energy configuration does not exceed 0.005.

In general, as the number of particles in the trap and
the number of stable configurations grow, only a few
most important states are dominant while the basins
of attraction of the remaining ones account for a very
small fraction of the phase-space volume. This ob-
servation permits one to conclude that the number of
states is not such a useful concept. Simple counting of
the number of found stationary configurations is mis-
leading in two ways. First of all, since the number
of performed simulation runs is always finite, some
of the less probable configurations may be overlooked
or discovered by accident. Thus, the total number of
configurations is usually not known with confidence.
Moreover, straightforward counting of configurations
disregards their wildly different probabilities and im-
portance.

Therefore, we propose to rely on the concept ofcon-
figurational entropy. Conforming to the definitions ac-
cepted in information theory [21] we define the config-
urational entropy as

S = −
∑
j

pj log2 pj . (4)

Here, the sum is taken over all states enumerated by the
indexj and the symbolspj denote the probabilities of
these states. We find it convenient to take the logarithm
to the base 2 in Eq. (4).

The proposed configurational entropy is the measure
of uncertainty of the particle configurations. We note,
that if there is only one available configuration, the en-
tropy equals zero. This reflects the fact that we know
the configuration that will be found in any experiment
and consequently there in no uncertainty. Further, the
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Fig. 7. Configurational entropy of a Wigner crystal in a circular trap. Panel (a) shows the temperature dependence of the configurational
entropy for several values of the number of particles. Panel (b) displays the dependence of the high-temperature limit of the entropy on the

number of particles.

entropy (4) is stable with respect to an unexpected dis-
covery of an additional state of low probability.

Temperature dependences of the configurational en-
tropy are shown in Fig. 7(a) for several values of the
number of particles in the trap. Since the entropy is
a function of the probabilities, these dependences re-
peat the general shape of the probability dependences.
At low temperatures the entropy equals zero, and the
dependences level off at high temperatures when the
probabilities of all configurations become temperature
independent. Thus, the high-temperature limit of the
entropy is a useful measure of the configurational un-
certainty. The right panel, Fig. 7(b), displays the depen-
dence of the configurational entropy on the number of
particles in a trap. The growth of the entropy is erratic.
The dotted line shows the optimal linear fit, however,
we see that the available data is insufficient to tell for
sure whether this growth is linear on the average or not.
We find this question interesting and hope to further in-
vestigate it in our forthcoming work.
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METASTABILIOS VIGNERIO KRISTALŲ KONFIG ŪRACIJOS APSKRITOJE GAUDYKL ĖJE

E. Anisimovas, O. Rancova, T. Varanavičius

Vilniaus universitetas, Vilnius, Lietuva

Santrauka

Tiriamas tvarkingų darinių formavimasis sistemose, sudary-
tose išN 6 52 identiškų dalelių, esančių apskritoje dvimaṫeje
gaudykl̇eje ir tarpusavyje sąveikaujančių Kulono st ūmos jėgomis.
Skaitmeniniam modeliavimui pasitelkiami Metropolio algoritmas
ir greičiausio nusileidimo metodas. Metropolio algoritmo paskir-
tis yra sugeneruoti atsitiktinę (kanoninio pasiskirstymo) dalelių pa-
dėčių konfig ūraciją. Tuo tarpu greičiausio nusileidimo metodas

leidžia aptikti artimiausią sąveikos energijos minimumą atitinka-
nčią stabilią konfig ūraciją. Daugeliu atvejų tokių konfig ūracijų ran-
dame keletą ir žemiausios energijos konfig ūracija (pagrindinė sis-
temos b ūsena) dažnai nėra labiausiai tik̇etina. Siekiant kiekybiškai
įvertinti sistemos strukt ūros neapibrėžtumą, atsirandantį dėl keleto
konkuruojaňcių konfig ūracijų buvimo, įvedama konfig ūracinės en-
tropijos sąvoka.
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