Lithuanian Journal of Physics, VA0, No. 3, pp. 305-316 (2010) doi:10.3952/lithjphys.50301

MODIFICATION OF DELAYED FEEDBACK CONTROL USING
ERGODICITY OF CHAOTIC SYSTEMS

V. Pyragas and K. Pyragas

Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kesO0.pfi.It

Received 17 March 2010; revised 8 June 2010; accepted 16 September 2010

We devise a modified delayed feedback control algorithm that allows one to stabilize unstable target states of chaotic
systems for any initial conditions placed on a strange attractor. The algorithm is based on ergodicity of chaotic systems. We
first let the chaotic system to evolve unperturbed until it approaches the neighbourhood of the target state. Then we activate
the controller that stabilizes that target state. We propose a special algorithm that evaluates the closeness of the current state of
the system to the target state. For continuous-time systems, this algorithm can be implemented by simple low-pass filters. We
demonstrate the efficacy of our algorithm with numerical computations of statistics of successful stabilizations.
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1. Introduction of the method include quite diverse experimental sys-
tems from different fields of science. For the details of
The field of controlling the chaos, as it has been experimental implementations as well as various mod-
introduced by the pioneering work of the Maryland ifications of the DFC algorithm we refer to the recent
group [1], has developed during the last two decadeseview paper([4].
into one of the most active fields in applied nonlinear  Although the experimental implementation of DFC
science. Although control theory is a well-developed is almost trivial, the price one has to pay from the the-
discipline in applied mathematics and engineering sci-oretical point of view is that the discussion of DFC
ence, some new aspects have been emphasized in tkghemes requires the analysis of differential-difference
physics literature, like noninvasive control for stabiliz- equations. Such systems are quite difficult to handle
ing the vast number of unstable periodic orbits (UPOs)since the dynamics takes place in infinite-dimensional
embedded in a chaotic attractor. An extremely simplephase spaces. The standard tool for discussing the
control scheme, delayed feedback control (DFC), hascontrol performance consists in linear stability analy-
been proposed in 1992|[2], which allows the stabiliza- sis [5+16]. As a particular benefit of such concepts
tion of time-periodic states when ropriori informa-  one has now gained a quite complete overview of the
tion about the internal dynamics of the system is avail- control performance of DFC from the local point of
able. Nowadays the DFC has become one of the mostiew. But even if such a local analysis predicts stable
popular methods in chaos control reseaich [3]. Thestates, experimental success is not guaranteed, because
DFC algorithm is reference-free and makes use of athe control performance may strongly depend on initial
control signal obtained from the difference between theconditions. The analysis of global properties of DFC
current state of the system and the state of the systersystems, such as basins of attraction of stabilized or-
delayed by one period of a target orbit. The method al-bits, is a much more complicated problem. There exists
lows a noninvasive stabilization of UPOs in the sensevirtually no systematic investigation of time-delayed
that the control force vanishes when the target statdeedback control beyond the linear regime.
is reached. The controlled system can be treated as a Numerical analysis of particular systems shows that
black box, since the method does not require any exthe DFC algorithm can form incredibly complex basins
act knowledge of either the form of the periodic orbit of attraction. In|[[17| 18] it has been shown that one
or the system’s equations. Successful implementationshould pay attention to the global dynamics besides
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linear stability in understanding the behaviour of the time. However, a straightforward implementation of
controlled system and designing the control parame-ergodicity in DFC schemes has not been considered so
ters. For instance, it is completely unclear how largefar. Our aim is to fill this gap and use the OGY ideas
the basins of attraction are, i. e. which initial condition for DFC algorithm. Note that unlike the OGY algo-
is attracted towards a particular stabilized orbit. It hasrithm the perturbation in the DFC algorithm increases
also been noted that some targeting method is additionthe phase dimension of the closed-loop system.
ally needed for avoiding unexpected stabilization of an  In this paper, we consider two discrete-time systems
orbit which has the same period with the target orbit. under DFC, namely, the logistic map in Sgt. 2 and the
Although the general results concerning global prop-Hénon map in Se¢.]3. In these two problems, we let
erties of DFC systems are missing, recently the firstthe system to evolve unperturbed until it approaches a
step has been taken in understanding a possible mectglose neighbourhood of the target steady state. At this
anism responsible for the size of basins of attraction inmoment we activate the DFC perturbation that stabi-
DFC schemes [19-21]. In[20], the authors have devel-lizes the target state. The algorithm does not require a
oped a theory which states that depending on the typ&nowledge of location of the target. We also consider
of transition at the control boundary there appear basinghe stabilization of continuous-time non-autonomous
of attraction of different size. The above authors havedouble-well Duffing oscillator in Se¢]4. Note that in
expected that the basin of attraction is large when a conRef. [23] we have already realized the selection and sta-
tinuous transition at the control boundary appears; onbilization of one of three period-one UPOs embedded
the other hand, a discontinuous transition at the condn the chaotic attractor. However, here we consider the
trol boundary indicates that stabilization works only in Selection and stabilization of a period-two orbit. This
some neighbourhood of the target state. However, thigproblem is much more complicated since it requires the
approach is not universal and does not guarantee th&se of an extended DFC (EDFC) algorithimy [5], and
correct prediction for the system parameters far awaythe knowledge of the time average of the displacement
from the bifurcation point. The lack of a general the- Of the target orbit. We first let the chaotic system to
ory, concerning the global properties of DFC systems,€volve unperturbed until it approaches the close neigh-
represents a serious drawback of the method. bourhood of the target orbit. As soon it happens, we
To improve the global properties of the DFC algo- activate the EDFC feedback perturbation that contains
rithm several nonlinear modifications have been pro-a& Gaussian multiplier. This multiplier automatically
posed. A first heuristic idea has been suggested irz€roes the perturbation as long as the solution moves
the original paper[2]. It has been shown that limit- far away from the target. As soon as the target is ap-
ing the size of the control force by a simple cut-off in- proached, the feedback perturbation begins to act until
creases the basin of attraction of the stabilized orbit.it Stabilizes the target or moves away from it. The ap-
This idea has proved itself in a number of chaotic SyS_proach to and remoteness from the target state can be
tems and now it is widely used in experiments. An al- repeated several times until the final stabilization of the
ternative two-step DFC algorithm has been consideredargetis ac_hieved. We finish the paper with conclusions
in Ref. [22]. In the first step this algorithm generates Presented in Sef] 5.
an extraneous stable periodic orbit close to the target
orbit and in 'the second step it stabilizes the targe'_t._ Fi-5 Controlling the logistic map
nally, a nonlinear DFC for systems close to a subcritical
Hopf bifurcation has been proposed in Ref.|[21]. Here  Time-discrete maps are very convenient dynamical
the basin of attraction is enlarged by coupling control toy models for analysis of the DFC algorithm. Such
forces through the phase of the signal. systems are easer to handle since the dimension of
However, the above nonlinear DFC schemes arephase space stays finite even if the control loop is in-
suitable only for specific systems. In this paper, we cluded. The trends discovered through analysis of dis-
are using the ergodicity in order to improve the global crete maps are a good starting point for developing
properties of DFC. Ergodicity is the universal property intuition about the behaviour of continuous systems.
of chaotic systems. This feature means that the chaotidloreover, in systems with slow dynamics, the schemes
trajectory visits the close neighbourhood of any orbit for controlling discrete maps may be directly imple-
with finite probability. In the seminal paper by Ott, mented.
Grebogi, and Yorke (OGY) [1], the idea to use the er- We start our analysis with the simple 1D logistic
godicity in chaos control was formulated for the first mapz,+1 = bx,(1 — x,). Forb > 3 the system has
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two unstable fixed pointgr = 0 andzyp = 1 — 1/b.
Our aim is to stabilize the nonzero fixed paint by us-
ing the DFC algorithmx, 11 = by, (1 — xy,) + k(2 —
xn—1), Wherek is the feedback gain. Introducing an
auxiliary variabley,, = =, the latter equation can be
rewritten in the form of 2D map:

Tn+1 = bxn(l - $n) + k(«Tn - yn) ) (13-)

(1b)

The fixed points of this map arfgr, yr) = (0,0) and
(xp,yr) = (1—1/b,1—1/b). From linear analysis of
Egs. (1) it follows that the nonzero fixed point becomes
stable for the values of the feedback gain in the interval

Yn4+1=Tn -

b—-3

—<k<1. 2
2<< (2)

The optimal value of the feedback gain, which leads
to the fastest convergence of nearby initial conditions
towards the desired fixed point, is given by

kop = b —2(b—1)Y/2. (3)

In order to obtain this result we have to linearize the
system|[(IL) around the target fixed point, yr). The

linearization yields
)= ) ()
= . 4

Heredx, = x, — zr anddy, = y, — yr are the de-
viations from target fixed point. The eigenvalues of the
Jacobian are given by

o+ (62 — 1/2
+ ( . 4A) (5)

whereo = 2—-b+k andA = k are the trace and deter-

2-b+k -k
1 0

A2 =

9
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Fig. 1. The phase plane of DFC controlled logistic mpp (1).
Crossed circle and square indicate the tar@et, yr) and zero
(zr, gr) fixed points, respectively. The bold curve is the parabola
xn = byn(1—y,) representing an attractor of the free logistic map.
The dotted line is the identity line,, = y,, and two straight dashed
linesz = y,, + ¢ parallel to the identity line indicate the bound-
aries of condition[(IJa). The vertical ling, = Yi1 shows the
boundary of condition (I1b). The thin black dots show the stable
manifold of the zero fixed point (in some regions they are blurred
to a black line). The large grey dots show the domain of attraction
of the target fixed pointzr, yr). The values of parameters dre=
4.0,k = kop ~ 0.536,c = 0.24.

Although the logistic map represents a one-dimen-
sional system, the DFC force increases its dimension
to two. If we considered a stabilization of a period-
two cycle of the logistic map the dimension of the con-
trolled system would be three. The main difference be-
tween the DFC and OGY algorithms is that the first

_increases the dimension of the system under control

minant of the Jacobian, respectively. The feedback gain, Lile the second preservers it unchanged. Note that

k is optimal when the magnitude of leading eigenvalue
is minimal. Such a situation occurs if the discriminant
in (5) is zero, i.eo? = 4A,

(2—b+k)? =4k. (6)
Solving this equation in respect ko we get
ki =b+2(b—1)"2. 7)

The rootk_ corresponds to the case for which the mag-
nitudes of|\; o| are minimal, and thug,, = k_ as
stated in[(B).

In the following we fix the value of the parameter
b = 4, which corresponds to a chaotic regime of the
free (¢ = 0) logistic map. Then the optimal gain is
kop ~ 0.536.

the phase space dimension of continuous-time systems
under DFC control increases to infinity, while for time-
discrete systems it remains finite.

Here we restrict ourselves by consideration of a sim-
ple fixed point of the logistic map, since we can visual-
ize the closed-loop system dynamick (1) on a 2D plane.
The phase portrait of the system is depicted in Fjg. 1.
The basin of attraction of the target fixed poiat:(yr)
is shown by grey dots. It has been determined by iter-
ating the inverse map

Tn—1=Yn, (88.)
—Zn + byn(1 — yn)
’ :

Yn—1=Yn + (8b)
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of Egs. (1) starting from many initial conditions located with Y;;, being a threshold value. As soon as both
in a small circle around the fixed poiitr, yr). conditions are satisfied we switch on the DFC force
We see that the basin of attraction of the target pointwith the parametek chosen in the interval of stabil-
(zr,yr) is very complex. This complexity can be par- ity () and stabilize the fixed point. In the following we
tially understood by analysis of invariant manifolds of choose the optimal value of the control g&ir= kp,.
the zero fixed pointzy, yr). The zero fixed point is a By first condition [(11j) we estimate the strength of
saddle and its stable manifold appears to be a boundarpFC perturbation if it would be applied at the given
curve that confines the basin of attraction of the targetiteration stepn. In Fig.[] this condition represents a
fixed point. The stable manifold of the zero fixed point region between two thin straight lines = vy, + ¢.
(thin black dots in Fig.]1) was depicted as follows. For The parameter defines the distance between these

the map|(1l) linearized at the zero fixed poiat, gr), lines. For suitably smalt, the lines separate a fairly
we first defined the eigenvector small segment of the parabala = by, (1 — y,) in
btk the vicinity of the target such that this segment be-
bs = {1, M} 9 comes enclosed in the basin of attraction of the tar-

get point. Note that the above lines separate two seg-

of the stable eigenvalue ments of the parabola — one close to the desired fixed
9 1/2 point and another close to the zero fixed point. The

= btk —[(b+ k)" — 4K] . (10) second conditior] (I1b) is necessary to exclude the seg-

2 ment in the vicinity of the zero fixed point. The thresh-

Then the stable manifold of the original map (1) was old valueY;y, is defined as intersection of the parabola

plotted by iterating the inverse m4p (8) from initial con- x,, = by, (1 —y,,) with the upper liner;" = y,, +¢ and

ditions placed close to the zero fixed point in the direc- is given by

tion of eigenvector{(9). In Fig.]1 we see that the stable

manifold of the zero fixed point confines the grey dots, _b—1—[(1—b)*—4be]'/? (12)

i. e. itindeed defines the boundaries of attraction of the th 2b '

target fixed point. Thus the complexity of the basin of By second conditiorf (11b) we avoid an activation of the
attraction of the target fixed point is related with tan- o) force in the false region close to the zero fixed

gle_d structure of the stable manifold of the zero fixed point. This suggests that in general a detailed knowl-
point. : o edge of the considered system is necessary.

AlthOUQh the vyhole bas_m of attract|o_n IS very com- Fig.[4 we demonstrate the performance of our al-
plex, it necessarily occupies some region in the V|C|n-gorithm for different values of the parameter We

Ltg Og the tafrg«tatt pcf['.n(xF’ yFIt) fT his Ig_]enera{ f(ta){;l\'tturef?; show the distribution of timea’ (number of iterations)
€ basin of attraction resuits from finear stability ot the needed to achieve control from different initial con-

{1 the il condidons are n far proximiy o the. G1ionS - We Suppose thaty — bun(1 ~ ), e
target. On the other hand, due to the ergodicity, the freethe initial conditions of the majy (1) are placed on the

: .~ strange attractor of the free system. For a given ini-
system g = 0) should approach the target fixed point _. ge a y rag
: - 2 tial condition(zg, 1), the total timeN consists of two
as close as desired for any initial conditions placed on

the strange attractor. time-spansN = Ni + N,. The first timeNV; repre-

2 sents a number of iterations of the fre stem needed
Taking into account the above facts we propose the ot ferations o © sy eede

following strategy based on DFC, which guaranteest.0 approach th? nelghbourho.od'of the target point de
o , : . fined by conditions[(1l1). This time describes a tran-

successful stabilization of the desired fixed point for . . . .

L . . : sient behaviour of the free system and is determined by
any initial conditions. First we sét = 0, and begin . : :
. . . . the ergodic properties of the chaotic attractar [1]. The
iterations of the free logistic map](1). The points fall nd termiVs represents a time of stabilization. i
on the parabola,, = by, (1 — y,) shown in Fig[ 1 by second termv; represents a time of stabifization, 1. €.

bold curve. At every step of iterations we check two the number of |tera_t!ons O.f contrqlled §ystem_ needed to
conditions: approach the stabilized fixed point with a given accu-

racyecr < . We assume that control is successful if
|Zn, — yn| <, (11a) [(zn —2r)? + (yn — yr)}Y/? < ep. Here we choose
er = 51073, The timeN; is defined by the eigenval-
Yn > Yin, (11b) ues of the stabilized fixed point.

As
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Fig. 2. Distribution of timesV needed to achieve control in the logistic mE]o (1). Initial conditions yo) are chosen on the attractor of

the free systemyo = byo(1l — yo). The parameter and the mean timéN) are (a)e = 0.4, (N) = 19.64; (b)e = 0.24,(N) = 24.64;

(c)e =0.12,(N) = 39.60; (d)e = 0.06,(N) = 71.83. In (a) only 78.9% of initial conditions are successful; the empty (white) windows

correspond to initial conditions for which the algorithm failsV) for panel (a) includes only successful realizations. In (b—d) the 100%
success rate is obtained.

In Fig.[4(a) the parameter = 0.4 is too large to 3. Controlling the Hénon map
guarantee the success of the algorithm for any initial
conditions. Only 78.9% of initial conditions taken from Now we apply our algorithm to a more complex
the unity intervaly, € (0, 1) are successful. The mean discrete-time chaotic system. We consider the Hénon
time of successful control i&V) ~ 19.64. In Fig[2(b)  map [24] subjected to DFC:
the parametert is equal to the critical value. = 0.24

at which the algorithm produces 100% success rate for Tpp1=1—az? 4+ by, + k(z, —yn), (133)
any initial conditions. Now the mean time {&V) ~
24.64. With the decrease of the parameteelow the Yntl=Tn . (13b)

critical value, the algorithm also guarantees the suc-
cessful stabilization for any initial conditions, however, The Hénon map is the 2D dynamical system described
the mean time increases drastically. E@qual to 0.12 by two variablegx,, y,). In the following we fix the
and 0.06 the mean timgV) is respectively 39.60 and values of the parameters of the Hénon map at 1.5
71.83 (Fig[ 2(c,d)). Thus the fastest and still reliable andb = 0.2. The last term in Eq[ (IBa) describes the
convergence of the system towards the desired fixedFC force, wheré: is the feedback gain. Generally, the
point is attained foe = &.. DFC perturbation should increase the dimensionality of
Why is the success rate not 100% for larger values ofthe map, but here it is not the case. The exception here
e > .7 The reason for this is that the term of control is related to the specific form of the second equation of
perturbation disturbs the original system, and for somethe Hénon mapy,, .1 = z,. In fact it represents the
initial conditions the solution escapes to infinity. The definition of the time-delayed observahbig_; = y,
largere makes the boundaries in F[d. 1 wider. Unfor- employed in the DFC force. This feature of the Hénon
tunately, one cannot see the reason for the failure frommap allows us to visualize its dynamics on the 2D plane
this figure, and the critical valug. can be found only even in the presence of the control force.
numerically by iterating the controlled map. The free as well as controlled Hénon map possesses
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1.5 ‘ K The linear stability guarantees that the basin of at-
h ’ traction of the target point for the nonlinear map](13)
occupies some region around this point. As well as in
the previous section, we need conditions which allow
us to check whether the current state of the free sys-
tem is in vicinity of the target state. For 2D map we
require two conditions in order to separate some region
around the target point. Our aim is to formulate these
conditions without any knowledge of even approximate
position of the fixed point. Moreover, we suppose that
only one scalar variable, say,, is available for obser-
vation. Then we formulate the desired conditions as
follows: |z, — z,,—1| < € and|x,—1 — x,—2| < €. This
means that we check the smallness of DFC perturbation

1.04

0.5

> 0.0

-0.51

-1.04

A5+ ‘ : . . . ‘ if it would be applied not only at the current moment
A5 10005 ())('0 0.5 10 15 but also at the previous time— 1. Sincex,,_1 = yp,
n we can rewrite the above conditions as follows:
Fig. 3. The phase portrait of the free Hénon map (13)do&=
’wn - yn| <e, (17&)

1.5 andb = 0.2. The black dots show the strange attractor. The
crossed circle and square denote the tafget yr) and extrane-
ous (Zr, Jr) fixed points, respectively. The straight dash lines |Tp—1 — Yn—1]<e. (17b)
zE = y, + ¢ define the boundaries of inequalify (17a). The ) _ ,

inverse transformation of these lines shown by dashed parabola&0r anM -dimensional map we would writé/ analo-

xF = 14by, —ay? +eb define the boundaries of inequalify (17b). gous conditions.
The whole re_gion_ res_tricted by conditi_ol?) is marked by_grey Geometrically, conditions[(}?) separate some re-
colour. The identity I|n_e1;,,, = y,,,_arld its inverse transformatlo_n gions in the(xn, yn) plane in the vicinity of the both
are shown by dotted lines. Their intersections produce the flxedf. d 0oi In Ei h . di h
points. The boundary lines are depicteddos 0.7. 'X? pomts. n IQEB, the region surroun_ Ing the target
point is marked by grey colour. The region is bounded

two fixed points,(zp, yr) = (27, 27) and (Zp, gr) = by four curves. The inequality (IJra) defines the region
(x5, %), where between two straight lines® = y,, & ¢ parallel to the
identity line. The inequality[ (I7b) bounds the region

_ AV 1/2
iy, = b-1£[ 2ab) +4a] ) (14) between two parabolas‘f = 1+by,—ay2+eb, which

’ represent an inverse Hénon transformation of the above
In Fig.[3 we show the phase portrait of the frée€  lines. With the decrease of parametethe region de-
0) Henon map. We see that the fixed pofat, yr)  fined by conditiong(17) shrinks and for suitably small
is embedded in the chaotic attractor, while the pointshould fit into the basin of attraction of the target point.
(@r,gyr) is an extraneous fixed point, which is outside Note that for the Hénon system we do not need an ad-
of the attractor. Our aim is to devise the DFC algorithm, ditional condition like [(TIb) to exclude the extraneous
which is able to stabilize the fixed poitr,yr) for  fixed point(ir,jr) since here this fixed point is out-
any initial conditions placed on the strange attractor.  side of the strange attractor.

From linear analysis of the map (13) it follows that  |n Fig. [4 we demonstrate the performance of our
the target fixed pointrr, yr) is stable for values of the  algorithm for different values of the parameter To
feedback gain in the interval gather statistics on times needed to achieve control we

X apply our algorithm for many different initial condi-
(b—1+2a27)/2 <k <b+1. (15) tions placed on the strange attractor of the free Hénon
An optimal value of the feedback gain providing the map. For a given initial conditiofixo, yo) the proce-
fastest convergence to the target state is given by dure is as follows. First, we sét = 0 and start an
" " 1/2 iteration of the free ma 3). On each step of iteration
kop = 2[ac} +1 - (202} +1-0)'%.  (16) we check the conditio%?). As soon as these con-
For the chosen values of parameters we ggt ~ ditions are satisfied we switch on the control force by
0.566. In the following we use this value in our con- settingk = k,,. Then we continue the iterations un-
trol algorithm. til the system approaches the desired fixed point with a
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Fig. 4. Histogram of timeV needed to achieve control in the Hénon n@ (1B)N) shows the number of successful stabilizations with

the given time of control. The parameteand the mean timéN) are (a)e = 2.7, (N) = 19.44; (b)e = 1.77,(N) = 17.41; (c)e = 0.7,

(N) =16.93; (d)e = 0.2,(IN) =59.27. In (a) only 86.92% of initial conditions are successful, while in (b—d) the 100% success rate is
obtained.

given accuracyr = 2:1073 < ¢. As this happens we however, we are going to consider the continuous sys-
record the total timeV (number of iterations) elapsed tem, namely, the EDFC controlled non-autonomous
from the start to the end of this procedure. We repeatdouble-well Duffing oscillator:

this procedure for 1Ddifferent initial conditions ran- .

domly chosen on the strange attractor and plot a his- &=y -G(), (18a)
togram of timeN needed to achieve the control. If the
va?ue of the parameteris too large, then the algorithm y=—PBy+ar—yz®+ Acos (). (18b)

fails for some part of initial conditions (Fig] 4(a)). By Here z,y are the dynamic variablesy = 1, v = 1
decreasing the parametewe can gain 100% success gre the parameters of the double-well potential=
rate Fig[4#(b—d), similarly as for the logistic map. How- .16 is the coefficient of losses, = 0.27 and = 1
ever, unduly smalt can lead to rather long mean time zre the amplitude and frequency of the external force,
(N). respectively.

We have included in Fig.|3 the grey region only for  \we assume that(t) can be measured and one can
the value of used in Fig] #(c) that serves as anillustra- 54g g perturbatio(t) at the r.h.s. oa). This per-

tive example. The grey region for other cases of Fig. 4tyrhation is constructed using the delayed difference
would seem similarly to the shown one.

Exactly as in the case of logistic map (SEk. 2), the D(t) =z(t) —z(t — 7). (19)
success rate is not 100% for larger valueg of &..

The reason for this is the same as described in[S$ec. 2.The delayr must coincide with the period of the target

orbit. For the chosen parameters, the free sysfem (18)
(G = 0) exhibits the chaotic motion.
4. Controlling the Duffing oscillator The chaotic attractor contains three period-one or-
bits (with periodr = 27/Q = 27). One of them (in
In the two previous sections, we analysed the dis-the origin) satisfies the odd-number limitation |[14] 15],
crete systems, namely, the logistic map and the Hénorand its stabilization with an unstable controller|[16] has
map controlled by modified DFC algorithm. Here, been considered in the recent paper [22]. The other
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in Ref. [23]. It means that we consequently develop
_ the control scheme proposed in Reéf.|[23] in order to
0.5 7N achieve the stabilization of orbits of higher order. First
’ N we introduce two low pass filters:

A TwW = |D(t)| —w, (20a)

TL0=2 — 0. (20b)

The first filter [20f) estimates the smallness of the de-
layed difference. For the-periodic solution it should
. g ! vanish. The second one evaluates the time average of
AN ] the displacement(t). If the solution moves around the
A d left-hand orbit, therv(¢) oscillates around its average
-0.54 RN (x10ft) With relatively small amplitude. For definiteness
we intend to stabilize the left-hand orbit. The stabi-
-—— lization of the right-hand orbit would require to make
15 10 05 x 00 05 10 15 substitution(zjef,) — (Zrigns). The following algo-
Fig. 5. Two period-two partner UPOs embedded in chaotic attractorfithm enables to distinguish between stabilizations of
of the free(G' = 0) double-well oscillatof (18) for = 1, 3 = 0.186, two period-two partner orbits.
v=1,4=0.27 and2 = 1. The both orbits have the same period  The control procedure is as follows. We analyse the
7 = 47r. The target (left-hand) orbit is depicted by solid line. free running systemG(t) — 0) by means of the intro-
period-one orbits are located on the left and the rightduced variables andv. We simultaneously check two
sides in respect to theaxis. We considered the prob- conditions,
lem of their selection and stabilization [n [23]. We used w(t)<e, (21a)
the DFC controller supplemented by two low pass fil- o (21b)
ters that enabled us to select the desired (say, the right- [0(t) = (@ien)| <o
hand) orbit, and to estimate the closeness of the soluAs soon as both conditions are satisfied, we activate the
tion to the target. Note that this problem was relatively control by setting
simple since the both UPOs were placed on the differ- 2, 9
ent sides of the axis. In addition, these orbits did not G(t) = kop S(t) exp[=(v(t) — (zietr))" /€0, (22)
need the extended version of the DFC (EDFC), i.e. itand we do not check the conditioris [21) anymore. In
was enough to use the DFC scheme. In the present pa22) S(¢) is the feedback perturbation of the EDFC
per, however, we are considering the stabilization of thescheme [5]. It can be found from the recurrent relations
period-two UPOs. Their period is= 2 - 27/ = 4.
Note that there are three different pairs of period-two
UPOs embedded in the strange attractor. Here we con-
sider the stabilization of one pair that is shown in Fig. 5.
These two UPOs are crossing thexis, and the Eft— B(t)==(t) + RB(t - 7). (23b)
hand UPO spends the most time in the regior: O, We need a single delay line for the auxiliary variable
while the right-hand UPO spends in the region- 0. B(t). R is the parameter of the EDFC. Ffir= 0, this
We now make some remarks about their stabiliza-scheme reduces to the original DFC method.
tion. First, these UPOs are strongly unstable and Now we discuss the control perturbatipn|(22). In this
their stabilization requires the use of the extended DFCexpression, the usual feedback perturbakignS(t) is
(EDFC) method[[p]. Second, if we activate the con- multiplied by the Gaussian function. Let us suppose
trol perturbation only once (as soon as the solution ap-that the solution moves far away from the target orbit
proaches the close neighbourhood of the target), wedor a characteristic time intervdt — 7,,¢). Then we
will see that some of the random initial conditions lead have
to the stabilization of desired target, and the other ini-
tial conditions to the stabilization of the the other orbit. [0{t) = ()| > €0 (24)
In order to achieve the successful stabilization of theIn such a case, the Gaussian exponenf i (22) will be
desired orbit, we change our control strategy presentedlmost zero, and+(t) ~ 0. On the other hand, if the

!
]
]
)
0.0 \
|
\

St)=a(t)— (1—R)B(t—7), (23a)
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solution runs around the close neighbourhood of thethe target orbit, this perturbation is turned off. At about
target orbit for a characteristic time interval— 7, t), t ~ 4807 the solution approaches the neighbourhood
we get of the left-hand orbit, and the feedback perturbation
) is activated. In Fid.|6(b) we see that the control

[0(t) = (@en)| < o (25) gturbation is switcheg]on and off several times (be-

This means that in Eqg. (R2) the exponent will be al- cause of the Gaussian exponent) until the stabilization

most unity thus yielding7(t) ~ kqpS(¢). of the target occurs. In Fif] 6(c) we show the dynamics

Summing up we conclude that after the activation, of the displacement(t). Before the stabilization it is

the controller acts only in the neighbourhood of the tar- chaotic, and after the stabilization it periodically oscil-
get orbit. When the solution runs away, the control per-lates aroundze). In Fig.[6(d) we present the phase
turbation vanishes until the next approach to the targetportrait of the controlled Duffing oscillator for the last
The linear stability analysis (faR = 0.5) shows that  period of integration of Eqs| (18). The obtained solu-
the target orbit is stable for 0.54 k < 0.72. The tion exactly coincides with the left-hand UPO in Hig. 5.

optimal value of the feedback gainkg, = 0.58. The In Fig.[q] we show the statistics of successful sta-
average value of displacement for the left-hand orbit isbilizations for 1¢ initial conditions randomly chosen
(T1et) = —0.6352. on the chaotic attractor. We have taken the parameters

In Fig.[g we illustrate the success of the above EDFCT, = 7/20, 7, = 7/0.35,¢, = 0.3, and varied the
algorithm by numerical computations. In Fg. 6(a) the parametee. For all the values of, the algorithm suc-
dynamics of the variable(¢) is shown. When the so- cessfully stabilizes the target orbit for 100% of initial
lution is chaotic, it wanders up and down. As soon asconditions. The optimal value is = ¢,, = 0.2 since
the stabilization occurs, it is attracted(tg.¢ ), and os- it leads to the minimal averageV) = 143.56. The
cillates around this value with a relatively low ampli- lower values ot < ¢, require more time for the free
tude. In Fig[ 6(b) we show the dynamics of the feed- chaotic system to approach this narrow window. On
back perturbatioriZ(¢). When the solution is far from the other hand, the larger valueseof> ¢,, need also
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Fig. 6. The results of numerical integration of the EDFC controlled double-well oscillator described by Eq$. (1), {19).1(20), (E2), and (23).

Here it is shown the dynamics of (ajt), (b) the feedback perturbati@(¢), and (c) the displacementt). In (d) there is plotted the phase

portrait of the stabilized target orbit (for the last period of integration). The parameters are as falljowsd.3,c = 0.06,7, = 7/20,

7o = 7/0.35,k = kop = 0.58,R = 0.5, andr = 4. The other parameters are the same as irﬂig. 5. The initial conditions are randomly

taken on the strange attractor. The dashed horizontal lines in (a) and (c) indicate the time average of the displacement for the target left-han
orbit, <$1eft> = —0.6352.
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Fig. 7. Histogram of time needed to achieve control in the Duffing systetn fork,, = 0.58, R = 0.5,7 = 4m, 7, = 7/20,7, = 7/0.35,

andes, = 0.3. N is the number of periods needed for stabilization of the target UPO aA(lV) is the number of successful stabilizations

with the given time of control. The parameteand the mean numbéV) of periods needed to achieve control aregay 0.04,(N) =

465.97; (b)e = 0.15,(N) = 164.42; (C)e = €op = 0.2,(N) = 143.56; (d)}e = 0.25,(N) = 161.32. In all the graphs the 100% success
rate is obtained.

the longer time of stabilization since the larger values chaotic attractor. Therefore the conditions|(21) are nec-
of window cause the disturbances of the system thatessary only for faster capture of the target orbit by the

lead to longer times for controller to find the target Gaussian. We thus conclude that the success of control
orbit. The mean time needed for successful stabiliza-does not depend an

tion is approximately equal 40 periods of UPO for One may intuitively think that the success of control
€ = gop- Such a long transient dynamics is related yould depend on the relation of and the radius of the
with the small leading Lyapunov exponentufn = period-two orbit that is to be stabilized. But apart from

—0.0348) of the target orbit for the optimal value of {hese two parameters there is also present the charac-
feedback gairk = kop. teristic timer,, Eq. [20b), of the filter. Therefore we

The success of control is independentafontrary think that the dependence of success on the controller

to the findings on the map models in Sectiphs 2 a_ndand system parameters is a hon-trivial problem.
[3, since the methods of turning on the control are dif-

ferent. In Section§]Z,]3 we checked the closeness of

solution to the target states only once, and as it was sats .

o . . Conclusions
isfied we turned on the control perturbation that con-

tinued to act until the success/failure. However, in the We h idered dified delaved feedback
case of continuous-time double-well oscillator we also € have considered a modined delayed feedbac

checked the closeness of solution to the target, but her§0Ntrol (DFC) algorithm that provides successful sta-
we activated the control perturbation in the form of Pilization of unstable periodic orbits (UPOs) of chaotic
Gaussian[{72); this Gaussian continued to act until theSyStems for any initial conditions placed on the chaotic
successful end. We stress that the Gaussian perturbaitractor. In our modification we employ the ergodic
tion contains the turning on/off in itself, since when the Property of chaotic attractors, which are universal for
running time average of displacement is near (far awayany chaotic systems. According to this property the
from) the time average of target orbit then the control is chaotic trajectory visits the close neighbourhood of any
on (off). This means that we may activate the Gaussiartarget state with a finite probability. We wait until the
perturbation[(2R2) at any initial conditions lying on the state of the free chaotic system approaches the target
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orbit, and as soon as this happens, we activate the feedthaos control and synchronization algorithms and their

back perturbation that stabilizes this target.

We have demonstrated the efficiency of our al-
gorithm for two time-discrete systems, namely, the

application to complex neural networks”.

logistic map, and the Hénon map, as well as for theReferences
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UZDELSTO GRIZTAMOJO RYSIO VALDYMO MODIFIKACIJA PANAUDOJANT CHAOTINIY
SISTEMY ERGODISKUMA

V. Pyragas, K. Pyragas

Fiziniy ir technologijos moksly centro Puslaidininkiy fizikos institutas, Vilnius, Lietuva

Santrauka vai tol, kol ji priartes prie norimos orbitos. Tuomet jjungiame val-
Pasiwme modifikuota uzdelsto griztamojo rysio valdymo al- diklj, kuris stabilizuoja norima orbita. Paseuate algoritma, kuris

goritma, kuris stabilizuoja nestabilias periodines orbitas bei rimties Ivertina esamo sprendinio artuma norimai b usenai. Tolydziosioms
taskus, kai sprendinys startuoja i& bet kuriy chaotinio atraktoriausSistemoms $j algoritma galima jdiegti paprastais zemy dazniy filt-

pradiniy salygy. Algoritmas yra grindZiamas chaotiniy sistemy er- fais. Algoritmo veiksminguma pademonstravone&raiy statisti-
godiskumu. Pirma leidziame chaotinei sistemai evoliucionuoti lais- KOS Skaitiniais sk&iavimais.
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