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An overview of the theoretical background for the novel spectroscopic tool – two-dimensional (2D) optical spectroscopy –
is presented. Principles of nonlinear polarization induction, signal generation, and detection are described. Concepts of het-
erodyned four-wave mixing experimental technique and 2D spectra construction are detailed and the scheme of third-order
polarization calculation is consistently introduced. The system response function theory is formulated for a general multi-level
quantum system considering the system-field interaction perturbatively. Equations of motion for the system density operator
relevant to the third-order response are presented. Basic quantum systems of a two-level atom, two-level molecule, and a
three-level system are considered and analytic expressions of the third-order signal are derived at certain limits. Molecular
complexes are described using the Frenkel exciton approach. 2D spectra of the excitonically-coupled dimers of two-level and
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tum control by the two-colour 2D spectroscopy for the dimer of excitonically-coupled two-level systems are demonstrated.
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1. Introduction

Nonlinear optical techniques performed using ultra-
short laser pulses in regions from IR to visible wave-
lengths are capable of probing various dynamical phe-
nomena on microscopic/nanoscopic scale. The four-
wave mixing (FWM) experiments are the simplest non-
linear techniques available for isotropic systems [1, 2].
In the time domain, experiments are performed by ap-
plying either two-pulses (pump-probe) or three-pulses
(homodyne three-pulse photon echo), or four-pulses
(coherent heterodyned signals) to generate and detect
the desired signal. The FWM signal is generated by
the induced third-order polarization, which is a para-
metric function of the delays between the adjacent laser
pulses. The polarization dynamics with respect to these
parameters reflect wide variety of ultrafast molecular
processes.

Recent development of nonlinear spectroscopies,
such as two-dimensional photon echo (2D PE) spec-
troscopy, is getting widely available for studies of
exciton coherence in various molecular systems [3–
5]. Molecular dimer is the simplest system, where
the spectral features illustrating dynamics of quan-
tum coherence are expected [6–9]. Main features
of one-colour and multi-colour 2D PE spectra of a
dimer are well described theoretically [7, 8, 10–12].
2D PE spectroscopy was the key tool demonstrating
a complex pathway network of the energy transfer
and long-lasting coherence in a photosynthetic Fenna–
Matthews–Olson (FMO) complex [13–15], as well as
in LH3 complexes from photosynthetic bacteria [4].
Recently the 2D PE spectra have also been recorded for
conjugated polymers [16] and cylindrical (bi-tubular)
J-aggregates [17, 18]. Apart from clear identification
of exciton transfer between the tubes, quantum coher-
ence oscillations were also observed. By analysing the
J-band of one-dimensional J-aggregate it was demon-
strated that 2D PE spectroscopy visualizes the intra-
band heterogenous dephasing dynamics [19] and intra-
band coherences [17].

Sophisticated experimental techniques have been
developed in the visible optical region maintaining co-
herence between pulses [20, 21]. In 2D optical spec-
troscopy, an experimental FWM scheme with hetero-
dyne detection is applied (Fig. 1). Three wave vectors
of ultra-short laser pulses exciting the sample at times
τ1, τ2, andτ3 are denoted ask1, k2, andk3, respec-
tively. The induced third-order polarization within the
sample is the source of the radiated electric field. Due
to nonlinear processes undergoing within the sample
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Fig. 1. 2D PE experimental scheme with heterodyne detection and
definitions of variables in the lower panel:τ1, τ2, andτ3 are the
times of three laser pulses exciting the sample, whilet1, t2, andt3

are the time variables for the system response function.

the signal is generated along directions±k1±k2±k3.
The signal exclusively generated inks = −k1+k2+k3

direction is denoted as the photon echo signal. Since
the absolute interaction time is irrelevant due to the
system being in the thermal equilibrium before the
first interaction, the PE signal can be characterized as
a three-variable functionW (τ, T, t) of positive delay
times between successive laser pulsesτ ≡ τ2 − τ1 and
T ≡ τ3 − τ2 and the detection timet. The time de-
lays between adjacent laser pulses (τ andT ) are con-
trolled with a high precision. A two-dimensional one-
sided Fourier transform of the first delay time interval
and the signal detection time, that is,τ → ωτ and
t → ωt, is applied [13, 20, 22–24]. The transformed
data can be plotted as two-dimensional spectrograms
with respect to the second delay timeT (Fig. 2). Di-
agonal peaks,ωτ = |ωt|, reflect the exciton eigen-
states and off-diagonal peaks,ωt 6= |ωτ |, show corre-
lations and coherences within the system due to many-
exciton interactions. Delay timeT is the the time pa-
rameter used to reveal time evolution of the exciton
wavepacket [4, 10, 11, 13, 14, 17, 18, 24–26]. Since
different delay times are independent parameters, the
time resolution of the 2D spectra (T delay) is in prin-
ciple unrelated to the frequency resolution (ωt andωτ ),
what is never available in a classical pump-probe sig-
nal. In experiments the resolution is limited by pulse
lengths and higher-order effects. The pulse overlap re-
gions induce variations in 2D spectra due to mixing
with various interaction sequences [12]; higher order
contributions induce intensity-dependence and exciton
annihilation [25].

Using the reduced density matrix formalism, the se-
quence of three system–field interactions can be repre-
sented as follows. At the initial time the system is in the
thermal equilibrium̂ρgg. After the first interaction with
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Fig. 2. Schematic representation of 2D spectra at fixed population
time T . Diagonal elements and cross-peaks are present. The in-
visible state, that is not available in the absorption spectrum (left),
is revealed by presence of the corresponding cross-peak. Homoge-

neous and inhomogeneous peak widths are separated.

a weak ultra-short pulse the state of quantum coherence
ρ̂eg(t) is created. The second pulse after timeτ creates
a population in the ground statêρgg(τ, t) or in the ex-
cited statêρee(τ, t), or a coherence in the excited state
ρ̂ee′(τ, t) (e 6= e′). The third interaction creates a great
variety of coherent sates and the electromagnetic field
is radiated by a stimulated emission, leaving the system
in the population statêρee(τ, T, t) or ρ̂gg(τ, T, t). Dur-
ing the time between interactions processes of dephas-
ing and state transfer take place. As it will be shown
later, a 2D optical spectroscopy enables the direct ob-
servation of dynamics of the density operator with an
excellent temporal and spectral resolution.

Various representations of 2D signal are possible.
The PE signal is denoted as “rephasing” since the
rephasing in the system is opposite after the first and
third interaction and atτ = t the inhomogeneous
broadening is eliminated. In spectra it is observed as
peak elongation along the main diagonal. Similarly, the
signal, generated at non-PE direction+k1−k2 +k3, is
denoted as non-rephasing. It does not have inhomoge-
neous contribution eliminated and the peak lineshapes
are oriented in anti-diagonal direction. The same signal
would be measured in the PE directionkPE if the first
and second pulses were switched (assumingτ < 0).
The sum of rephasing and non-rephasing signals gives
the total, pump-probe-like spectra [10, 11, 27]. Usually
the real part of the total or rephasing spectra is used for
interpretation.

In the experiment, both positive and negative de-
lay time τ values can be used. For a positive delay
τ > 0, therephasingsignalWR(ωτ , T, ωt) is obtained
in the PE directionks = −k1 + k2 + k3. At the same

time signal denoted asnon-rephasingat non-PE direc-
tion +k1 − k2 + k3 is also available. The same signal
would be measured in the PE direction if the first and
second pulses were switched (assumingτ < 0). The
sum of rephasing and non-rephasing signals gives the
total pump-probe-like spectra [10, 11, 27]. Usually the
real part of the total or rephasing spectra is used for
interpretation.

More technical details about the experimental set-up
can be found elsewhere [5, 20, 28].

2. Theoretical background

2.1. Semi-classical concept of the excitation and
measurement

The core of the spectroscopy experiment is the semi-
classical approximation. It denotes the separation of
the incoming excitation field, the outgoing signal field,
and the system. Both fields are classical (electric) fields
and the system is considered as a quantum object. The
whole experiment can be partitioned into two stages.
In the first stage the system interacts with the incom-
ing field. Neglecting the magnetic system properties,
this interaction is described by the polarization operator
and the nonlinear polarization induction by the classi-
cal electric field is described by the quantum dynamics.
In the second stage the expectation value of the induced
polarization becomes a source of the signal field. This
stage is a problem of classical electrodynamics and is
described by the Maxwell equations.

Using the density matrix formalism, the Maxwell-
Liouville equations describe the excitation and genera-
tion processes:

∇×∇×E(r, t) +
1
c2
∂2

∂t2
E(r, t)

=−4π
c2

∂2

∂t2
P (r, t) , (1)

P (r, t) = Tr[P̂ (r) ρ̂(t)] , (2)

∂ρ̂(t)
∂t

=− i
~

[
Ĥse(Ei(r, t)), ρ̂(t)

]
. (3)

They read as follows: the first equation is the relation-
ship between induced nonlinear polarizationP (r, t)
of the system and the outgoing electric field (signal
E(r, t)). This expression will be simplified reasonably
assuming the phase-matching experimental geometry
in Sec. 2.3. Second equation is the definition of nonlin-
ear polarization as the trace of the polarization operator
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and the density matrix product. The third expression is
equation of motion of the system density matrix driven
by the excitation fieldEi(r, t). HereĤse is the semi-
classical Hamiltonian describing the quantum system
under influence of the classical electric field as an ex-
ternal force. Thus it is obvious that having described
the density matrix properly we would be able to obtain
the nonlinear polarization which is the main goal of the
theory of nonlinear spectroscopy.

Equations (1)–(3) are the fundamental equations of
the microscopic spectroscopy formulation. They de-
scribe an arbitrary spectroscopy experiment. In the
following we will separately present all the important
parts of the theoretical consideration of the nonlinear
spectroscopic measurement.

2.2. Multi-wave mixing

Incoming optical electric fields induce the dynamic
polarization in the medium. In phenomenological de-
scription, if the system is nonlinear, we can expand the
polarization in terms of the incoming field harmonic
components as follows:

P (ω) =α(ω)E(ω) (4)

+ β(ω : ω1, ω2)E(ω1)E(ω2)

+ γ(ω : ω1, ω2, ω3)E(ω1)E(ω2)E(ω3)

+ . . . .

α, β, and γ are the linear, quadratic, and the third-
order susceptibilities, respectively. The optical field in
principle may be given by a superposition of harmonic
components. Then Eq. (4) will involve summations (in-
tegrals) over the incoming field frequencies.

Let us consider the second-order contribution

P (2)(ω) = β(ω : ω1, ω2)E(ω1)E(ω2) . (5)

The incoming field

E(t) = cos(k0r− ω0t)E [σω(t− τ)] (6)

with E(x) ∝ exp(−x2/2) corresponds to a single
pulse with wave vectork0 and central frequencyω0,
for whichω0 = |k0|c holds. The Fourier transform of
the pulse gives

E(ω) ∝ exp(±ik0r)E [(ω ∓ ω0)/σω] . (7)

In the case of the narrow-bandwidth pulse we may sub-
stituteω ≈ ±ω0 (note thatω here is a Fourier variable
so it is positive and negative) into Eq. (5) and have

P (2)(ω)≈ ĒĒ{exp[i(k0 + k0)r]β(ω : ω0, ω0) (8)

+ exp[i(k0 − k0)r]β(ω : ω0,−ω0)

+ exp[i(−k0 + k0)r]β(ω : −ω0, ω0)

+ exp[i(−k0 − k0)r]β(ω : −ω0,−ω0)} .

Here Ē = E (0). We thus get that incoming fields are
mixed together and the induced polarization may in-
volve various combinations of the incoming field wave
vectors. Additionally we can associate these vari-
ous wave vector configurations with different nonlinear
processes. For instance,

β(ω : ω0, ω0) ≈ δ(ω − 2ω0)β(2ω0 : ω0, ω0) (9)

is the second harmonic generation and

β(ω : ω0,−ω0) ≈ δ(ω)β(0 : ω0, ω0) (10)

represents the electro-optic rectification.
At higher orders of the fields we would similarly

have mixing of incoming fields and would obtain a set
of possible signal wave vectors. This phenomenon is
calledmulti-wave mixing.

2.3. Signal detection

The nonlinear polarization induced within the sam-
ple is the source of the radiating electric field. The
relationship between the laser field induced polariza-
tion (with respect to incoming fields) and the outgoing
signal electric field is described by the first expression
from the Maxwell-Liouville equation set (Eq. (1)). We
consider that the total polarizationP (r, t) can be ex-
panded as a series of components according to its prop-
agation direction:

P (r, t) =
∑
n=1

∑
s

P (n)
s (t) exp(iksr− iωst) , (11)

where summation over indexs denotes summation over
all possible wave vector and frequency configurations
ks = ±k1 ± k2 . . . andωs = ±ω1 ± ω2 . . . . Since the
electric field is linear in polarization, we have Eq. (1)
relationship for each nonlinear component of the polar-
ization. For a single term in Eq. (11),

P (z, t) = P (n)
s (t) exp(−iωst+ iksz) , (12)
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which propagates alongz direction, we look for a so-
lution of the electric field (Eq. (1)) in one dimension in
the form of

E(z, t) = Es(z, t) exp(−iωst+ ik′sz) + c. c. , (13)

wherek′s = ωs
c n(ωs). In Eq. (12) it is assumed that the

signal, generated in theks direction, is parallel to thez
axis. Also, the rapidly oscillating part of the third-order
polarization is extracted in Eq. (12) makingP (n)

s (t)
a slowly-varying envelope of the temporal third-order
polarization dynamics. For the slowly-varying enve-
lope the relation∣∣∣∣ ∂∂tP (n)

s (t)
∣∣∣∣ � ∣∣ωsP

(n)
s (t)

∣∣ (14)

holds. The same approximation is valid for the electric
field envelopeE(z, t) as well. Inserting these expres-
sions into Eq. (1), one would obtain

ik′s
∂

∂z
Es(z, t) = −2π

ω2
s

c2
P (n)

s (t) exp(i∆kz) , (15)

where∆k ≡ ks − k′s. By integrating over the sample
length fromz = 0 to z = l we get

Es(l, t) =

i
2πωs

n(ωs)c
l P (n)

s (t) sinc
∆kl
2

exp
(

i
∆kl
2

)
. (16)

The sinc(x) = sin(x)/x function is related to the
phase-matching condition. If the sample size is smaller
than the wavelength,l � λ, the signal field is radiated
with an arbitrary wave vector since∆kl � 1 and the
sinc function is equal to 1. For macroscopic samples,
l� λ, thesinc function becomes the Dirac delta func-
tion with respect to∆k and the signal is generated only
atk′s = ks.

We have treated the experimental setup as one-
dimensional, but at this point we can make general-
izations for signals in three dimensions. For micro-
scopic samples smaller than the signal wavelength, the
signal direction is not selective to wave vector of the
polarization. This has implication, for instance, for
single-molecule spectroscopy. For macroscopic sam-
ples, much larger than the signal wavelength, the signal
contains a multiple interference from each point in the
sample. The interference is positive only at the signal
wave vector equal to the wave vector of the polariza-
tion.

As it was shown in a previous section the polariza-
tion can be induced only with specific wave vectors,
depending on the incoming field wave vectors due to
multi-wave mixing. This provides a powerful utility

in the experiment: while the total polarization may be
radiated in many spatial directions according to multi-
wave mixing represented by expansion (11), the de-
tector can be placed in a specific position so that only
one specific component of the total signal field was de-
tected. By resolving one signal component experimen-
tally, we can write the relationship between measured
irradiance, electric field, and polarization. From equa-
tion (16) it is clear that the electric fieldEs(l, t) de-
tected in theks direction is linearly proportional to the
corresponding component of the induced polarization.
The detected intensity is then

Is ∝ |Es(t)|2 ∝ l2
∣∣P (n)

s (t)
∣∣2 . (17)

This is a very convenient result since it shows that any
spectroscopic measurement can be simulated just by
knowing the time dependence of the nonlinear polar-
ization of the system. This relationship is for thehomo-
dyne detectionregime where the measurement probes
the signal intensity.

In the heterodyne detectionscheme the detector
measures a superposition of the electric field, emitted
from the sample, and the externallocal oscillator(LO)
pulse, applied in the signal directionks. Then the de-
tected intensity is

Is∝
∣∣ELO(t) + P (n)

s (t)
∣∣2 (18)

= |ELO(t)|2 +
∣∣P (n)

s (t)
∣∣2 + 2Re

[
E∗LO(t)P (n)

s (t)
]
.

On the rhs of this expression the first two terms can be
neglected since the polarization is very weak and the
LO pulse is well known and can be subtracted. The
measured quantity is then the integral

W (t) ≡ Re
∞∫
−∞

dt
[
E∗LO(t)P (n)

s (t)
]
. (19)

If we treat the LO asδ-shaped, the measurement is
W (t) = ReP (n)

s (t). This result also involves the phase
difference between the polarization and the LO pulse
φ. If the phase difference is fixed (locked), we can also
probe the imaginary part of the induced polarization by
takingφ = π/2. From Eq. (19) it is then possible to ex-
tract both real and imaginary parts of the induced po-
larization (we will define the real and imaginary con-
tributions later). In that case we define the heterodyne
signal as the complex signal, equivalent to the induced
polarization.

The above given relationships may break for cer-
tain cases. The generated signal must be considered
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as very weak compared to the incoming laser radia-
tion so that the incoming field is not affected by the
multi-wave mixing. Electric field and induced polar-
ization dependence (Eq. (17)) also breaks for optically
dense samples since the absorption effects are signifi-
cant: then the polarization induction is not a separable
process from field propagation.

2.4. Induced polarization

2.4.1. The Liouville-space and reduced density matrix
In this section we address the problem of Eqs. (2)

and (3) and describe the quantum properties of the
system. When the system constituting particles are
smaller than the optical wavelength of the incident elec-
tric field, we can use the dipole approximation. Then
the molecule–field interaction is assumed as a dipole–
field interaction. The total Hamiltonian of the system,
its environment, and the classical electric field can be
written as follows:

Ĥ = Ĥmol+ĤB+ĤSB+Ĥint = Ĥmat−µ̂E(t) . (20)

Here Ĥmol is the molecular part of the Hamiltonian,
containing all degrees of freedom, which have to be
included explicitly. The second term̂HB represents
the reservoir (bath) causing dephasing and relaxation.
It has an infinite number of degrees of freedom, they
are not directly observable and will be treated approxi-
mately.ĤSB is the interaction between the system and
the reservoir. These terms of the Hamiltonian consti-
tute the material part of the system̂Hmat, which does
not include the optical field. The last term,Ĥint, is the
dipolar system–field interaction.

The dynamics of the system governed by the Hamil-
tonian is more conveniently described using superoper-
ators. Superoperators are given by certain operation on
operators. For example, a commutator with Hamilto-
nian can be written as

LÂ ≡
[
Ĥ, Â

]
= ĤÂ− ÂĤ . (21)

This particular superoperatorL is denoted as aLiou-
ville (super)operator (Liouvillian).The density matrix
evolution is expressed much more conveniently in the
Liouville space, which is a direct product space of two
Hilbert spaces. The regular operator, expressed as the
N ×N matrix in the Hilbert space, is recasted as aN2

length vector in the Liouville space. An arbitrary su-
peroperator can then be written as a matrix ofN2×N2

size. The operation of a superoperator on an operator
then amounts to matrix and vector multiplication. The
detailed introduction to Liouville-space representation

of the system density matrix evolution can be found
elsewhere [29].

We introduce other superoperators in an analogous
way

LmatÂ ≡
[
Ĥmat, Â

]
, (22)

LintÂ ≡
[
µ̂, Â

]
E(t) = V ÂE(t) .

The equation of motion for the combined system and
reservoir density matrix̂σ(t) is then given by

∂

∂t
σ̂(t) = − i

~

[
Ĥmat − µ̂E(t), σ̂(t)

]
(23)

= − i
~
Lmatσ̂(t) +

i
~
Lintσ̂(t).

This equation is equivalent to the Schrödinger equation
except that the wave function and the Hamiltonian are
replaced by the density matrix and the Liouville super-
operator, respectively. Thus, all formalism of quantum
mechanics can be directly applied to the density matrix
in the Liouville space.

However, this equation cannot be solved exactly
since the number of degrees of freedom of the thermal
reservoir is infinite. Instead, the reduced density matrix
must be introduced. It is defined only within the system
degrees of freedom. This is accomplished by averaging
over the reservoir degrees of freedom. We thus define
the reduced density matrix as

ρ̂(t) = TrB {σ̂(t)} . (24)

Assuming that the bath is in equilibrium at all times we
write the bath density matrix as

ρ̂B = Z−1
B exp(−βĤB) , (25)

where

ZB =
∑
ν

exp(−βE(B)
ν ) (26)

is the bath partition function in terms of its eigenstates
with energiesE(B)

ν ; andβ = (kBT )−1 is the inverse
thermal energy. The density matrix of the whole sys-
tem is now a direct product of the system and the bath
density matrices:̂σ = ρ̂⊗ ρ̂B. This level of description
is known as Born approximation.

We will be interested in the dynamics of the reduced
density matrix. It is possible to derive the equation of
motion for the system density matrix using an approx-
imate perturbation theory with respect to the system–
reservoir interaction [30]. The time-local equation of
motion is obtained in the Markovian approximation,
where the system correlation time is accepted as much
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shorter than the relevant system dynamics. For the next
subsection we consider the optical properties and as-
sume that the reservoir effects on the system density
matrix can be represented by a certain time-local relax-
ation superoperator.

2.4.2. Series expansion of the density matrix
In this section we neglect the reservoir and assume

Ĥmat ≡ Ĥmol as well asσ̂(t) ≡ ρ̂(t), whereĤmol

is time-independent. The field–system interaction is
treated perturbatively while the material (molecular)
part is the reference (see Eq. (23)). This scheme of
time-dependent perturbation theory application is typi-
cal of the most spectroscopic calculations. For this type
of description, the interaction picture in the Liouville
space is more useful than Schrödinger or Heisenberg
picture in the Hilbert space. Essentially it represents
the description of the problem in the rotating frame.
Evolution of the whole system can then be described as
the reference. The reference molecular evolution oper-
ator in the Liouville space is defined as [29]

Umol(t) ≡ exp
{
− i

~
Lmolt

}
(27)

and any time-dependent quantity (e. g. a system den-
sity operator) can be transformed into the interaction
picture as

ρ̂I(t) = U†mol(t)ρ̂(t) , (28)

whereU†mol(t) denotes a hermitian conjugate operator.
The transition between the Liouville and the Hilbert-
space is accomplished by

U†mol(t)ρ̂(t) ⇒ Û †(t) ρ̂(t) Û(t)

= exp
{

i
~
Ĥmolt

}
ρ̂(t) exp

{
− i

~
Ĥmolt

}
. (29)

Here operator̂U † acts on density operator’sbra from
the left andÛ onketfrom the right. Having defined the
molecular evolution operator, we are able to move to
the interaction picture and calculate a time-derivative
of the system density matrix using Eq. (23) for the re-
duced density operator:

∂

∂t
ρ̂I(t) =

i
~
Lmol U†mol(t) ρ̂(t) + U†mol(t)

∂

∂t
ρ̂(t)

=
i
~
V(t) ρ̂I(t)E(t) . (30)

The system part (Lmol) is included into the evolution
operator and the interactional term is left in the equa-

tion of motion. This expression can be formally inte-
grated:

ρ̂I(t) = ρ̂I(t0) +
i
~

t∫
t0

dτ V(τ) ρ̂I(τ)E(τ) . (31)

Now we move back to the Schrödinger picture. Since
we treat the system density matrix as describing an
equilibrium system state at initial timet0, the molec-
ular evolution operator does not affect it:

ρ̂(t) = ρ̂eq +
i
~

t∫
t0

dτ Umol(t)V(τ) ρ̂(τ) E(τ) . (32)

By repeatedly inserting the rhs of Eq. (32) into theρ̂(t)
term within the integral, one would obtain an infinite
series

ρ̂(t) = ρ̂eq +
i
~

t∫
t0

dτ Umol(t)V(τ) ρ̂eqE(τ)

+
(

i
~

)2 t∫
t0

dτ
τ∫

t0

dτ ′ Umol(t)V(τ)V(τ ′) ρ̂eqE(τ)

× E(τ ′) +
(

i
~

)3 t∫
t0

dτ
τ∫

t0

dτ ′
τ ′∫

t0

dτ ′′Umol(t)V(τ)

× V(τ ′)V(τ ′′) ρ̂eqE(τ)E(τ ′)E(τ ′′) + . . . (33)

2.4.3. Linear response function
From Eq. (2) we write for the linear polarization

P (1)(t) =
t∫

t0

dτ S(1)(t, τ)E(τ) . (34)

Here we have defined the linear response function
S(1)(t, τ). In the Liouville space it is given by

S(1)(t, τ) =
i
~
Tr[µ̂Umol(t)V(τ)ρ̂eq] . (35)

By defining the variable changet1 ≡ t − τ and send-
ing the initial time (when system is unaffected by the
interactions) tot0 → −∞, one would obtain

P (1)(t) =
∞∫
0

dt1 S(1)(t1)E(t− t1) . (36)
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In the expression of the system response function
(Eq. (35)) superoperators are replaced by commutators
of the Hilbert space:

S(1)(t1) =
i

~
Tr{µ̂Umol(t1)V ρ̂eq}

=
i

~
Tr{µ̂ U(t1) [µ̂, ρ̂eq]U †(t1)} (37)

or

S(1)(t) =
i
~
θ(t)[J(t)− J∗(t)] (38)

with

J(t) ≡ Tr{µ̂(t) µ̂(0) ρ̂eq} . (39)

Expressions, which can be useful for calculations, are
obtained by expanding these operator expressions in
the system eigenstate basis.

2.4.4. The third-order response function
From Eq. (2) we obtain

P (3)(t) =
t∫

t0

dτ
τ∫

t0

dτ ′
τ ′∫

t0

dτ ′′ S(3)(t, τ, τ ′, τ ′′)

× E(τ)E(τ ′)E(τ ′′) . (40)

Here we have defined the third-order system response
functionS(3)(t, τ, τ ′, τ ′′). In the Liouville space it is
given by

S(3)(t, τ, τ ′, τ ′′)

=
(

i
~

)3

Tr[µ̂Umol(t)V(τ)V(τ ′)V(τ ′′) ρ̂eq] . (41)

By committing a variable changet3 ≡ t − τ , t2 ≡
τ − τ ′, t1 ≡ τ ′ − τ ′′ and sending the initial time to
t0 → −∞, we obtain

P (3)(t) =
∞∫
0

dt3

∞∫
0

dt2

∞∫
0

dt1 S(3)(t3,t2,t1)

×E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) . (42)

This formula is the most useful expression of the third-
order polarization. It was obtained by applying a per-
turbative scheme upon the equation of motion of the
system density operator. It is a convolution of the third-
order response function and a product of electric field
functions. From Eq. (42) it is evident that the third-
order polarization is a function oft, but, however, it is
also dependent onT andτ via the electric field compo-
nents representing laser pulse configuration. Now we

must find an efficient way to calculate the system re-
sponse function and express the multiplication of elec-
tric fields in a convenient form.

In the expression of the system response function
(Eq. (41)) the superoperators are replaced by commu-
tators of the Hilbert space:

S(3)(t3, t2, t1)

=
(

i
~

)3

Tr{µ̂Umol(t3)V µ̂Umol(t2)V Umol(t1) ρ̂eq}

=
(

i
~

)3

Tr{µ̂ U(t3) [µ̂, U(t2)[µ̂, U(t1)[µ̂, ρ̂eq]

× U †(t1)]U †(t2)]U †(t3)} . (43)

Expanding the commutators we get

S(3)(t3, t2, t1) =
(

i
~

)3

θ(t1) θ(t2) θ(t3)

×
4∑

α=1

[Rα(t3, t2, t1)−R?
α(t3, t2, t1)] , (44)

where

R1(t3, t2, t1) (45)

= Tr{µ̂(t1)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(0)ρ̂eq} ,

R2(t3, t2, t1) (46)

= Tr{µ̂(0)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(t1)ρ̂eq} ,

R3(t3, t2, t1) (47)

= Tr{µ̂(0)µ̂(t1)µ̂(t1 + t2 + t3)µ̂(t1 + t2)ρ̂eq} ,

R4(t3, t2, t1) (48)

= Tr{µ̂(t1 + t2 + t3)µ̂(t1 + t2)µ̂(t1)µ̂(0)ρ̂eq} .

Heaviside functions in Eq. (44) emphasize the princi-
ple of causality: as it is seen in Eq. (42), the third-order
polarization at timet depends on the electric field of
earlier times. In other words, the electric field in the
past (a cause) determines the polarization in the future,
so if any of system response function arguments is neg-
ative, the function must be zero. Also one can notice
that the total system response function is always real. It
is clear from the experiment, since the polarization is a
measurable quantity and has a corresponding hermitian
quantum mechanical operator, the average of which is
always real.

Because of the cyclic nature of the trace operation
(it is valid to commit a cyclic permutation of operators
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|g〉 〈g|

|a〉

|g〉

|a〉

|b〉 〈b|

〈c|

〈c|

〈b|

R2

|g〉 〈g|

|a〉

|g〉

|g〉

|b〉

〈c|

〈b|

〈b|

R3

|g〉 〈g|

|a〉

|a〉

|a〉

|b〉 〈b|

〈g|

〈c|

〈b|

R1

|g〉 〈g|

|c〉

|a〉

|b〉

|g〉 〈g|

〈g|

〈g|

〈g|

R4

〈b|

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

Fig. 3. Double-sided Feynman diagrams, corresponding to the
components of nonlinear response function in Eqs. (46)–(49) for
a general multi-level system, where|a〉–|c〉 stand for energy states;

|g〉 is ground state.

inside trace brackets), chronologically ordered dipole
moment operators can act upon the density operator
from either side, i. e. they act upon abra or ket of the
density operator. These sequences for Eqs. (46)–(49)
are conveniently expressed schematically using the ab-
stract double-sided Feynman diagrams [7, 23, 29, 31]
(Fig. 3). Vertical arrows denote the time direction; vari-
ablest1, t2, andt3 are the time intervals between two
successive interactions of the dipole operator and the
system density operator the (electric field and the sys-
tem); horizontal lines show the side of the dipole oper-
ator action upon the density operator. Aket and abra
during the same time interval (|α〉〈β|) denote a state of
coherence (α 6= β) or population (α = β) correspond-
ing to an element of the system density matrix being
affected.

However, the whole system response depends on the
electric field (i. e. the direction and time of incident
pulses). So it is possible to express all permutations of
interaction orders and directions in the excitonic basis
by double-sided diagrams as well. It will be shown in
Sec. 4.2.

2.4.5. A non-perturbative propagation of the density
matrix
The induced polarization can also be calculated non-

perturbatively. We have the equation of motion of the
time dependent density matrix with the optical field in-
cluded explicitly as

∂

∂t
ρ̂(t) = − i

~
(Lmol − iD + Lint)ρ̂(t) , (49)

where evolution of the material part is decomposed
into the molecular and dissipational parts given by
Lmol... ≡ [Ĥmol, ...] andD, respectively, and the in-

teraction with the field isLint. The interaction part de-
pends on the electric field. At pointr of the space

E(t) =
1
2
E0

3∑
i=j

Ej(t− τj) eikjr−iωj(t−τj) + c. c. ,

(50)
whereEj is a temporal Gaussian envelope function of
jth laser pulse andτ1, τ2, andτ3 are the central times
of each pulse (see experimental scheme in Fig. (1)).

To select specific polarization configuration, cor-
responding to certain signal wave vector, one needs
to distinguish different density matrices with different
wave vectors. This is easily accomplished when the in-
coming pulses do not overlap. For instance, consider
the first interaction. To distinguish+k1 and−k1 den-
sity matrices the former must include only multiplica-
tion by the dipole operator from the left, while the latter
is obtained by multiplying the dipole operator from the
right. We then have

∂

∂t
ρ̂
(1)
+ (t) =− i

~
(Lmol − iD)ρ̂(1)

+ (t)

+
i
~
µ̂ ρ̂(0)(t) E1(t− τ1) e−iω1(t−τ1) (51)

and

∂

∂t
ρ̂
(1)
− (t) =− i

~
(Lmol − iD)ρ̂(1)

− (t)

+
i
~
ρ̂(0)(t) µ̂ E1(t− τ1) e+iω1(t−τ1) . (52)

Note, however, that[ρ̂(1)
+ ]eg = [ρ̂(1)

− ]∗ge, so it is enough
to solve one equation. For the second interaction
we would have four possible terms corresponding to
+k1 + k2, +k1− k2,−k1 + k2, and−k1− k2. Rele-
vant equations are as follows:

∂

∂t
ρ̂
(2)
++(t) =− i

~
(Lmol − iD) ρ̂(2)

++(t) (53)

+
i
~
µ̂ ρ̂

(1)
+ (t) E2(t− τ2) e−iω2(t−τ2) ,

∂

∂t
ρ̂
(2)
−+(t) =− i

~
(Lmol − iD) ρ̂(2)

−+(t) (54)

+
i
~
µ̂ [ρ̂(1)

+ (t)]† E2(t− τ2) e−iω2(t−τ2) ,



V. Butkus et al. / Lithuanian J. Phys.50, 267–303 (2010) 277

and the other two are just complex conjugated. For the
third interaction we can choose the photon echo config-
uration−k1 + k2 + k3, where we have equation:

∂

∂t
ρ̂
(3)
−++(t) =− i

~
(Lmol − iD) ρ̂(3)

−++(t) (55)

+
i
~
µ̂ ρ̂

(2)
−+(t) E3(t− τ3) e−iω3(t−τ3) .

Solution for these equations may be performed in an
arbitrary basis set, however, if the Schrödinger equa-
tion for the system can be solved and the dissipational
superoperator can be calculated, the solution is much
simpler in the eigenstate basis. The photon echo po-
larization is then given by the trace of the polarization
operator with the relevant system density matrix:

P (τ, T, t) =
∑
αβ
µαβ [ρ̂(3)

−++]βα , (56)

hereα and β represent all possible eigenstates (the
ground state, one-, and two- exciton states). Specific
resonant manifolds of states can be selected in the
eigenstate basis set by considering only resonant inter-
actions. Then, for instance, in Eq. (49) we select only
system states which have the energy splitting close to
the optical frequency. If we label the ground state asg
with energy 0, then only the following solution is nec-
essary:

∂

∂t
[ρ̂(1)

+ ]eg =−iωeg [ρ̂(1)
+ ]eg −Deg,e′g [ρ̂(1)

+ ]e′g

+
i
~
µeg E1(t− τ1) e−iω1(t−τ1) , (57)

with ωeg ≈ ω1. Note that the zero-order ground state
density matrix[ρ̂(0)]gg ≡ 1.

The decomposition presented above is equivalent to
the third-order perturbative expansion presented in pre-
vious sections. Another type of decomposition is capa-
ble to select the desired signal. It is based onphase
cycling. Consider the optical field in Eq. (50). Thekjr
term in the exponent is the phase of the field. Con-
sider that instead of one system we have a lattice of
systems along the incoming field propagation direc-
tion. Then at each site of the lattice,k, the phases
will be kjrk. HavingN sites in the lattice separated
by lattice constanta we can perform a Fourier trans-
form of a quantity, which depends onk and have a set
of wave vectorsk′ associated to the lattice. The max-
imum lattice wave vector isk′N = 2π/a and the step
between these wave vectors is∆k′ = 2π/(Na). If
a = 2π/(Nkj), we would get∆k′ = kj . If we then

have a quantity as a function of the lattice site, its dis-
crete Fourier transform is given as a function ofkj , 2kj ,
3kj ,... The symmetries of Fourier transform imply that
the amplitude at(N − 1)kj is equivalent to−kj and
at (N − 2)kj to (N − 2)kj ≡ −2kj . Calculating the
quantity atN lattice sites thus allows to decompose it
into components corresponding to phasesexp(−inkr)
with n = −N/2,−N/2 + 1, ...0...+N/2− 1 for even
N (oddN can be incorporated similarly).

Such decomposition can be performed for all three
incoming fields as a three-dimensional lattice, and the
induced polarization can be calculated for any combi-
nation of the incoming field wave vectors. For instance,
for configurationks = −k1 +k2 +k3 it is sufficient to
takeN = 4 and this configuration can be extracted by
a discrete Fourier transform of the calculated signal at
various lattice sites. Different lattice sites correspond
to different phases of the incoming fields, thus, this
procedure is called phase cycling (originally without
invoking the lattice concept). The convenience of this
spatial Fourier transform is as follows: for a specificN
the calculated signal exactly extracts a particular signal
wave vector up toN th order in the field. Higher orders
in the field are mixed. Thus, by taking largeN this
procedure allows us to calculate the signal to a speci-
fied order in the field. For instance, the third order in
ks = −k1 + k2 + k3 signal direction is the lowest or-
der which contributes. 5th, 7th, etc. order in the field
can therefore be calculated by the phase cycling. In the
perturbative scheme this would require calculation of
higher order perturbation series expressions which un-
fortunately scale very unfavorably with the order in the
field. Non-perturbative approach [25] has been used to
account for higher than third-order effects in the non-
linear signals.

2.5. Overlapping electric fields in perturbative
expansion

Let us consider the product of the total incoming
field (from Eq. (42))

E(r, t−t3−t2−t1)E(r, t−t3−t2)E(r, t−t3) . (58)
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For convenience we can separate a spatial phase factor
Φj = kjr from the time-dependent factors and identify
the interaction sequence:

Ej(r, t− t3 − t2 − t1)≡E[1]
j eiΦj + Ē

[1]
j e−iΦj ,

Ej(r, t− t3 − t2)≡E[2]
j eiΦj + Ē

[2]
j e−iΦj ,

Ej(r, t− t3)≡E[3]
j eiΦj + Ē

[3]
j e−iΦj , (59)

where nowE[1]
j denotes a forward-propagating pulse

which interacts first with the system,E[2]
j stands for the

second-interacting pulse, andE[3]
j for the third.Ē[m]

j =

E
[m]∗
j indicates the backward propagation (conjugate

part); here bothj, m = 1, 2, 3. The expressions for
E

[m]
j are as follows:

E
[1]
j ≡Ej(t− t3 − t2 − t1 − τj)

× e−iωj(t−t3−t2−t1−τj)eiφj ,

E
[2]
j ≡Ej(t− t3 − t2 − τj)e−iωj(t−t3−t2−τj)eiφj ,

E
[3]
j ≡Ej(t− t3 − τj)e−iωj(t−t3−τj)eiφj . (60)

Since we are considering a response in the direction
−k1+k2+k3, we can neglect terms which have spatial
phase factors different from−Φ1 + Φ2 + Φ3 after sub-
stituting Eqs. (59) into Eq. (42). Assuming all electric
field pulses being of the same frequency (ω0 ≡ ω1 =
ω2 = ω3) and phase not tuned (φ1 = φ2 = φ3 = 0),
the product of the total incoming field (Eq. (58)) is

[Ē[1]
1 E

[2]
2 E

[3]
3 + Ē

[1]
1 E

[2]
3 E

[3]
2 ) eiω0(t3−t1)

× (E[1]
2 Ē

[2]
1 E

[3]
3 + E

[1]
3 Ē

[2]
1 E

[3]
2 ) eiω0(t3+t1)

× (E[1]
2 E

[2]
3 Ē

[3]
1 + E

[1]
3 E

[2]
2 Ē

[3]
1 ) eiω0(t3+2t2+t1)]

× e−iω0(t−τ) . (61)

Terms in this product lie in three groups according to
their phase factors. They areeiω0(t3−t1), eiω0(t3+t1),
andeiω0(t3+2t2+t1). As it will be shown later, system
response function can be decomposed into components
having opposite phase factors. In a multiplication of
the system response function and electric field prod-
uct some of these phase factors will cancel making
that term slowly-varying, others will be modulated by
the sum frequencies. Integration over time (Eq. (42))
makes the latter ones negligible compared to integrals

of slowly-varying terms. This elimination is known as
the rotating-wave approximation (RWA).

2.6. Two-dimensional photon echo signal

The third-order polarization is the main quantity un-
der consideration in theory of nonlinear response of
bulk isotropic samples. One of the most advanced ex-
perimental set-ups is presented in the scheme in Fig. 1:
here the polarization is induced by three incoming laser
fields. According to the scheme we can consider the set
of signal wave vectors representing all permutations of
incoming field wave vectorsks = ±k1± k2± k3 and,
correspondingly, frequenciesωs = ±ω1 ± ω2 ± ω3. In
this scheme the signal may be defined as the function of
the delay times between the laser pulses,W (τ, T, t) ≡
P (3)(τ, T, t).

A two-dimensional photon echo spectrum is ob-
tained by applying 2D Fourier transform of polariza-
tion P (3)(τ, T, t), detected in−k1 + k2 + k3 direc-
tion, over time variablesτ andt. As it was mentioned
in the introduction, separation of the total signal to the
rephasing and non-rephasing signals is possible accord-
ing to the range of delay timeτ . For the rephasing sig-
nal (τ > 0),

WR(ωτ , T, ωt)

=
∞∫
0

dτ e−iωτ τ

∞∫
0

dt e−iωtt P
(3)
−k1+k2+k3

(τ, T, t) . (62)

In the scheme of the non-rephasing signal generation,
first two pulses are exchanged, but the detection takes
place in−k1 + k2 + k3 direction. The same signal
would be detected in+k1−k2+k3 experimental direc-
tion if τ was positive. Just its spectral elements would
lie in the opposite plane ofωτ with respect to rephasing
spectrum:

WNR(−ωτ , T, ωt)

=
∞∫
0

dτ eiωτ τ

∞∫
0

dt e−iωttP
(3)
+k1−k2+k3

(τ, T, t) . (63)

The integration overt is carried out only in the positive
axis since the third-order response is not created before
the third laser pulse.

3. Response of basic quantum systems

Here we present the least sophisticated systems that
can be analysed using methods of 2D spectroscopy.
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Purely for the demonstrational purposes some features
of this technique can be highlighted in an elegant way
and analytic expressions of 2D and absorption spectra
can be obtained for some basic quantum systems.

This section is organized as follows. In Section 3.1
an isolated two-level system is considered. The phonon
bath is taken into account as the dephasing of the sys-
tem response. In Section 3.2 the dephasing is expressed
using an energy-gap correlation function and the line-
shape function for a two-level system is introduced.
Depending on the model of a phonon-bath motion, var-
ious approximations are presented. In Section 3.3 a
model of the two-level system is appended by a third
overtone state which is a basis of an anharmonic os-
cillator system. Analytic expressions of system re-
sponse are presented using system–bath interaction de-
scription as for a two-level atom. And, finally, in Sec-
tion 3.4, the response of a general multi-level system is
derived assuming the second-order cumulant expansion
of system–bath interaction.

3.1. Two-level atom

In this part we consider an ideal quantum system of
two energy levels: the ground state|g〉 and the excited
state|e〉 . This model effectively represents an isolated
resonant transition of an atom. The total Hamiltonian
in the system eigenstate basis consists of the material
part and the coupling with electric field

Ĥ = εg|g〉〈g|+ εe|e〉〈e| − µ̂ E(t) . (64)

The evolution superoperator, corresponding to the ma-
terial part of the Hamiltonian, acting upon the dipole
moment operator̂µ = µge|g〉〈e| + µeg|e〉〈g| also
possesses the phenomenologically included dephasing
termγ.

U†mol(t1) µ̂ = θ(t1) exp{iωegt1 − γt1}|e〉〈g|+ h. c.
(65)

Inserting this into the definition of the linear response
function (Eq. (37)) together witĥρeq = |g〉〈g| results
in

S(1)(t1) = −2
~
θ(t1) |µge|2 e−γt1 sin(ωegt1) . (66)

The Fourier-transformed linear response function is

S(1)(ω1) =
i
~
|µeg|2

×
[

1
γ + i(ω1 − ωeg)

− 1
γ + i(ω1 + ωeg)

]
. (67)

For an isolated two-level system it is a Lorentzian-
shaped function, centred atωeg.

In the third-order photon echo response function we
have only two contributions, ground state bleaching
and stimulated emission:

SGSB(t3, t2, t1)≡R2(t3, t2, t1)

= µ4 eiωeg(t1−t3)−γ(t1+t3) , (68)

SSE(t3, t2, t1)≡R3(t3, t2, t1)

= µ4 eiωeg(t1−t3)−γ(t1+t3) , (69)

whileR1(t3, t2, t1) andR4(t3, t2, t1) contributions are
zero. To obtain an analytic expression of the 2D spec-
trum of the two-level atom, we considerδ-shaped laser
pulses. In this regime (impulsive limit), 2D spectrum is
a Fourier image of the system response function (third
order polarization equals the system response func-
tion):

W (ωτ , T, ωt) =
∞∫
−∞

dt3 e−iωτ τ

∞∫
−∞

dt1 e−iωtt

× S(3)(t ≡ t3, T ≡ t2, τ ≡ t1) (70)

and

S(3)(t3, t2, t1) =
(
i

~

)3

θ(t1) θ(t2) θ(t3)µ4 (71)

× [R2(t3, t2, t1) +R3(t3, t2, t1)]

= 2
(
i

~

)3

θ(t1) θ(t2) θ(t3)µ4 eiωeg(t1−t3)−γ(t1+t3) .

By applying Fourier transform and separating rephas-
ing (τ > 0) and non-rephasing (τ < 0) parts, we obtain

WR(ωτ , ωt) (72)

= 2
(
i

~

)3

µ4 1
γ − i(ωt − ωeg)

· 1
γ + i(ωτ − ωeg)

,

WNR(ωτ , ωt) (73)

= 2
(
i

~

)3

µ4 1
γ − i(ωt − ωeg)

· 1
γ − i(ωτ − ωeg)

.

The calculated 2D spectra of the two-level system are
depicted in Fig. 4. Note that non-rephasing 2D spec-
tra of the real and imaginary parts are just mirrored
images of the rephasing spectra with respect toωτ
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Fig. 4. Calculated rephasing, non-rephasing, and sum spectra for
the real (absorptive signal) and imaginary (dispersive signal) parts
and signal amplitude of a single two-level system (isolated two-

level atom).
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Fig. 5. (a) Scheme of the two-level molecule under consideration
with elements of molecular Hamiltonian indicated; (b) lineshapes
of absorption peaks of two-level molecule in homogeneous and in-

homogeneous limits.

axis. In the absence of the inhomogeneous broaden-
ing both real part rephasing and non-rephasing spectra
are Lorentzian-shaped along the main diagonal with2γ
for the FWHM (Fig. 5b).

3.2. Two-level molecule

The two-level molecule is described as the system
of the ground state|g〉 and electronically excited state
|e〉 as for the two-level atom. However, this system is
additionally coupled to vibrational degrees of freedom.
This coupling to these is expressed through the gen-
eralized bath coordinates (nuclear degrees of freedom)
Q. These coordinates introduce additional degrees of

freedom (e. g. solvent or lattice kinetics, etc.). In the
adiabatic regime the material Hamiltonian is

Ĥmat = |g〉Hg〈g|+ |e〉He〈e| . (74)

Here Born–Oppenheimer approximation was used as
well as ansatz of the absence of pathway of excited
state relaxation to|g〉. On the other hand, full energy
of the state is a sum of the electronically excited state
level energyε, the kinetic energy of nuclear vibrations
T (Q), and the vibrational potential energy (adiabatic
potential)V (Q) (Fig. 5)

Ĥmat = [εg + T (Q) + Vg (Q)] |g〉〈g|

+ [εe + T (Q) + Ve (Q)] |e〉〈e| . (75)

The Hamiltonian can be written in another form by sep-
arating the electronic and bath parts:

Ĥmat = ĤB + ĤS + ĤSB . (76)

Here ĤB is a purely vibrational part that depends
solely on bath degrees of freedom,̂HS is a purely
electronic part (system), and̂HSB is the electron–
phonon coupling of system–bath interaction as defined
in Sec. 2.4.1. These parts of molecular Hamiltonian
can be written as

ĤB = [T (Q) + Vg (Q)] (|g〉〈g|+ |e〉〈e|) , (77)

ĤS = εg|g〉〈g|+ [εe + 〈Ve − Vg〉] |e〉〈e| , (78)

ĤSB = [Ve (Q)− Vg (Q)− 〈Ve − Vg〉] |e〉〈e| . (79)

The average energy gap term〈Ve − Vg〉 was added to
the electronic part and subtracted from the interactional
part (making zero contribution in the material Hamilto-
nian) assuming that the interaction part must be zero in
the thermodynamical equilibrium. Thus the interaction
part is an operator of energy gap fluctuations with re-
spect to the ground state. The molecular Hamiltonian
in the matrix notation for a two-level system then is
very simple:

Ĥmat = HB

(
1 0
0 1

)
+

(
εg 0
0 ε̄e

)
+ ∆V

(
0 0
0 1

)
. (80)

The dipole moment operator of a two-level system is
written assuming Franck–Condon approximation, i. e.
the polarization operator in the dipole limit is equiva-
lent to the dipole operator, which does not depend on
the vibrational coordinates:

µ̂ = deg |e〉〈g|+ d∗eg |g〉〈e| . (81)
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The energy of the electronic transition is usually in
UV or visible region and energy gap is greater than
kBT , therefore we can assume that initially (at time
t → −∞) the system is in the equilibrium state, de-
fined by equilibrium ground state density operator. So
the dipole moment operator acting upon the equilib-
rium density matrix is

µ̂ ρ(eq) = deg ρ
(eq) |e〉〈g| . (82)

Linear response. Linear response function of the sys-
tem is given by Eq. (67). In the following we include
vibrational degrees of freedom. Now the response
function depends on coordinatesQ.

J(t) = TrB{U †(t) µ̂ U(t) µ̂ ρ(eq)} (83)

= |deg|2 TrB{e
i
~ Hgt e−

i
~ Het ρ(eq)}

= |deg|2 e−iωegt TrB{e−
i
~ ∆V (Q,t)t ρ(eq)} .

Here we extracted the energy gapωeg and in the expo-
nential of the evolution operators only the vibrational
part is left. Within the trace operation in the expo-
nential we have a perturbative part of the excited state
Hamiltonian, therefore, it is the excited state evolution
operator in the interaction picture. It is known from the
time-dependent perturbation theory that it can be writ-
ten as a positive time ordered exponential [29]

Ũ I
e(Q, t) = exp+

[
− i

~

t∫
0

dτ ∆V (Q, τ)
]
. (84)

By inserting this intoJ(t) expression (Eq. (83)) we ob-
tain

J(t) = |d|2 e−iωegt

× TrB
{

exp+

[
− i

~

t∫
0

dτ ∆V (Q, τ)
]
ρeq

}
. (85)

Expanding Eq. (85) to the second order,

J(t) = |d|2 eiωegt
{

1− i
~

t∫
0

dτ TrB{∆V (Q, τ)} (86)

+
(

i
~

)2 t∫
0

dτ
τ∫

0

dτ ′TrB{∆V (Q, τ) ∆V (Q, τ ′)
}
,

we find that the second term in Eq. (86) is zero in the
thermodynamical equilibrium. After performing a cu-

mulant expansion (see Appendix (7) for details) of this
expression, we obtain

J(t) = |d|2 eiωegt−g(t) , (87)

where

g(t)≡
(

1
~

)2
t∫

0

dτ
τ∫

0

dτ ′

× TrB{∆V (Q, τ) ∆V (Q, τ ′) ρeq} . (88)

The functiong(t) defined here is called thelineshape
function. It is a double integral of the energy gap cor-
relation function:

C(τ ′) =
1
~2

TrB{∆V (Q, τ ′) ∆V (Q, 0) ρeq} , (89)

g(t) =
t∫

0

dτ
τ∫

0

dτ ′C(τ ′) . (90)

Having the linear response function derived we are
now able to obtain full expression of the absorption
spectra of the two-level system. To make it even more
simpler, afast modulation limitapproximation will be
used. It is based on the assumption that the bath fluctu-
ations are much more intensive than those of the system
vibrations. Then the system–bath coupling is “fast” and
the energy gap correlation function is assumed to be of
shape of the Dirac delta function:

C(t) ≡ γ δ(t) . (91)

Hereγ is the coupling strength. This type of correla-
tion is denoted as Markovian since the memory of sys-
tem initial state is lost extremely fast. That is the case
used for calculating expressions for the two-level atom
in Section 3.1.

We can, in advance, notice that in this regime the
Stokes shift will be absent since due to the ultra-fast
bath kinetics the electric field always interacts with an
averaged ensemble of two-level systems [29]. By ap-
plying a double integration of theδ-shaped correlation
function, we get a linear expression of theg(t) func-
tion:

g(t) = γ t . (92)
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An analytic expression of the absorption coefficient is
then obtained by applying Fourier transform to the lin-
ear response function

κα(ω)∝ω|d|2 Re
∞∫
0

dt ei(ω−ωeg)t−Γt (93)

= |d|2 ωRe
1

ω − ωeg + iγ
.

The resulting lineshape is Lorentzian (Fig. 5) centreed
at ωeg with 2γ for the Full Width at Half Maximum
(FWHM) as a signature of homogeneous broadening in
the absorption spectrum. Therefore the fast modulation
limit is also known as thehomogeneouslimit.

In contrast to the homogeneous limit, theinhomoge-
neouslimit can also be described. If the system does
not lose memory of its preceding states, the correlation
function is constant,C(t) ≡ C0. The resulting line-
shape function isg(t) = 1

2C0t
2. The spectral lineshape

is Gaussian with2
√

2 ln 2C−1
0 for the FWHM.

Third-order response and 2D spectrum.Spectra of
inhomogeneous system are shown in Fig. 6. For the
real part of the rephasing spectrum the diagonal peak
lineshape is Gaussian (c. f. Lorentzian lineshapes of
Fig. 4) and elongated with respect to the main diagonal.
It is an illustration of the fact that the inhomogeneously
broadened spectrum can be assumed as the superposi-
tion of spectra of two-level systems with different top-
level energies that are Gaussian-distributed. If the inho-
mogeneity is included, a decay of non-rephasing signal
is also evident. This is caused by destructive addition
of positive and negative diagonal values of the signal.
Thus the rephasing signal gives more information about
the system since the homogeneous and inhomogeneous
contributions are well separated.

The angle of nodal line (separating positive and neg-
ative off-diagonal peaks) of the imaginary part of the
sum spectrum also characterizes the system under con-
sideration. In this case it is the ratio of inhomoge-
neous and homogeneous contributions. This type of
counter-clockwise nodal line rotation is observed when
the energy-gap correlation function is of type of slow
exponential decay (static inhomogeneous broadening)
[21] or as a result of losing of memory of the initial
excitation of the system [18].
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Fig. 6. Calculated rephasing, non-rephasing, and sum spectra for
the real (absorptive signal) and imaginary (dispersive signal) parts
and signal amplitude of a single two-level system at fast modulation

limit with Gaussian disorder of4γ for the FWHM.

3.3. Anharmonic oscillator (three-level system)

Here we describe the linear and third-order response
of a weakly anharmonic oscillator. In this case the
molecular Hamiltonian is

Ĥmol = ω0 â
† â+

∆
2
â† â† â â ,

whereâ and â† are bosonic annihilation and creation
operators,ω0 is known as the fundamental frequency,
and∆ � ω0 is the anharmonicity. Three lowest states
of this system are the ground state|g〉 with energy0,
the one-quantum state|e〉 with the energyω0, and the
double-quantum state|f〉 with energy2ω0 + ∆. The
dipole operator is

ĤSF = µ (â† + â) .

This gives the fundamental transition amplitudeµge =
µ and the transition from the one-quantum state to the
double-quantum state equal toµef =

√
2µ.

The connection with the oscillator can be easily es-
tablished by introducing the dimensionless coordinate
q̂ and momentum̂p:

q̂=
1√
2

(â† + â) ,

p̂=
i√
2

(â† − â) .
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The linear response function has the same form as
the two-level system since the overtone state is not in-
volved (Eq. (67)).

In the photon echo rephasing response function we
now have three contributions. Due to the presence of
the double-quantum state|f〉, the negative induced ab-
sorption contribution adds up,

SIA(t3, t2, t1) =R1(t3, t2, t1) (94)

=−2µ4 eiω0(t1−t3)−i∆t3−γ(t1+t3) ,

SGSB(t3, t2, t1) =R2(t3, t2, t1) (95)

= µ4 eiω0(t1−t3)−γ(t1+t3) ,

SSE(t3, t2, t1) =R3(t3, t2, t1) (96)

= µ4 eiω0(t1−t3)−γ(t1+t3) .

After Fourier transformations we have

WR(ωτ , T, ωt) = 2
(
i

~

)3

θ(T )
µ4

γ − i(ωτ − ω0)

×
[

1
γ + i(ωt − ω0)

− 1
γ + i(ωt − ω0 −∆)

]
. (97)

Similarly, for the non-rephasing contribution we would
obtain

WNR(ωτ , T, ωt) = 2
(
i

~

)3

θ(T )
µ4

γ − i(ωτ − ω0)

×
[

1
γ − i(ωt − ω0)

− 1
γ − i(ωt − ω0 −∆)

]
. (98)

The total spectrum

W (ωτ , T, ωt) = 4
(

i
~

)3

θ(T )
γ2 + iγ(ωτ − ω0)
γ2 + (ωτ − ω0)2

×
[

1
γ2 + (ωt − ω0)2

− 1
γ2 + (ωt − ω0 −∆)2

]
. (99)

It is seen that in case of no anharmonicity (∆ = 0),
IA contribution cancelsSE andGSB pathways com-
pletely. If anharmonicity is large compared to the de-
phasing constant (∆ > γ), negative and positive peaks
are well resolved in 2D spectrum (Fig. 7). In the other
case, positive and negative peaks overlap and the nodal
line can be drawn.
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Fig. 7. Real part of the totalW (ωτ , T, ωt) two-dimensional spec-
tra of a three-level system (anharmonic oscillator).∆ denotes
an anharmonicity,σD is the standard deviation of the Gaussian-

distributed diagonal disorder,γ is pure dephasing rate.

3.4. Multi-level system in contact with the bath:
cumulant expansion of the third-order response
function

We assume that the system is given by a set of energy
states: the ground state|g〉 and |1〉, |2〉 . . . |N〉 states.
The molecular Hamiltonian is thus

Ĥmol =
N∑

a=1

εa |a〉〈a| .

Here and later roman symbolsa, b, andc run over all
the energy states in summations. Again the bath is de-
scribed by the set{α} of harmonic oscillators. The
system–bath interaction is given by

ĤSB =
√

2
∑
abα

d
(α)
ab Qα |a〉〈b|≡

∑
abα

d
(α)
ab (b̂†α + b̂α)|a〉〈b| .

We first neglect off-diagonal fluctuations. In that
case the system dynamics is adiabatic, i. e. the system
eigenstates are not affected by the fluctuations. Sys-
tem response functionsR1(t3, t2, t1), ... R4(t3, t2, t1)
(Eqs. (46)–(49)) can then be written as four-point
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correlation functions of the system and dipole moment
operator interaction times

R1(t3, t2, t1) =F (t1, t1 + t2, t1 + t2 + t3, 0) , (100)

R2(t3, t2, t1) =F (0, t1 + t2, t1 + t2 + t3, t1) , (101)

R3(t3, t2, t1) =F (0, t1, t1 + t2 + t3, t1 + t2) , (102)

R4(t3, t2, t1) =F (t1 + t2 + t3, t1 + t2, t1, 0) , (103)

where

F (τ4, τ3, τ2, τ1) = TrB{µ̂(τ4) µ̂(τ3) µ̂(τ2) µ̂(τ1) ρeq}
(104)

andµ̂(τ) = U(τ)µ̂; µ̂ is defined in Eq. (130). The evo-
lution superoperator (as in Sec. 3.2) can be expressed
as a product of a normal and time-ordered exponen-
tial (representing system and bath fluctuations, respec-
tively)

Uab(τ) = exp(−iωabτ) exp+

[
− i

τ∫
0

dτ ′∆Vab(τ)
]
.

(105)
Applying the four-point correlation function to a gen-
eral scheme of system–dipole moment operator inter-
actions (Fig. 3), one can obtain

F (τ4, τ3, τ2, τ1)

=
∑
cba

µgc µcb µba µag F (C)
cba (τ4, τ3, τ2, τ1) . (106)

IndexC denotes the coherent limit – population trans-
fer is not included. The four-point correlation function
is then

F (C)
cba (τ4, τ3, τ2, τ1) = exp[−i(εcτ43 + εbτ32 + εaτ21)

+ f
(C)
cba (τ4, τ3, τ2, τ1)] , (107)

where

f
(C)
cba (τ4, τ3, τ2, τ1)

= TrB
{

e
−i

∫ τ1
0

dτ ∆Vgc(τ)

+ e
−i

∫ τ2
0

dτ ∆Vcb(τ)

+

e
−i

∫ τ3
0

dτ ∆Vba(τ)

+ e
−i

∫ τ4
0

dτ ∆Vag(τ)

+

}
. (108)

The second-order cumulant expansion of this expres-
sion (for details see Appendix 7) results in

f
(C)
cba (τ4, τ3, τ2, τ1)

= exp[−gcc(τ43)− gbb(τ32)− gaa(τ21)

− gcb(τ42) + gcb(τ43) + gcb(τ32)

− gca(τ41) + gca(τ42) + gca(τ31)− gca(τ32)

− gba(τ31) + gba(τ32) + gba(τ21)] . (109)

The lineshape functiongab(t) is given by the correla-
tion functionCaa,bb(t) integral [29]:

gab(t) =
t∫

0

dτ
τ∫

0

dτ ′Caa,bb(τ − τ ′) . (110)

Consider now additional off-diagonal fluctuations.
Now the system dynamics includes population trans-
port and the system cannot be described using evolu-
tion operators of the wave function. Using the secu-
lar approximation for the system dynamics it can sep-
arated into two types: the coherence evolution and
the population transport. During the coherence evolu-
tion, the diagonal fluctuations modulate the oscillation
frequency, off-diagonal fluctuations, and the lifetime-
induced dephasing. During the population evolution,
the off-diagonal fluctuations induce population trans-
port and the effect of the diagonal fluctuations is in-
cluded in the transport rate. For Feynman diagrams,
where population transfer is involved, diagrams with
incoherent transport are used [32]. The addition to the
system response function (Eq. (44)) is

T (t3, t2, t1) = −(i)3
∑
cbe′e

µcb µνν′ µ
2
eg Ge′e(t2)

×F (I)
cbe′e(t3, t2, t1) , (111)

where indicesc andb denote states in coherence|b〉〈c|
during t3 in population transfer diagrams;νν ′ has to
be changed toe′b when the signal is generated on the
left side of the diagram, and toce′ when it is gener-
ated on the right.Ge′e(t2) is Green’s function that is a
probability of population state|e〉〈e| to be transferred
to |e′〉〈e′| in timet2 (or population survival probability
whene′ = e).

F (I)
cbe′e(t3, t2, t1) = exp[iωcbt3 − iωegt1 − (γc + γb)t3

− γet1 + f
(I)
cbe(t3, t2, t1)] , (112)
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where

f
(I)
cbe(t3, t2, t1) = exp[−gee(t1)− gbb(t3)− g∗cc(t3)

− gbe(t1 + t2 + t3) + gbe(t1 + t2) + gbe(t2 + t3)

+ gce(t1 + t2 + t3)− gce(t1 + t2)− gce(t2 + t3)

+ gcb(t3) + g∗bc(t3) + gce(t2)− gbe(t2)] . (113)

γν is the dephasing constant, that is a sum of a state
lifetime and pure dephasing

γν = |Kνν |/2 + γ̃ν . (114)

The population Green’s function is a solution of the
Pauli master equation

Ġe′e(t) =
∑
j 6=e′

Ke′j Gje −
( ∑

j 6=e′

Kje′

)
Ge′e , (115)

whereKij are the population transport rates. This
equation can be represented in a matrix form

∂

∂t
Ĝ(t) = − ˆ̃K Ĝ(t) , (116)

where the population transport rate matrix is con-
structed asK̃ab = −Kab + δab

∑
j Kjb. By apply-

ing unitary transformation upon the explicit solution of
Eq. (116)) we obtain

Ĝ(t) = Q̂ exp(−Q̂−1 ˆ̃K Q̂t) Q̂−1 (117)

and

Ge′e(t) =
∑
j

Qe′j Q
−1
je e−λjt . (118)

HereQ̂ is eigenvector matrix of̂̃K, Q̂−1 is its inverse,
andλj are the eigenvalues. Population transport rates
can be calculated using traditional Redfield theory [27,
33]:

Kab = ReC ′′ab,ab(ωab) [coth(β~ωab/2)− 1] , (119)

whereωab = εa − εb, β = (kBT )−1, T is the tempera-
ture,kB is Boltzmann constant, and

C ′′ab,cd(ω) =
1− exp(−β~ω)

2

∞∫
−∞

dt eiωtCab,cd(t) .

(120)

4. Coupled multi-chromophore system

4.1. Frenkel exciton model

We consider a general multi-chromophore system
consisting ofN electronically interacting two-level
subsystems. Nonlinear optical properties of such com-
plexes of coupled chromophores (e. g. molecular ag-
gregates, proteins etc.) are described using a Frenkel
exciton model [34, 35]. The Frenkel exciton Hamilto-
nian is

Ĥ =
N∑

m=1

εm |m〉〈m|+
N∑
m

N∑
n6=m

Jnm |n〉〈m|+ Ĥint ,

(121)
whereεm and Jmn are site energy of themth chro-
mophore and the resonant coupling betweennth and
mth chromophores, respectively.̂Hint denotes inter-
action to the field and the environment and is treated
as a weak perturbation. In the exciton representation a
multi-level system is considered. It contains the ground
state|g〉 and one- and two-exciton bands (manifolds).
Each state of the one-exciton manifold is denoted as
|ej〉 (j = 1 . . . N ) with corresponding optical transition
to the ground stateωejg. The number of two-exciton
states isN(N − 1)/2 and they are denoted as|fk〉
with optical transitions to the one-exciton bandωfkej

;
transition to the ground state is forbidden. The one-
exciton Hamiltonian matrix̂h(1) is simply the refer-
ence Hamiltonian of Eq. (121):h(1)

jk = δjkεj + ζjkJjk,

whereζjk = 1− δjk. Two-exciton Hamiltonianh(2) is

h
(2)
(kl),(mn) ≡ (εk+εl)δkmδln+Jkmδlnζkm+Jlnδkmζln.

Transition from site representation to the exciton ba-
sis as well as eigen-energies are obtained using unitary
transformations

U−1 ĥ(1) U = Ω , (122)

V −1 ĥ(2) V = W . (123)

Ĥint = ĤSF + ĤSB determines the system interac-
tions with external perturbations: the optical field (de-
noted as SF, “system–field”) and the phonon bath (SB,
“system–bath”). The former is given by

ĤSF =
∑
m

dm(|m〉+ 〈m|) , (124)

whered is a molecular transition dipole. Applying the
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Fig. 8. Double-sided Feynman diagrams, illustrating Liouville space pathways (LSPs) in the system, induced by a repetitive dipole moment
interaction with both sides of the system density operator.

unitary transformation the dipoles of intra-band transi-
tions (eigen-dipoles) are obtained:

µgej =
∑
m

U−1
jm dm ,

µejfk
=

N−1∑
m=1

N∑
n=m+1

ν(k)
mn (U−1

jn dm + U−1
jm dn) . (125)

Hereν(k)
nm denotes the element ofV −1 of thekth row

and the column, corresponding to a diagonal element
εn + εm of the two-exciton Hamiltonian matrix. The
explicit relation isν(k)

mn = V −1
kγ , whereγ = 1

2(2N −
m)(m− 1) + n−m, n, m = 1, 2 . . . N . We next as-
sume thatĤSB term induces fluctuations of the molec-
ular transition energies:

ĤSB =
∑
m

qm(Q, t) |m〉〈m| , (126)

whereQ are the collective phonon bath coordinates.
We assume that each molecule has its own indepen-
dent set of fluctuating coordinates uncorrelated with the
other molecules. Fluctuations of different molecules
are statistically independent, i. e. the correlation func-
tion matrix is diagonal,〈qm(t)qn(0)〉 = δmnC(t). It

is convenient to use the spectral density, which is given
by [27]:

C′′(ω) =
1
2

∞∫
0

dt exp(iωt) 〈[qm(t), qm(0)]〉 . (127)

In the exciton basis, we obtain fluctuating transition en-
ergies and couplings between the eigenstates. These
fluctuations are characterized by spectral densities

C ′′e1e2,e3e4
(ω)

=
[ ∑

m

U−1
me1

U−1
me2

U−1
me3

U−1
me4

]
C′′(ω) ,

C ′′e1e2,f3f4
(ω)

=
[ ∑

m

U−1
me1

U−1
me2

k 6=m∑
k

ν
(f3)
mk ν

(f4)
mk

]
C′′(ω) ,

C ′′f1f2,e3e4
(ω) = Ce3e4,f1f2(ω) ,

C ′′f1f2,f3f4
(ω) (128)

=
[ ∑

m

(
k 6=m∑

k

ν
(f1)
mk ν

(f2)
mk )(

l 6=m∑
l

ν
(f3)
ml ν

(f4)
ml )

]
C′′(ω) .

(129)
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Here we have extended the double-exciton eigenvector
matrix by takingν(f)

mn ≡ ν
(f)
nm, which lets us simplify

the expressions considerably.

4.2. System response function of three-manifold system

The dipole moment operator for an excitonic multi-
level system described above is

µ̂ =
∑
e

µe |e〉〈g|+
∑
e,f

|f〉〈e|+ h. c. (130)

In this definition, dipole moments of transitions be-
tween excitonic states are not operators due to Franck–
Condon approximation (dipole moments are excitation-
independent). The system also does not have a per-
manent dipole moment (〈g|µ̂|g〉 = 0). By inserting
Eq. (130) into expressions of elements of the response
function (Eqs. (46)–(49)) we obtain oscillating terms
of the evolution operator in frequencȳω of transitions
between excitonic manifolds and ground state (approx.
the same frequency for all inter-band transitions). Sep-
arating the phase of resulting expressions one can see
that there are two types of phase factors,−iω̄(t1 + t3)
and−iω̄(t1 − t3). The opposite phase factors of elec-
tromagnetic field oscillations of frequencyω0 are in
electromagnetic field expression Eq. (61). In the ex-
perimentω0 ≈ ω̄ is set. Multiplication of the system
response function and the electric field part under inte-
gration in Eq. (42) then results in terms of sum phase
factors. In case of constructive (destructive) interfer-
ence of phase factors rapidly (slowly) oscillating terms
are obtained. Integrals of rapidly-varying functions are
much smaller and can be neglected (RWA). The third-
order polarization then is

P (3)(τ, T, t) = e−iω0(t−τ)

∞∫
0

∞∫
0

∞∫
0

dt3 dt2 dt1 (131)

×
{
S

(3)
I ×

[
Ē

[1]
1 E

[2]
2 E

[3]
3 +Ē[1]

1 E
[2]
3 E

[3]
2

]
eiω0(t3−t1)

+ S
(3)
II ×

[
E

[1]
2 Ē

[2]
1 E

[3]
3 +E[1]

3 Ē
[2]
1 E

[3]
2

]
eiω0(t3+t1)

+ S
(3)
III ×

[
E

[1]
2 E

[2]
3 Ē

[3]
1 +E[1]

3 E
[2]
2 Ē

[3]
1

]
eiω0(t3+2t2+t1)

}
,

whereS(3)
I = S

(3)
I (t3, t2, t1) = −R∗1 + R2 + R3,

S
(3)
II = S

(3)
II (t3, t2, t1) = −R∗2 +R1 +R4, andS(3)

III =
S

(3)
III (t3, t2, t1) = −R∗3 + R4 are the system response

functions forkI, kII, andkIII interaction sequences,
respectively. These interaction sequences of the evo-
lution operator and the dipole moment operator can be

|g〉

|f〉

|e1〉

|e2〉

φ

R12

d1 d2

ǫ1 ǫ2

J
εe1

εe2

εf

Abs.

Fig. 9. Site representation and formation of molecular excitations
(molecular excitons) of a general hetero-dimer system and illus-
tration of absorption spectrum with peaks corresponding to optical

transitions from the ground state to single-exciton states.

expressed by double-sided Feynman diagrams (Fig. 8).
They correspond to different physical processes – in-
duced absorption (−R∗1 and−R∗2), stimulated emission
(R2 andR1), ground state bleaching (R3 andR4), or
double-coherence pathways (−R∗3 andR4). In further
discussion we will use notation of these diagrams in-
stead ofR functions. Complete expressions forSI and
respective diagrams are presented in Appendix 7.

5. Spectroscopy of dimers

5.1. Dimer of two-level chromophores

An excitonically coupled dimer is an archetypical
molecular system to be analysed by methods of opti-
cal 2D spectroscopy. The general scheme of a hetero-
dimer as well as the exciton band structure are pre-
sented in Fig. 9. The dimer consists of two coupled
chromophores, represented by two dipolesd1 andd2

with interdipole distance vectorR12 and angleφ. In
the Frenkel exciton Hamiltonian the chromophore en-
ergies are denoted asε1 and ε2 and the the coupling
constantJ ,

Ĥmol = ε1 â
†
1 â1+ε2 â

†
2 â2+J (â†1 â2+ â†2 â1) . (132)

The Hamiltonian is diagonalized and the eigenenergies
for the single-exciton states are

εe1 = ε1 cos2 θ + ε2 sin2 θ − 2J cos θ sin θ , (133)

εe2 = ε1 sin2 θ + ε2 cos2 θ + 2J cos θ sin θ , (134)

and

εf = εe1 + εe2 (135)

for the double-exciton state, whereθ = 1
2 arctan J

ε2−ε1
[7, 8]. The transformation to the eigenstate representa-
tion matrix is

U−1 =
(
− sin θ cos θ

cos θ sin θ

)
. (136)
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The transition dipoles between the eigenstates and
transition dipoles in the real space are related via
one-excitonic and two-excitonic eigenvector matrices
(Eqs. (125))(

µe1g

µe2g

)
=

(
cos θ − sin θ
sin θ cos θ

) (
d1

d2

)
(137)

and (
µfe1

µfe2

)
=

(
− sin θ cos θ

cos θ sin θ

) (
d1

d2

)
(138)

and squares of the transition dipoles between the eigen-
states (oscillator strengths) are

|µe1g|2 = |µfe1 |
2 = 1 +

J cosφ√
(ε2 − ε1)2 + J2

, (139)

|µe2g|2 = |µfe2 |
2 = 1− J cosφ√

(ε2 − ε1)2 + J2
. (140)

5.2. Excitonically coupled dimer: signatures of
different evolution scenarios and pulse-overlap
effects in 2D spectra

Parameters used in calculations areε1 = 11800 cm−1

ε2 = 12200 cm−1, J = 100 cm−1, φ = π
6 . The envi-

ronment is represented by two overdamped Brownian
oscillator coordinates, fast and slow, with relaxation
ratesΛF and ΛS, respectively. Both coordinates in-
duce uncorrelated site-energy fluctuations as described
above. We use the overdamped Brownian oscillator
model where the spectral density of local chromophore
energy fluctuations is [32]

C ′′(ω) = 2
∑

l=S,F

λl
ωΛl

ω2 + Λ2
l

. (141)

The corresponding lineshape function obtained by a
direct double-time integral of Eq. (110) in the high-
temperature limit [27, 29] is

g(t) =
∑

l=S,F

λl
2kBT−iΛl

Λ2
l

(e−Λlt + Λlt− 1) . (142)

All system, bath, and coupling characterizing quanti-
ties are chosen typical of pigment molecules in photo-
synthetic proteins [34, 36]. Bath-induced fluctuations
are described by overdamped BO parametersλF =
30 cm−1, λS = 60 cm−1, Λ−1

F = 50 fs, Λ−1
S = 105 ps.

The slow bath is used to model the static disorder,
thus its fluctuation timescaleΛ−1

S → ∞. The calcu-
lated population transfer rates (Eq. (119)) for the eigen-
states are: (downward)K1←2/J = 2.69 and (upward)

Fig. 10. 2D photon echo broad-bandwidth pulse signal at three
delay times:T = 0, 2, and9 ps. Left column is a broad-bandwidth
ideal signal, right column is full signal reconstructed using the set
of narrow-bandwidth simulations of a homo-dimer. See text for

simulation parameters.

K2←1/J = 2.54 · 10−3 . The response function was
then calculated as described in Sec. 3.4.

5.2.1. Broad-bandwidth pulse simulations
As a reference we first present the ideal impulsive

2D photon echo rephasing signal corresponding to the
case of the short laser pulses when their spectral band-
width is much larger than the width of the spectral re-
gion under consideration. In this regime the pulse over-
lap effect can be neglected and we obtain:

W (ωτ , T, ωt) ≈ SkI
(ωτ , T, ωt) , (143)

i. e. the signal probes the response function itself. We
show such spectrum at two delay times in the left col-
umn of Fig. 10. The dissection of the spectra to com-
ponents corresponding to different LSPs is presented
in Fig. 11 for the real part of the rephasing signal, in
Fig. 12 for the non-rephasing signal. The population
transport diagrams are merged together with the coher-
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IA IA′ SE SE′ GSB

Fig. 11. The contributions of different LSPs to the real (absorptive) part of rephasing 2D spectra of excitonically coupled dimer at the
impulsive limit; population transfer contributionsIA′ and SE’ are merged withIA and SE; spectra are calculated atT = 0, 200 fs (T <
K−1

1←2), and 9 ps (T2 � K−1
1←2). All graphs are normalized to the maximum of the most intensive contribution, contour lines are plotted

using arcsinh scale.

ent (no transport) diagrams in these figures. The spec-
tra contain both diagonal and off-diagonal elements.
Across the diagonal the peaks are broadened due to
the homogeneous broadening caused by the fast term of
bath oscillations. The lineshapes are extensively elon-
gated along the diagonal due to the slow term of bath
oscillations. The restrictionT2 � Λ−1

S ensures that the
diagonal elongation remains for all delay times. Such
approach is very efficient to model the inhomogeneous
broadening, and represents the static disorder effect.
Across the diagonal the peaks are broadened due to
the homogeneous broadening caused by the fast term
of bath oscillations.

At the short delay times (T = 0) the population
transport is negligible and the diagonal peaks consist
solely of theSE andGSB contributions. These two di-
agonal peaks represent two single-exciton eigenstates
and are created whene = e′, while the off-diagonal
peaks correspond toe 6= e′. At zero delay, the cross-
peaks are created by the superposition of negativeIA
and positiveGSB andSE contributions. At longer de-
lay time we see the rise of the lower-energy peaks at
ωt = ωτ = εe1 demonstrating the down-hill population

transfer in the excitonic system. OnlyIA andSE con-
tributions change over population timeT . GSB is con-
served since there is no dynamics in the ground state
contrary to theIA andSE diagrams, where the popula-
tion dynamics during time delayT is described by the
T -dependent Green functions (population transfer) as
well as coherence dephasing terms (Eqs. (112)–(114)).
At long T the diagonalIA and off-diagonalSE peaks
come from population transport. The signal can be eas-
ily correlated with the Feynman diagrams.

Due to population transfer it is evident forT = 9 ps
that IA contribution refers to transition from the pop-
ulation first single-exciton state|e1〉〈e1| to the double-
excited state|f1〉〈e1| solely. This is clearly indicated
by a single off-diagonal elementωτ = εe1 , ωt =
εf1 − εe1 ≈ εe2 for T = 9 fs, while the off-diagonal
peak for |e2〉〈e2| → |f1〉〈e2| transition is dominant
for T = 0 fs and T = 200 fs. The similar ex-
planation holds for the population transfer-related off-
diagonal peak that appears inSE diagram forT = 9 ps.
However, the double-exciton states are not included
in SE diagram and the corresponding cross-peak is at
ωτ = εe2 , ωt = εe1 .
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IA IA′ SE SE′ GSB

Fig. 12. The contributions of different LSPs to the real (absorptive) part of non-rephasing 2D spectra of excitonically coupled dimer in the
impulsive limit. All parameters are analogous to Fig. 11.

5.2.2. Gaussian narrow-bandwidth simulations
The finite-bandwidth Gaussian pulsesEj(t), j =

1 . . . 3, (Eqs. (59)-(60)) have two additional parame-
ters: the carrier frequenciesωj and pulse lengths[σt]j .
Changing the length of all pulses tunes the spectral
bandwidthsσ−1

ω = [σt]j . Pulses with the increased
length simulate the experiment more realistically, while
the impulsive limit simulations are better for a purely
phenomenological understanding of 2D spectra. Addi-
tionally, effects of pulse overlap arise [12]. Narrow-
bandwidth pulses also act as band-pass filters of 2D
spectrograms [8]. The wavelenghts of laser pulses can
be tuned independently to select certain resonances in
the exciton system. By comparing the pulse band-
widths to the linewidth of a single peak in the spectra,
we can obtain certain detection regimes. We assume
that the pulse width is narrower than the whole exci-
ton bandwidth (σω < ∆e), but broader than the width
of a single peak (σω > γe) by settingσω = 1.2γe ≈
0.16∆e.

The model dimer has two single-exciton states with
energiesεe1 and εe2 ; the double-exciton state energy
is εf = εe1 + εe2 (Eqs. (133)–(135)). The transi-
tion energies areωfe1 = εe2 andωfe2 = εe1 . There-

γe

σω

−k1

ωe1g

+k3

ωe2g

+k2

ωe1g

∆e

E
n
er

g
y

εe2

εe1

σω

[ε1, ε1, ε2]

Fig. 13. Laser pulse wavelength tuning scheme for the FWM ex-
periment. The wavelenghts of laser pulses are tuned independently
to select certain resonances in the exciton system. In this example,
first (−k1) and second (+k2) pulses have wavelengths, resonant
to ωe1g = ωfe2 transition, while the third pulse (+k3) is tuned to
ωe2g = ωfe1 . We use notation[ε1, ε1, ε2] for such configuration

of laser frequencies.

fore, only two resonant pulse frequencies have to be
considered. By considering all possible configurations
of the carrier frequencies of incoming three pulses,
and assuming that the fourth pulse (heterodyne) is
broad (δ-shaped), we obtain23 = 8 possible permu-
tations of the pulse frequencies, e. g.[ω1, ω2, ω3] =
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[ε1, ε1, ε1] [ε1, ε1, ε2]

[ε2, ε2, ε1] [ε2, ε2, ε2]

Fig. 14. Four most intensive narrow-bandwidth signals leading to resonant selection of Feynman diagrams in the signal at delay time
T = 10 ps. The signals were simulated by varying central pulse frequencies while keeping the pulse bandwidths unchanged. Utilization
of other possible laser pulse configurations gives negligible signals atT � K−1

1←2. All graphs are normalized to the global maximum
([ε2, ε2, ε2] contribution).

[ε1, ε1, ε1], [ε1, ε1, ε2]... etc. This laser pulse wave-
length tuning scheme is sketched in Fig. 13. However,
once we select the resonant contributions, we find only
six resonant configurations, four most significant of
them are presented in Fig. 14 (by selecting the resonant
pathways we have also considered population transport
at non-zero delaysT ).

Appearance of specific spectral elements in manipu-
lated spectra is controlled by laser pulse frequencies.

The first laser pulse “controls” selection of spectral
elements atωτ . For instance, in configurations with
ω1 = εe1 , only spectral elements forωτ = ωe1g do not
vanish. The second pulse determines the state, which
further evolves in range ofT . The third pulse selects
LSPs according to the resonant transitions duringT .

It is remarkable that pulses select the distinct LSPs
with high resolution. Various diagonal peaks and
the crosspeaks now can be separately characterized
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including their shape and amplitude. Their time evolu-
tion follows the density matrix dynamics at correspond-
ing LSPs. Some pulse frequency configurations are
related to pure coherence pathways, which do not in-
volve exciton populations ([ε1, ε2, ε1] and[ε2, ε1, ε2]
configurations, not shown). Other pathways filter out
density matrix coherences and are initiated by the pop-
ulation and its transfer. The density matrix coherence-
contributions show beating dynamics alongT (not
shown), which follows the Schrödinger equation. The
population contributions show monotonical dynamics
due to classical dynamics according to the master equa-
tion.

The spectra on the right column of Fig. 10, recon-
structed by summing up all the signals of different laser
pulse configurations, resemble the broad-bandwidth
signals (the left column of Fig. 10) very closely. By
comparing the spectra it is noticeable that peaks of re-
constructed broad-bandwidth spectra are slightly nar-
rower due to the finite bandwidth of the pulses.

The pulse overlap effect in all simulations is small.
That effect may be expected when one of the delay
timesτ or t is smaller than the pulse durationσt. Then
additional contributions follow: i) when pulse 1 is iso-
lated but pulses 2 and 3 overlap and, thus, the term
proportional toE[1]∗

1 E
[2]
3 E

[3]
2 contributes (this is an ad-

ditionalSkI
contribution), (ii) when pulse 3 is isolated

and pulses 1 and 2 overlap providing withE[2]∗
1 E

[1]
2 E

[3]
3

contribution to the signal defined by theSkII
term, and

(iii) when all three pulses overlap, then all six terms in
the integral contribute simultaneously. Fourier trans-
formation, used in 2D signal construction, involves the
integrations over delay times and the overlapping con-
tributions are mixed with the non-overlapping contri-
butions. If the response function is strong in pulse non-
overlapping regimes (usually longer delay times, which
extend to infinity), then the non-overlapping contribu-
tions add up and dominate.

The overlap effect can be quantitatively character-
ized as follows. The response function of a dimer
is characterized by two parameters: the splitting of
the single-exciton states∆e and the characteristic
linewidth of each single-exciton resonanceγ. The
time-domain response functions then experience split-
ting-related oscillations with frequency∆e and the de-
cay with timescaleγ−1

e . In our case∆e > γe and we
observe well-separated exciton resonances. The ideal
impulsive conditions are fulfilled whenσω � ∆e and
σω � γe. This corresponds to theimpulsiveregime of
ultrashort pulses, when their overlaps can be neglected.
For realistic finite-bandwidth Gaussian pulses we need

to consider pulse durations,σ−1
ω . In two dimensions of

time(τ, t), the whole area, where the response function
is not zero, isγ−2

e . The area, where pulses overlap, is
σ−2

ω . The ratioη = σ−2
ω /γ−2

e , thus, characterizes the
relative pulse-overlap magnitude. Our finite-bandwidth
simulations are in the regimeγe < σω < ∆e. We have
η < 1 and the pulses can thus specifically select reso-
nant peaks, the response function decays slowly com-
pared to the pulse duration, and, therefore, the pulse-
overlaps make a very small contribution. We call this
regimequasi-impulsive. That is the ideal regime to be
used for selection of specific pathways of the system
with well-separated peaks. The ideal impulsive exper-
iment can then be reconstructed from a set of narrow-
bandwidth measurements.

5.3. Dimer of three-level chromophores

Let us consider a homo-dimer of three-level chro-
mophores, that is, two coupled anharmonic oscillators,
described in Sec. 3.3. Molecular Hamiltonian of the
system is

Ĥmol =ω0

2∑
m=1

â†m âm + J
2∑

m6=n

â†m ân

+
∆
2

2∑
m=1

â†m â†m âm âm . (144)

The one-exciton block is identical to a homo-dimer of
two-level systems

ĥ(1) =
(
ω0 J
J ω0

)
(145)

and corresponding exciton energies and eigen-vectors
are described by Eqs. (133)-(136). In site represen-
tation the two-exciton block is built by adding states
â†1â
†
1|0〉 andâ†2â

†
2|0〉 with energies2ω0 + ∆ due to the

overtone states of single chromophores. The coupling
constant between the overtone states and multi-exciton
state with energy2ω0 is therefore equal to

√
2J :

ĥ(2) =

2ω0 + ∆
√

2J 0√
2J 2ω0

√
2J

0
√

2J 2ω0 + ∆

 . (146)
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Diagonalization of one- and two-exciton blocks
(Eqs. (122)–(123)) allows us to move to the exciton ba-
sis

|ej〉=
N∑

m=1

U−1
jm â

†
m|0〉 , (147)

|fk〉=
N∑

m=1

N∑
n=m

ν(k)
mn

(
ζmn +

δmn√
2

)
â†mâ

†
n|0〉 , (148)

whereν(k)
mn denotes the element ofV −1 of thekth row

and the column, corresponding to the diagonal element
of â†mâ

†
n|0〉 state andN = 2. The one-exciton eigen-

vector matrix is identical to Eq. (136). The two-exciton
eigenvector matrix is

V −1 =
1√
2


sin ϑ

2 cos ϑ
2

− cos ϑ−1√
2 cos ϑ

2

sin ϑ
2 cos ϑ

2

1 0 −1
sin ϑ

2 sin ϑ
2

− cos ϑ+1√
2 sin ϑ

2

sin ϑ
2 sin ϑ

2

 , (149)

whereϑ = arctan
(

4J
∆

)
. The eigen-energies of one-

and two-exciton states are

εe1 =ω0 + J , (150)

εe2 =ω0 − J , (151)

and

εf1 = 2ω0 + 2J
cosϑ− 1

sinϑ
, (152)

εf2 = 2ω0 + ∆ , (153)

εf3 = 2ω0 + 2J
cosϑ+ 1

sinϑ
. (154)

Dipole moments for the ground to one- and two-
exciton states are(

µge1

µge2

)
=

1√
2

(
−1 1

1 1

) (
d1

d2

)
(155)

and

µe1f1

µe1f2

µe1f3

=
1√
2


− sin ϑ+cos ϑ+1

2 cos ϑ
2

sin ϑ+cos ϑ+1
2 cos ϑ

2

−1 −1

− sin ϑ+cos ϑ−1
2 sin ϑ

2

sin ϑ+cos ϑ−1
2 sin ϑ

2


(
d1

d2

)

(156)
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Fig. 15. The real part of total 2D spectra of the dimer of three-level
system with dephasing constantγ = J (left column) andγ = 5J

(right column).J = 50 cm−1 and∆ = 15 cm−1 in both cases.

and

µe2f1

µe2f2

µe2f3

=
1√
2


sin ϑ−cos ϑ−1

2 cos ϑ
2

sin ϑ−cos ϑ−1
2 cos ϑ

2

1 −1
sin ϑ−cos ϑ+1

2 sin ϑ
2

sin ϑ−cos ϑ+1
2 sin ϑ

2


(
d1

d2

)
.

(157)
Having transition dipole moments defined one would
be able to construct analytic expressions of the total 2D
signal from individual Feynman diagrams. In Fig. 15
the spectra of the dimer of the three-level system using
different dephasing rates are presented. For a dimer of
two-level systems, coupling of the eigenstates is rep-
resented by off-diagonal elements. Coherent induced
absorption diagrams produce spectral elements on the
diagonal and gives oscillations of corresponding diag-
onal peaks, that is perceptible in 2D spectra at the limit
of γ = J . However, if the dephasing rate isγ � J ,
the inter-state coherence dynamics cannot be separated
from diagonal elements and the whole spectra resemble
a single anharmonic oscillator.
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6. Applications to multi-chromophore complexes

6.1. One-dimensional J-aggregates of
pseudoisocyanine

Molecular aggregates (J-aggregates) are macroscop-
ic clusters of molecules with intermolecular spacing
intermediate between the crystal lattice and isolated
molecules. The scientific interest in spectroscopic fea-
tures of such structures remains high even since 1936
when Jelley [37] and Scheibe [38] independently dis-
covered a significant narrowing of the absorption band,
red shifted relative to a monomer band, due to an in-
crease of the concentration of the dye pseudoisocya-
nine (PIC) in water solution. This narrowing effect
upon an aggregation is known as the superradiance.

The J-band in the streaming solution is polarized
along the streaming direction (see, for instance, [39])
and thus the transition dipole moments of the con-
stituent molecules of the linear one-dimensional J-
aggregate must have a small angle with respect to the
aggregate axis. In this case the optical transition to
the lowest exciton states dominates in the absorption
spectrum, while the narrowing of its lineshape is ad-
dressed to the motional narrowing [40, 41]. Linear
one-dimensional J-aggregates are formed by parallel
molecules with an angle of transition dipoles less than
arccos

√
1/3 ≈ 54.7◦ with respect to the aggregate

axis. In the other case an H-aggregate is formed with
the superradiant fluorescence feature at the highest en-
ergy.

Spectral properties of J-aggregates are usually un-
derstood in terms of the Frenkel exciton theory [42].
The exciton energy spectrum and the corresponding
wave functions are defined from diagonalization of the
exciton Hamiltonian of a linear chain ofN identical
molecules

Ĥmol =
N∑

m=1

(ε+ δεm)|m〉〈m|+
N∑

m=1

N∑
n6=m

Jnm|n〉〈m| ,

(158)
where ε is the excitation energy of a constituent
molecule andδεm is the random (inhomogeneous)
Gaussian-distributed energy offset of themth molecule,
|n〉 denotes the state when thenth molecule in the ag-
gregate is excited and〈n| is its Hermitian conjugate.
Matrix elementsJnm denote the energies of the reso-
nance interaction between thenth andmth molecules,
which can be calculated from the structural data. In
the absence of the diagonal disorder (whenδεm ≡ 0)
and in the case of the nearest-neighbour coupling ap-
proximation (assuming thatJmn = −J0δ|n−m|,1 with

J0 ≥ 0), the exciton Hamiltonian defined by Eq. (158)
can be diagonalized analytically resulting, thus, for the
eigenenergies [34, 42] in

εj = ε− 2J0 cos
πj

N + 1
(159)

and eigenfunctions|ej〉 =
∑

n ψjn|n〉, where

ψjn =

√
2

N + 1
sin

πjn

N + 1
. (160)

Quantum numbersj = 1 . . . N enumerate the exciton
states. The transition dipole moments corresponding to
each exciton state are defined giving the dipole strength
for a particular exciton state as follows:

(µj)2 =
2µ2

0

N + 1
cot2

πj

2(N + 1)
(161)

for oddj and

(µj)2 = 0 (162)

for evenj, whereµ0 denominates the transition dipole
moment of a constituent molecule from the aggregate.
Thus, the dipole strength of the lowest energy state
(j = 1), which is red-shifted in comparison with the
molecular transition in accord with Eq. (159), is signif-
icantly higher than that of the others and contains more
than 80% of the total oscillator strength.

The absorption spectrum of pseudoisocyanine (PIC)
J-aggregates features not only the J-band (at 576.5 nm)
but two weak bands at 536 and 499 nm as well. While
the origin of the J-band is clear, this cannot be said
about the other two bands. Conflicting theories have
been put forward but there is no consensus yet. On the
basis of detailed analysis of the absorption and fluo-
rescence excitation spectra, the one-dimensional model
containing four molecules per unit cell was proposed
[43]. According to this model the unit cell of the
aggregate consists of four PIC molecules and, within
the dipole approximation, the transition dipoles in the
unit cell are of the following orientation:(µx, µy, µz),
(−µx,−µy, µz), (µx, − µy, µz), and (−µx, µy, µz),
where µ = (µx, µy, µz) = (0.581, 0.338, 0.738)
(Fig. 16). These transition dipole moments cause
the average value of the coupling constant between
the nearest neighboursJ0 being equal to−1.43 in
units of |µ|2/(r12)3, wherer12 is the translation vec-
tor norm. An experimentally observed exciton band-
width is achieved by setting|µ|2/(r12)3 to reachJ0 =
600 cm−1.

To showcase the narrowing of the J-band, we present
simulations of absorption and 2D total (rephasing +
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Fig. 16. The spatial structure of a single unit cell consisting of four
PIC molecules of a J-aggregate used in the calculations. The tran-
sition dipole moment vector is denoted asµ and their correspond-
ing projections tox0z andy0z planes are depicted. The dihedral
angleϕ and tilt angleα are known from spectroscopic measure-

ments [43].

non-rephasing) spectra of J-aggregates consisting of
different number of molecules (Fig. 17). Absorp-
tion spectra simulations of aggregates of more than
64 molecules did not contain any noticeable differ-
ences. All 2D spectra are presented at population time
T = 0 fs. To simulate inhomogeneous broadening
we first use random Gaussian off-set termsδεm in
Eq. (158) and average over 1000 distributions to get
the absorption spectra. We set diagonal disorder to
σD = 60 cm−1 that is 0.1 of the coupling constantJ0.
Then we fit the parameters of „slow“ mode of spec-
tral density (Eq. (141)) to match the aforementioned
absorption spectra. The simulation of inhomogeneous
broadening in 2D spectra is then accomplished using
the “slow” mode thus allowing us to avoid computa-
tionally expensive numerical diagonalization of multi-
ple instances of the Frenkel exciton Hamiltonian.

Let us first consider the absorption spectrum of a sin-
gle unit cell consisting of four molecules. Four bands
are visible in the absorption spectrum (even though the
transition to the second excitonic state is very weak, the
corresponding peak is still visible). The J-band is at the
bottom of the single exciton manifold. The peaks repre-
senting the fourth and third excitonic states are visible
as well.

The 2D spectra of the unit cell contain more in-
formation. The J-band is clearly dominant here as
well. However, the second excitonic state is not visible,
which is due to the fact that peak intensities are propor-
tional to the fourth order of transition dipole moments
in the 2D spectrum and to the second order in the ab-
sorption spectrum. As expected, the peaks correspond-
ing to the third and fourth excitonic states are also vis-
ible on the diagonal. The positive crosspeaks represent
coherences and correlations between excitonic states.
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Fig. 17. Absorption spectra and the real part of total 2D spectra of
PIC J-aggregate with different number of chromophoresN .

The negative elements, that are due to induced absorp-
tion, contain information about two-exciton states.

Now let us consider the effects of aggregation by
analysing the difference in absorption and 2D spectra
of J-aggregates consisting of an increasing number of
molecules. Firstly, we can see the considerable narrow-
ing of the J-band. Obviously, with the increasing num-
ber of molecules, the oscillator strength correspond-
ing to the J-band increases. This effect is more easily
seen in 2D spectra, where the spectral elements become
so narrow that it is basically impossible to analyse the
2D spectra of J-aggregates consisting of 64 or even 32
molecules when it is plotted on the same scale as the 2D
spectra of the unit cell. Moreover, the presence of the
negativeIA contribution distorts the appearance of the



296 V. Butkus et al. / Lithuanian J. Phys.50, 267–303 (2010)

J-band in the 2D spectra in case of 32 or 64 molecules
in the aggregate. Secondly, it can be clearly seen from
both absorption and 2D spectra that the width of the ex-
citonic manifold increases with the aggregate size. The
increase is not linear, however, as the width increase
slows quickly with increasing aggregate size. Finally,
it can be seen that the J-band in the absorption spec-
trum becomes slightly assymetric when the aggregate
consists of 64 molecules. To highlight this we show
two insets in Fig. 17. In case of the 32-molecule ag-
gregate, the J-band is still symmetric but in case of
the 64-molecule aggregate it becomes assymetric due
to the fact that the third excited state has some oscilla-
tor strength and its peak blends with the main J-band
peak corresponding to the first excited state. As can
be clearly seen from the insets, the J-band is elongated
along theωτ axis. This elongation is due to the cross-
peak representing the|e1〉〈e3| coherence. This elon-
gation, however, is clearly smaller in case of the 64-
molecule aggregate. Therefore, from analysing the 2D
spectra we can conclude that the third excited state is
getting nearer to the first one and it should be notice-
able in the absorption spectra.

6.2. Excitation transfer pathways in
Fenna–Matthews–Olson photosynthetic complex

The Fenna–Matthews–Olson (FMO) protein is a
photosynthetic light harvesting complex found in some
bacterias. In the process of photosynthesis, it has a
role in energy transfer between the light-absorbing an-
tennae (chlorosomes) and the reaction centre [34, 36].
The FMO complex has three identical subunits, each
of them containing 7 bacteriochlorophyll-a molecules
(Fig. 18). This complex was the first bacteriochloro-
phyll containing protein to have its structure deter-
mined with a very high resolution (2.2 Å) by means
of X-ray spectroscopy [44]. It was extracted from the
green photosynthetic bacteriaChlorobium tepidum.

A highly-effective energy transfer was observed ex-
perimentally in this complex. It is assumed that it
is related to the long-lived electronic coherences (>
600 fs), that were observed by means of 2D electronic
spectroscopy [14]. The energy is believed to be trans-
ferred in a wave-like manner by two dominant path-
ways. The energy transfer through electronic coher-
ences should ensure high efficiency [11, 15, 45]. How-
ever, traditional quantum relaxation theories often fail
in describing such a slow coherence decay in electronic
systems of strong excitonic coupling [46–48].

Intensive researches of the FMO complex are under-
going since its structure is the simplest of all known

1
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4

5

6

7

e5, e6

e3, e7

e1
e2, e4

Fig. 18. The structure of Fenna–Matthews–Olson complex. Chro-
mophore numbers as well as exciton states are identified. Arrows
illustrate excitation transfer pathways within the system (revealed

in further discussion).

photosynthetic proteins. A single subunit has the same
optical properties as the whole complex. The absorp-
tion band is narrow and linear absorption simulation
using the Frenkel exciton theory provides very good re-
sults.

In this paper, simulations of 2D spectra of the FMO
photosynthetic complex are presented. Dipole mo-
ments were calculated from the structural data of the
complex [49]. Molecular Hamiltonian and relaxation
rates are the same as in Ref. [3]. System–bath in-
teraction is represented by the fast and slow modes
of overdamped Brownian oscillator, as in Sec. 5.2:
λF = 30 cm−1, λS = 60 cm−1, Λ−1

F = 100 fs,
Λ−1

S = 105 ps., similar to refs. [12, 50]. Temperature
is 77 K.

6.2.1. Spatial delocalization of molecular excitons
In Eqs. (128) three different correlation functions

were obtained, involving either single-exciton states,
double-exciton states, or single- and double-exciton
states. The wave function overlap terms have different
physical meanings, representing either degree of de-
localization, or spatial overlaps of molecular excitons
within the complex.

First, let us consider theC ′′ejejejej
(ω) term. The

wave function overlap contribution represents the mean
square of the single-exciton state fluctuations〈δΩ2

j 〉,∑
m

U4
mj = N−1

j , (163)

whereNj is so-called inverse participation ratio (IPR).
Value of the IPR shows, how many molecules are in-
volved in thejth exciton, so it is the measure of the ex-
citon delocalization. If the exciton state is completely
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Table 1. Squares of matrix elements of eigen-vector matrixU ,
inverse participation ratios (IPR), and transition dipole moment

squares
∣∣µgej

∣∣2. The most significant values are in bold.

Single-exciton state
e1 e2 e3 e4 e5 e6 e7

BChl 1 0.00 0.00 0.78 0.00 0.00 0.00 0.22
BChl 2 0.00 0.00 0.22 0.00 0.00 0.00 0.78
BChl 3 0.88 0.11 0.00 0.01 0.00 0.00 0.00
BChl 4 0.11 0.60 0.00 0.10 0.13 0.06 0.00
BChl 5 0.01 0.11 0.00 0.11 0.45 0.32 0.00
BChl 6 0.00 0.01 0.00 0.03 0.42 0.54 0.00
BChl 7 0.00 0.17 0.00 0.76 0.00 0.07 0.00

IPR 1.28 2.45 1.53 1.67 2.54 2.47 1.53∣∣µgej

∣∣2 14.8 26.4 22.2 7.9 27.8 6.3 11.2

localized,Nj = 1. At the other limit, when thejth
exciton is completely delocalized in aN -chromophore
system,Umj = N−1/2, that is, the mean square of the
single-exciton state fluctuations becomes very small,
〈δΩ2

j 〉 ∝ N−1, this exchange-narrowing effectis typ-
ical of molecular J-aggregates. Squares of matrix ele-
ments ofU represent localizations of excitons in each
molecule. For the FMO complex, calculated matrix el-
ements and IPRs, as well as corresponding transition
dipole moment squares, are presented in Table 1.

For other correlation functions in Eqs. (128),
C ′′ejejekek

(ω) represents the spatial overlap of proba-
bility density functions ofjth andkth excitonic state
(squares of eigen-functions in excitonic basis). Cor-
relation functions involving double-excites states have
similar physical meaning [3].

In Table 1 we present calculated square values of the
eigenvector matrix, square values of transition dipole
moments, and inverse participation ratios. It is notable
that IPR values are small. This shows that the molecu-
lar excitations are not extensively delocalized. The first
excitonic statee1 is mostly localized in the third chro-
mophore.e2 ande4 excitons are commonly localized
in 4 and 7 chromophores,e3 ande7 in 1 and 2 chro-
mophores,e5 and e6 in 5 and 6 chromophores. The
largest square values of transition dipole moments are
|µge2 |2 and|µge5 |2, the corresponding absorption peaks
dominate both in absorption and 2D spectra.

6.2.2. Energy transfer pathways
By analysing the evolution of 2D spectra and know-

ing how the excitons are localized spatially in the com-
plex, we are able to describe the excitation transfer
pathways within the system.

In the calculations,δ-shaped laser pulses were used.
It means that all transitions between excitonic levels
can be induced. Simulated spectra of FMO complex

Fig. 19. Real (absorptive) part of rephasing 2D spectra of photo-
synthetic FMO complex.

for various population timesT are presented in Fig. 19.
It is remarkable that the results fit the experimental data
well [3, 13, 25, 31]. While increasing the population
time T , some features of 2D spectra change: diagonal
elements decay except for the 1–3 and 5 exciton states.
The corresponding off-diagonal elements denote the
energy transfer from the higher energy molecular ex-
citations downwards,e4, e5 → e1 ande2 → e1. So, the
excitation, induced in some region of the complex, will
be transferred to chromophores 4 and 7, and then to
chromophore 1. Therefore, two pathways of excitation
transfer can be distinguished:e3, e7 → e2, e4 → e3
ande5, e6 → e2. They are demonstrated in Fig. 18 by
the left and right (green and red online) curved arrows,
respectively.

The total signal can be decomposed to pathways,
indicated by the double-sided Feynman diagrams, as
it was shown for the excitonically coupled dimer in
Sec. 5.2.1. The corresponding spectra are presented in
Fig. 20.
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Fig. 20. Components of 2D spectra of the FMO complex atT = 0
and 2 ps:IA (first row),SE (second row),GSB (third row).

7. Concluding remarks

The basic concepts of two-dimensional optical spec-
troscopy are presented in this study. By performing
the four-wave mixing experiment, the detected photon-
echo signal fully represents the third-order polariza-
tion dynamics induced within the system and separa-
tion of quantum coherence and population dynamics,
homogeneous and inhomogeneous broadening is pos-
sible. Such sophisticated experimental method adds up
one more dimension to the time-resolved spectroscopic
measurement with respect to the other nonlinear spec-
troscopic techniques. Therefore, it allows us to directly
observe ultra-fast quantum phenomena such as exci-
tonic energy transfer and quantum coherence dynamics
in time-resolved two-dimensional spectrograms. Uti-
lization of so-called two-colour two-dimensional opti-
cal spectroscopy also provides means of implementing
quantum coherence control of the relevant system as
well as specific excitation pathway induction.

To illustrate the main features of the two-dimensional
optical spectroscopy a number of examples are con-
sidered in this study. The examples are presented

consistently from the simpliest quantum two- and
three- level systems to the molecular excitonic aggre-
gates.

For the basic quantum systems the total third-
order response signal can be expressed analytically
by assuming simple models of the solvent dynamics.
The simulated two-dimensional spectra of a two-level
atom (Lorentzian spectral lineshape) and a two-level
molecule (Gaussian spectral lineshape) are presented
and various representations are discussed. For an an-
harmonic oscillator (three-level system) evidences of
anharmonicity are considered.

Two coupled chromophores constitute a more so-
phisticated system of a dimer, in the spectra of which
the quantum coherence dynamics is observed. Two
types of the dimer description are presented: the con-
stituting chromophores are considered as two-level
or three-level subsystems. In the case of the two-
level chromophore hetero-dimer, extraction of individ-
ual spectral elements by means of two-colour two-
dimensional spectroscopy is demonstrated. It is pos-
sible to characterize the dipole moment configuration
and resonant coupling constant value by performing
such measurements. For the homo-dimer of three-level
chromophores, complete expressions for the transition
to the excitonic eigenstate basis are derived and time-
resolved two-dimensional spectra are presented. In
case of low dephasing rate, spectra demonstrate typ-
ical spectral features of anharmonic nature, while in
the limit of the dephasing rate being much higher than
the intrinsic system dynamics the total spectra are not
clearly separable from the spectra of a single three-level
system.

Finally, in the analysis of complex molecular aggre-
gates all the powerful capabilities of this spectroscopic
tool can be demonstrated. For the two-dimensional
spectra of linear one-dimensional J-aggregates the
spectrally narrowed peak due to motional-narrowing,
the J-band, demonstrates a great complexity of the
spectral behaviour due to different excitation pathways
producing spectral elements of different time-resolved
dynamics in the vicinity of the J-band. Analysis of
this spectral region helps to distinguish the mecha-
nisms of excitation transfer and nuclear-motion in-
duced motional-narrowing and consider the timescales
of these processes within the aggregate. The forma-
tion of the J-band with respect to the aggregate size
is presented and analysed in this paper. The exci-
tation transfer dynamics in the photosynthetic light-
harvesting Fenna–Matthews–Olson complex is com-
prehensively described in this study. The systematic
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separation of the spectral elements with respect to the
corresponding physical mechanisms is carried out and
the dominant highly-efficient excitation transfer path-
ways within the system are identified.
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Appendices

A. The cumulant expansion

The cumulant expansion technique is widely used
to simplify expressions of perturbational series in time.
Assume that we have a perturbational series of some
quantityA

A(t) = 1 + λA1(t) + λ2A2(t) + . . . (A1)

and want to recast it into the exponential form

A(t) ≡ exp[λF1(t) + λ2F2(t) + . . .] . (A2)

If the Taylor expansion of exponential is carried out
and terms of the sameλ order are collected, the relation
betweenFi andAj terms is obtained:

A(t) =
(

1 + λF1 +
1
2
λ2F 2

1 +
1
6
λ3F 3

1 + . . .

)
(A3)

× (1 + λ2F2 + . . .)(1 + λ3F3 + . . .)

= 1 + λF1 + λ2
(

1
2
F 2

1 + F2

)

+ λ3
(

1
6
F 3

1 + F1F2 + F1F3

)
+ . . .

For the cumulant expansion to the second order we
have

A(t) = exp
{
λA1(t) + λ2

[
A2(t)−

1
2
A1(t)

]
+ . . .

}
.

(A4)
The cumulant expansion is also a way to represent
a truncation of perturbation series. If we truncate
Eq. (A1) to the values of a certain order, we still have an
infinite series in exponential of Eq. (A4). On the other
hand, we can sketch that we have Eq. (A1) calculated

to the terms of infinite order and truncate the cumulant
expansion to the certain length, containing only terms
of the lowest order.

For the second-order cumulant expansion of time-
ordered exponentials of energy-gap correlation func-
tions, i. e.

A(t) = exp+

[
− i

t∫
t0

dτ∆V (τ)
]

(A5)

= 1− i
t∫

t0

dτ ∆V (τ) + i2
t∫

t0

dτ
τ∫

t0

dτ ′∆V (τ)∆V (τ ′) ,

for the expectation value ofA(t) we obtain

〈A(t)〉 = exp
{
−

t∫
t0

dτ
τ∫

t0

dτ ′〈∆V (τ)∆V (τ ′)〉
}
.

(A6)

B. Response function of an open excitonic system
with diagonal and off-diagonal fluctuations

Here we present the third-order response function
expression written out in terms of Feynman diagrams,
shown in Fig. 8. We are considering thekI experimen-
tal technique, where the spatial configuration of inci-
dent pulse wave vectors is−k1 + k2 + k3 [21]. The
pulses are generally notδ-shaped, therefore the pulse-
overlap effects are present, that mix thekI signal with
the signals of other experimental techniques.

kI = −kα + kβ + kγ diagrams

SIAc = −
∑
e′ 6=e

∑
f

〈
µe′µe′fµefµe

〉
(B1)

× exp
{
iωegt1 − iωe′et2 − iωfet3

+conj
[
− g∗e′e′(t2)− g∗ff (t3)− gee(t1 + t2 + t3)

−g∗e′f (t2 + t3) + g∗e′f (t2) + g∗e′f (t3)

−ge′e(t1) + g∗e′e(t2 + t3) + ge′e(t1 + t2)− g∗e′e(t3)

−gef (t1 + t2) + g∗ef (t3) + gef (t1 + t2 + t3)
]}
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SIAp = −
∑
e′=e

∑
f

Ge′e(t2)
〈
|µe′ |2|µe′f |2

〉
(B2)

× exp
{
iωegt1 − iωfet3

+conj
[
− g∗e′e′(t2)− g∗ff (t3)− gee(t1 + t2 + t3)

−g∗e′f (t2 + t3) + g∗e′f (t2) + g∗e′f (t3)

−ge′e(t1) + g∗e′e(t2 + t3) + ge′e(t1 + t2)− g∗e′e(t3)

−gef (t1 + t2) + g∗ef (t3) + gef (t1 + t2 + t3)
]}

SSEc =
∑
e6=e′

〈
|µe|2|µe′ |2

〉
(B3)

× exp
{
iωegt1 + iωee′t2 − iωe′t3

−g∗ee(t1 + t2)− ge′e′(t2 + t3)

−g∗ee′(t1) + g∗ee′(t1+t2+t3) + gee′(t2)− g∗ee′(t3)
}

SSEp =
∑
e=e′

Ge′e(t2)
〈
|µe|2|µe′ |2

〉
(B4)

× exp
{
iωegt1 − iωe′gt3

−g∗ee(t1 + t2)− ge′e′(t2 + t3)

−g∗ee′(t1) + g∗ee′(t1+t2+t3) + gee′(t2)− g∗ee′(t3)
}

SSE′ =
∑
e6=e′

Ge′e(t2)〈|µe|2|µe′ |2〉 (B5)

× exp
{
− iωegt1 + iωe′gt3 − γe′t3 − γet1

−gee(t1)− g∗e′e′(t3) + ge′e(t1 + t2 + t3)

−ge′e(t1 + t2)− ge′e(t2 + t3) + ge′e(t2)
}

SGSB =
∑
ee′

〈
|µe|2|µe′ |2

〉
exp

{
iωegt1 − iωe′gt3 (B6)

−g∗ee(t1)− ge′e′(t3)− g∗ee′(t1 + t2)

+g∗ee′(t1 + t2 + t3) + g∗ee′(t2)− g∗ee′(t2 + t3)
}

kII = +kα − kβ + kγ diagrams

SIAp = −
∑
e′=e

∑
f

Ge′e(t2)
〈
|µe′f |2|µe|2

〉
(B7)

× exp
{
− iωe′gt1 + iωef t3

+conj
[
− g∗e′e′(t1 + t2)− g∗ff (t3)− gee(t2 + t3)

−g∗e′f (t1 + t2 + t3) + g∗e′f (t1 + t2) + g∗e′f (t3)

−g∗e′e(t1) + g∗e′e(t1 + t2 + t3) + ge′e(t2)− g∗e′e(t3)

−gfe(t2) + g∗fe(t3) + gfe(t2 + t3)
]}

SIA′ = −
∑
e′ 6=e

∑
f

Ge′e(t2)
〈
|µe′f |2|µe|2

〉
(B8)

× exp
{
iωegt1 − iωe′f t3 − γe′t3 − γet1

+conj
[
− gee(t1)− gff (t3)− g∗e′e′(t3)

−gfe(t1 + t2 + t3) + gfe(t1 + t2) + gfe(t2 + t3)

+ge′e(t1 + t2 + t3)− ge′e(t1 + t2)− ge′e(t2 + t3)

+ge′f (t3) + g∗fe′(t3) + ge′e(t2)− gfe(t2)
]}

SIAc = −
∑
e′ 6=e

∑
f

〈
µe′µe′fµfeµe

〉
(B9)

× exp
{
− iωe′gt1 + iωee′t2 + iωef t3

+conj
[
− g∗e′e′(t1 + t2)− g∗ff (t3)− gee(t2 + t3)

−g∗e′f (t1 + t2 + t3) + g∗e′f (t1 + t2) + g∗e′f (t3)

−g∗e′e(t1) + g∗e′e(t1 + t2 + t3) + ge′e(t2)− g∗e′e(t3)

−gfe(t2) + g∗fe(t3) + gfe(t2 + t3)
]}
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SSEp =
∑
e′=e

Ge′e(t2)
〈
|µe|2|µe′ |2

〉
(B10)

× exp
{
−iωegt1 − iεe′gt3

−g∗ee(t2)− ge′e′(t1 + t2 + t3)− gee′(t1)

+g∗ee′(t2 + t3) + gee′(t1 + t2)− g∗ee′(t3)
}

SSE′ =
∑
e′ 6=e

Ge′e(t2)
〈
|µe|2|µe′ |2

〉
(B11)

× exp
{
− iωegt1 − iωe′gt3 − γe′t3 − γet1

−gee(t1)− ge′e′(t3)− ge′e(t1 + t2 + t3)

+ge′e(t1 + t2) + ge′e(t2 + t3)− ge′e(t2)
}

SSEc =
∑
e′ 6=e

〈
|µe|2|µe′ |2

〉
(B12)

× exp
{
− iωe′gt1 + iωee′t2 − iωe′gt3

−g∗ee(t2)− ge′e′(t1 + t2 + t3)− gee′(t1)

+g∗ee′(t2 + t3) + gee′(t1 + t2)− g∗ee′(t3)
}

SGSB =
∑
ee′

〈
|µe|2|µe′ |2

〉
(B13)

× exp
{
− iωe′gt1 − iωegt3

−gee(t3)− ge′e′(t1)− gee′(t1 + t2 + t3)

+gee′(t2 + t3) + gee′(t1 + t2)− gee′(t2)
}

kIII = +kα + kβ − kγ diagrams

S2Q1 =
∑
e′e

∑
f

〈
µe′µe′fµfeµe

〉
(B14)

× exp
{
− iωegt1 − iωfgt2 − iωe′gt3

−ge′e′(t3)− gff (t2)− gee(t1)− ge′f (t2 + t3)

+ge′f (t3) + ge′f (t2)− ge′e(t1 + t2 + t3)

+ge′e(t2 + t3) + ge′e(t1 + t2)− ge′e(t2)

−gfe(t1 + t2) + gfe(t2) + gfe(t1)
}

S2Q2 = −
∑
e′e

∑
f

〈
µeµefµfe′µe′

〉
(B15)

× exp
{
− iωegt1 − iωfgt2 + iωe′f t3

+conj
[
− g∗ee(t1)− g∗ff (t2 + t3)− g∗ef (t1 + t2 + t3)

+g∗ef (t1) + g∗ef (t2 + t3)− g∗ee′(t1 + t2)− ge′e′(t3)

+g∗ee′(t1 + t2 + t3) + g∗ee′(t2)− g∗ee′(t2 + t3)

−g∗fe′(t2) + g∗fe′(t2 + t3) + gfe′(t3)
]}
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V. Butkusa, D. Abramavǐciusa,b, A. Gelžinisa, L. Valk ūnasa,c
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Santrauka

Dvimaṫe elektroniṅe spektroskopija yra vienas naujausių bei pa-
žangiausių daugiaimpulsinės spektroskopijos metodų, šiuo metu
intensyviai naudojamas analizuojant vyksmus itin sudėtinguose fo-
tosintetiniuose dariniuose. Šis metodas leidžia geriau suprasti ko-
herentiškumo gesimo ir užpildų pernašos vyksmus, stebimus sudė-
tingose daugiachromoforinėse eksitoninio ryšio sistemose.

Pagrindiniai šio spektroskopijos metodo privalumai yra puiki
laikinė skiriamoji geba (stebimi femtosekundžių trukmės vyksmai)
bei koherentiṅes ir nekoherentiṅes prigimties sąveikaujančių sis-
temų evoliucijų atskyrimas. Ḋel pastarosios savybės galima steḃeti
sužadinimo pernašą sistemos viduje, itin efektyvų energijos perda-
vimą lemiaňcias koherentiškumo osciliacijas bei dar geriau išskirti
nevienalytiškai išplitusias spektro linijas.

Iš (bakterio)chlorofilų sudarytuose bakterijų ir augalų fotosin-
teżes reakciniuose centruose, šviesos energijos surinkimo bei per-
davimo kompleksuose chromoforų skaičius yra didelis, tad iki
šiol naudota supaprastinta netiesinio atsako teorija, išvystyta daug
mažesṅems strukt ūroms, pavyzdžiui, dimui, aprašyti, nėra tiesio-
giai taikytina. Tokių kompleksų modeliavimas tampa sudėtin-
gas, toḋel taikomos įvairios aproksimacijos, naudojamas eksitoni-
nis vaizdavimas.

Šiame darbe yra pristatoma bendra keturių bangų maišymo eks-
perimento modeliavimo schema bei išvestos trečios eil̇es atsako
funkcijos išraiškos daugelio lygmenų eksitoninei sistemai, trum-
pai aptartos alternatyvios teorijos, paremtos neperturbaciniu kine-
tinės tankio matricos lygties sprendimu. Pateikiami sumodeliuoti
elementarių kvantinių sistemų dvimačiai spektrai bei analiziṅes
trečios eil̇es atsako išraiškos. Atskirai aptariami dimerų spektrai,
kai juos sudaraňcios chromoforos aproksimuojamos kaip dviejų
arba trijų lygmenų sistemos. Dviejų lygmenų chromoforų dimero
atveju demonstruojamos galimybės pritaikyti dvispalvę dvimatę
spektroskopiją siekiant išskirti spektrinius elementus bei indukuoti
skirtingus fizikinius vyksmus sistemoje. Tokių matavimų rezultatai
sudarytų prielaidas įvertinti makroskopinius nagrinėjamos sitemos
parametrus – rezonansinę sąveiką, dipolinius momentus. Dvimatės
spektroskopijos pritaikymui molekuliniams agregatams pateikiami
vienmǎcio tiesinio J agregato bei fotosintetinio Fenna–Matthews–
Olson (FMO) komplekso sugerties ir dvimačiai spektrai. Iš sumo-
deliuotų FMO komplekso spektrų galima daryti išvadas apie suža-
dinimo perdavimo tarp chromoforų scenarijus sistemoje bei kohe-
rentiškumo fliuktuacijas, kurios, manoma, lemia itin efektyvų ener-
gijos perdavimą sistemoje.
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