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An overview of the theoretical background for the novel spectroscopic tool — two-dimensional (2D) optical spectroscopy —
is presented. Principles of nonlinear polarization induction, signal generation, and detection are described. Concepts of het-
erodyned four-wave mixing experimental technique and 2D spectra construction are detailed and the scheme of third-order
polarization calculation is consistently introduced. The system response function theory is formulated for a general multi-level
guantum system considering the system-field interaction perturbatively. Equations of motion for the system density operator
relevant to the third-order response are presented. Basic quantum systems of a two-level atom, two-level molecule, and a
three-level system are considered and analytic expressions of the third-order signal are derived at certain limits. Molecular
complexes are described using the Frenkel exciton approach. 2D spectra of the excitonically-coupled dimers of two-level and
three-level chromophores are presented. Possibilities of extraction of separate spectral elements as well as performing quan-
tum control by the two-colour 2D spectroscopy for the dimer of excitonically-coupled two-level systems are demonstrated.
Effects of motional narrowing of one-dimensional J-aggregates of pseudoisocyanine and construction of the J-band as well
as highly-efficient excitonic energy transfer in photosynthetic Fenna—Matthews—Olson complex are illustrated by simulated
time-resolved 2D spectra.
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1. Introduction ky detection

—ki + ko + k3

sample

Nonlinear optical techniques performed using ultra-
short laser pulses in regions from IR to visible wave- ks —
lengths are capable of probing various dynamical phe- ‘ ki,
nomena on microscopic/nanoscopic scale. The four-
wave mixing (FWM) experiments are the simplest non-

linear techniques available for isotropic systefis [1, 2]. ” 2 ” tQk L

In the time domain, experiments are performed by ap- kn | p Y Y (3)

plying either two-pulses (pump-probe) or three-pulses /\ ﬂ BT, ?
(homodyne three-pulse photon echo), or four-pulses ™ T2 713=0 >

(coherent heterodyned signals) to generate and detegliy 1 2p pE experimental scheme with heterodyne detection and
the desired signal. The FWM signal is generated bydefinitions of variables in the lower paneti, 2, andrs are the

the induced third-order polarization, which is a para- times of three laser pulses exciting the sample, whilé,, andzs
metric function of the delays between the adjacent laser are the time variables for the system response function.

pulses. The polarization dynamics with respect to thesgy, signal is generated along directiork; + ks + ks.
parameters reflect wide variety of ultrafast molecular 1,0 signal exclusively generatediin = —k; +ko+kj
processes. _ ~direction is denoted as the photon echo signal. Since
Recent development of nonlinear Spectroscopiesge ahsolute interaction time is irrelevant due to the
such as two-dimensional photon echo (2D PE) speCyystem being in the thermal equilibrium before the
troscopy, is getting widely available for studies of st interaction, the PE signal can be characterized as
exciton coherence in various molecular systeNs [3— three-variable functiofiV’ (7, T, ¢) of positive delay
5]. Molecular dimer is the simplest system, where times between successive laser pulses 5 — 7 and
the spectral features illustrating dynamics of quan-p — 3 — 75 and the detection time The time de-
tum coherence are expected [[6-9]. Main features|ays between adjacent laser pulsesaadT’) are con-
of one-colour and multi-colour 2D PE spectra of a {ro|led with a high precision. A two-dimensional one-
dimer are well described theoretically [7, [8,| L0-12]. siged Fourier transform of the first delay time interval
2D PE spectroscopy was the key tool demonstratinggng the signal detection time, that is, — w, and
a complex pathway network of the energy transfer; _, ., is applied [13] 20, 22—-24]. The transformed
and long-lasting coherence in a photosynthetic Fennagata can be plotted as two-dimensional spectrograms
Matthews—Olson (FMO) complex [13-15], as well as with respect to the second delay tiriie(Fig.[3). Di-
in LH3 complexes from photosynthetic bacteria [4]. agonal peaksw, = |w/, reflect the exciton eigen-
Recently the 2D PE spectra have also been recorded fostates and off-diagonal peaks;, |w-|, show corre-
conjugated polymers [16] and cylindrical (bi-tubular) |ations and coherences within the system due to many-
J-aggregates [17, 18]. Apart from clear identification exciton interactions. Delay tim& is the the time pa-
of exciton transfer between the tubes, quantum coherrameter used to reveal time evolution of the exciton
ence oscillations were also observed. By analysing theyavepacket[[4, 10, 11, 13, 14,]17,| 18] 24-26]. Since
J-band of one-dimensional J-aggregate it was demondifferent delay times are independent parameters, the
strated that 2D PE spectroscopy visualizes the intratime resolution of the 2D spectrd’(delay) is in prin-
band heterogenous dephasing dynanfics [19] and intraciple unrelated to the frequency resolution &ndw,),
band coherencess [117]. what is never available in a classical pump-probe sig-
Sophisticated experimental techniques have beemal. In experiments the resolution is limited by pulse
developed in the visible optical region maintaining co- lengths and higher-order effects. The pulse overlap re-
herence between pulses [20/ 21]. In 2D optical spec-gions induce variations in 2D spectra due to mixing
troscopy, an experimental FWM scheme with hetero-with various interaction sequences [12]; higher order
dyne detection is applied (Fig] 1). Three wave vectorscontributions induce intensity-dependence and exciton
of ultra-short laser pulses exciting the sample at timesannihilation [25].
T, T2, andrs are denoted akj, ks, andks, respec- Using the reduced density matrix formalism, the se-
tively. The induced third-order polarization within the quence of three system—field interactions can be repre-
sample is the source of the radiated electric field. Duesented as follows. At the initial time the systemis in the
to nonlinear processes undergoing within the samplethermal equilibriuny,,. After the first interaction with
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S beorption Invisible state time signal denoted ason-rephasingt non-PE direc-
tion +k; — ko + k3 is also available. The same signal
would be measured in the PE direction if the first and
second pulses were switched (assuming: 0). The
sum of rephasing and non-rephasing signals gives the
total pump-probe-like spectra [10, [11,127]. Usually the
real part of the total or rephasing spectra is used for
interpretation.

More technical details about the experimental set-up
can be found elsewherie [5,]20, 28].

Absorption wavenumber w;

2. Theoretical background

Excitation wavenumber w

Fig. 2. Schematic representation of 2D spectra at fixed population?2 1. Semi-classical concept of the excitation and
time T. Diagonal elements and cross-peaks are present. The in- measurement

visible state, that is not available in the absorption spectrum (left),

is revealed by presence of the corresponding cross-peak. Homoge- The core of the spectroscopy experiment is the semi-
neous and inhomogeneous peak widths are separated. . . . .
classical approximation. It denotes the separation of

aweak ultra-short pulse the state of quantum coherencé€ incoming excitation field, the outgoing signal field,
peg(t) is created. The second pulse after timereates and the system. Both fields are classical (electric) fields
a population in the ground stafg, (r, ) or in the ex- and the system is considered as a quantum object. The
cited statep..(7, t), or a coherence in the excited state Whole experiment can be partitioned into two stages.
peer (T, 1) (€ # €'). The third interaction creates a great !n th_e first stage t_he system interacts with the incom-
variety of coherent sates and the electromagnetic field"d field. Neglecting the magnetic system properties,
is radiated by a stimulated emission, leaving the systemth's interaction is described by the polarization operator
in the population statg,. (7, T, t) or j,q(7, T, t). Dur- and the nonlinear polarization induction by the classi-
ing the time between interactions processes of dephas@al electric field is described by the quantum dynamics.
ing and state transfer take place. As it will be shown !N the second stage the expectation value of the induced

later, a 2D optical spectroscopy enables the direct obPolarization becomes a source of the signal field. This
servation of dynamics of the density operator with an St2€ iS @ problem of classical electrodynamics and is
excellent temporal and spectral resolution. described by the Maxwell equations.

Various representations of 2D signal are possible. USINg the density matrix formalism, the Maxwell-
The PE signal is denoted as “rephasing” since theliouville equations describe the excitation and genera-

rephasing in the system is opposite after the first and!On Processes:

third interaction and atr = t the inhomogeneous 1 0%
broadening is eliminated. In spectra it is observed as VXV x E(r,t) + ?@E(r’t)
peak elongation along the main diagonal. Similarly, the Ar O2
signal, generated at non-PE directibk; — ks +k3, is =22 (r,1), (1)
denoted as non-rephasing. It does not have inhomoge-
neous contribution eliminated and the peak lineshapes I Bl A
are oriented in anti-diagonal direction. The same signal P(r,t)=Tr[P(r) p(t)], (2)
would be measured in the PE directikpg if the first 9h(t)
- - A t 1 R .
and second pulses_ were switched (as_sumn_ng 0). _ A = L [Hae(Ei(r, b)), p(t)] - 3)
The sum of rephasing and non-rephasing signals gives ot h

the total, pump-probe-like spectfa [10] 11} 27]. Usually They read as follows: the first equation is the relation-
the real part of the total or rephasing spectra is used foship between induced nonlinear polarizatiétir, t)
interpretation. of the system and the outgoing electric field (signal
In the experiment, both positive and negative de- E(r,t)). This expression will be simplified reasonably
lay time 7 values can be used. For a positive delay assuming the phase-matching experimental geometry
7 > 0, therephasingsignal Wg (w-, T, w;) is obtained  in Sec[2.B. Second equation is the definition of nonlin-
in the PE directiorky = —k; + ko + k3. Atthe same  ear polarization as the trace of the polarization operator
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and the density matrix product. The third expression isin the case of the narrow-bandwidth pulse we may sub-
equation of motion of the system density matrix driven stitutew ~ +w (nhote thatv here is a Fourier variable
by the excitation fieldE;(r, t). Here A, is the semi-  so it is positive and negative) into Ef] (5) and have
classical Hamiltonian describing the quantum system @ __ )
under influence of the classical electric field as an ex- £ (@) = &€ {expli(ko + ko)r]f(w : wo,wn)  (8)
ternal force. Thus it is obvious that having described
the density matrix properly we would be able to obtain
the nonlinear polarization which is the main goal of the
theory of nonlinear spectroscopy.
" Equ_atlons[I]_l)-E(|3) are the fundamental equations of + expli(—ko — ko)r]B(w : —wo, —wo)}
e microscopic spectroscopy formulation. They de-
scribe an arbitrary spectroscopy experiment. In theHere£ = £ (0). We thus get that incoming fields are
following we will separately present all the important mixed together and the induced polarization may in-
parts of the theoretical consideration of the nonlinearvolve various combinations of the incoming field wave

+ expli(ko — ko)r]B(w : wo, —wo)

+ exp[i(—ko + ko)r|f(w : —wo,wo)

spectroscopic measurement. vectors. Additionally we can associate these vari-
ous wave vector configurations with different nonlinear
2.2. Multi-wave mixing processes. For instance,

Incoming optical electric fields induce the dynamic Blw : wo,wo) & 0w = 2w0) (2w = wo,wo) - (9)
polarization in the medium. In phenomenological de- js the second harmonic generation and
scription, if the system is nonlinear, we can expand the
polarization in terms of the incoming field harmonic Bw : wo, —wo) ~ d(w)B(0 : wo,wo)  (10)

components as follows: represents the electro-optic rectification.

Pw)=a(w)E(w) (4) At higher orders of the fields we would similarly
have mixing of incoming fields and would obtain a set
4 B(w : wi,we)E(wr)E(ws) of possible signal wave vectors. This phenomenon is

calledmulti-wave mixing

+ (W : wi,wa,w3)E(wy) E(w2) E(w3)
2.3. Signal detection

+ ...
The nonlinear polarization induced within the sam-

o, (3, and~ are the linear, quadratic, and the third- ple is the source of the radiating electric field. The
order susceptibilities, respectively. The optical field in relationship between the laser field induced polariza-
principle may be given by a superposition of harmonic tion (with respect to incoming fields) and the outgoing
components. Then EdJ](4) will involve summations (in- signal electric field is described by the first expression
tegrals) over the incoming field frequencies. from the Maxwell-Liouville equation set (Eq.](1)). We
Let us consider the second-order contribution consider that the total polarizatiaf(r,¢) can be ex-
panded as a series of components according to its prop-

P@(w) = B(w: wi,ws)E(w1)E(ws).  (5)  agation direction:

The incoming field P(r,t) =Y > P (t) exp(iker — iwgt), (11)
n=1 s
E(t) = cos(kor — wot)E[o,(t — 7)] (6)  where summation over indexdenotes summation over

_ ) _ all possible wave vector and frequency configurations
with £(z) oc exp(—z“/2) corresponds to a single y — 4k, +k,...andw, = +w; +ws.... Since the

pulse with wave vectok, and central frequencyo,  electric field is linear in polarization, we have Eg] (1)
for whichwy = [ko|c holds. The Fourier transform of - relationship for each nonlinear component of the polar-
the pulse gives ization. For a single term in Ed. (1),

E(w) o exp(+ikor)&[(w T wo)/ow].  (7) P(z,t) = PM(t) exp(—iwst +iksz),  (12)
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which propagates alongdirection, we look for a so- in the experiment: while the total polarization may be
lution of the electric field (Eg[ (1)) in one dimension in radiated in many spatial directions according to multi-
the form of wave mixing represented by expansi¢n](11), the de-
. .y tector can be placed in a specific position so that only

E(z,t) = Ey(2,1) exp(—iwst +ikiz) +c.c., (13) one specific component of the total signal field was de-
wherek] = “=n(w;). In Eq. [12) it is assumed that the tected. By resolving one signal component experimen-
signal, generated in tHe, direction, is parallel to the tally, we can write the relationship between measured
axis. Also, the rapidly oscillating part of the third-order irradiance, electric field, and polarization. From equa-

polarization is extracted in Eqf(12) making™(r)  tion (I8) it is clear that the electric field, (I, ¢) de-
a slowly-varying envelope of the temporal third-order tected in thek, direction is linearly proportional to the

polarization dynamics. For the slowly-varying enve- corresponding component of the induced polarization.
lope the relation The detected intensity is then

’ < Jws P (1) (14) Lo B0 < PP @A)

This is a very convenient result since it shows that any
spectroscopic measurement can be simulated just by
knowing the time dependence of the nonlinear polar-
ization of the system. This relationship is for th@mo-
w? dyne detectiomegime where the measurement probes
lk/aa By(zt) = _277 5 P(1) exp(iAkz), (15) tge signal intens%y. P
whereAk = kg, — k.. By integrating over the sample In the heterodyne 'd.etecti0|$cheme .the_ detectpr
length fromz = 0 to = — [ we get measures a superposition of the electrl_c field, emitted
from the sample, and the exterhatal oscillator (LO)
Es(l,t) = pulse, applied in the signal directid. Then the de-

i

holds. The same approximation is valid for the electric
field envelopeFE(z,t) as well. Inserting these expres-
sions into Eq.[({L), one would obtain

tected intensity is
f&wiclP(”)( )smc% exp( A2M> (16) Y
‘ Iy o< |Ero(t) + P (1)) (18)
The sin¢z) = sin(z)/z function is related to the
phase-matching conditiortf the sample size is smaller =|Ero(t)]® + ’p ’ + 2Re[Ef o () PM(1)] .

than the wavelength,< A, the signal field is radiated
with an arbitrary wave vector sincdk! < 1 and the  Onthe rhs of this expression the first two terms can be
sinc function is equal to 1. For macroscopic samples, neglected since the polarization is very weak and the
[ > )\, thesinc function becomes the Dirac delta func- LO pulse is well known and can be subtracted. The
tion with respect ta\k and the signal is generated only measured quantity is then the integral
atkl = k.
_We have treated the ex_perimental setup as one- W(t) = Re / dt [Efo(t)Ps(")(t)}- (19)

dimensional, but at this point we can make general-
izations for signals in three dimensions. For micro-
scopic samples smaller than the signal wavelength, thdf we treat the LO asj-shaped, the measurement is
signal direction is not selective to wave vector of the W (t) = RePs(”)( t). This result also involves the phase
polarization. This has implication, for instance, for difference between the polarization and the LO pulse
single-molecule spectroscopy. For macroscopic sam+. If the phase difference is fixed (locked), we can also
ples, much larger than the signal wavelength, the signaprobe the imaginary part of the induced polarization by
contains a multiple interference from each point in the taking¢ = 7/2. From Eq.[(19) it is then possible to ex-
sample. The interference is positive only at the signaltract both real and imaginary parts of the induced po-
wave vector equal to the wave vector of the polariza-larization (we will define the real and imaginary con-
tion. tributions later). In that case we define the heterodyne

As it was shown in a previous section the polariza- signal as the complex signal, equivalent to the induced
tion can be induced only with specific wave vectors, polarization.
depending on the incoming field wave vectors due to The above given relationships may break for cer-
multi-wave mixing. This provides a powerful utility tain cases. The generated signal must be considered
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as very weak compared to the incoming laser radia-of the system density matrix evolution can be found
tion so that the incoming field is not affected by the elsewhere[29].
multi-wave mixing. Electric field and induced polar-  We introduce other superoperators in an analogous
ization dependence (Eq. (17)) also breaks for opticallyway
dense samples since the absorption effects are signifi- A -
cant: then the polarization induction is not a separable LmarA = [Humar, A] (22)
process from field propagation.

LA = [1,A|E(t) = VAE(t).

2.4. Induced polarization . . .
P The equation of motion for the combined system and

2.4.1. The Liouville-space and reduced density matrix "€Servoir density matrix ¢) is then given by

In this section we address the problem of E@$. (2) o . ira . .
and [3) and describe the quantum properties of the ag(t) -7y {Hmat - “E(t)“’(t)} (23)
system. When the system constituting particles are i . i .
smaller than the optical wavelength of the incident elec- = _ﬁﬁmat‘f(t) T ﬁﬁimg(t)'

tric field, we can use the dipole approximation. Then ¢ oquation is equivalent to the Schrédinger equation
the molecule—field interaction is assumed as a dipole—, .ot that the wave function and the Hamiltonian are
field interaction. The total Hamiltonian of the system, replaced by the density matrix and the Liouville super-
its environment, and the classical electric field can beoperator, respectively. Thus, all formalism of quantum
written as follows: mechanics can be directly applied to the density matrix
H = Hyo+ Hp+Hsp+Hin = Hua—fiE(t). (20)  inthe Liouville space.

. _ o However, this equation cannot be solved exactly
Here Hiy is the molecular part of the Hamiltonian, - since the number of degrees of freedom of the thermal
containing all degrees of freedom, which have to beyeseryoir is infinite. Instead, the reduced density matrix
included explicitly. The second terfip represents  myst be introduced. It is defined only within the system
the reservoir (bath) causing dephasing and relaxationdegrees of freedom. This is accomplished by averaging

It has an infinite number of degrees of freedom, they gyer the reservoir degrees of freedom. We thus define
are not directly observable and will be treated approxi-the reduced density matrix as

mately. g is the interaction between the system and

the reservoir. These terms of the Hamiltonian consti- p(t) = Trg {&(t)} (24)

tute the material part of the syste&mt, which does

not include the optical field. The last tertH,, is the

dipolar system—field interaction. .
The dynamics of the system governed by the Hamil- pB = Z5' exp(—BHs), (25)

tonian is more conveniently described using superopery,pare

ators. Superoperators are given by certain operation on

operators. For example, a commutator with Hamilto- Zp = exp(—BEP) (26)

nian can be written as v

Assuming that the bath is in equilibrium at all times we
write the bath density matrix as

is the bath partition function in terms of its eigenstates
with energiesEﬁB); andg = (kgT)~! is the inverse
This particular superoperatdr is denoted as &iou- thermal energy. The density matrix of the whole sys-
ville (super)operator (Liouvillian).The density matrix ~ tem is now a direct product of the system and the bath
evolution is expressed much more conveniently in thedensity matricesé = p® pg. This level of description
Liouville spacewhich is a direct product space of two is known as Born approximation.

Hilbert spaces. The regular operator, expressed as the We will be interested in the dynamics of the reduced
N x N matrix in the Hilbert space, is recasted a¥&  density matrix. It is possible to derive the equation of
length vector in the Liouville space. An arbitrary su- motion for the system density matrix using an approx-
peroperator can then be written as a matriddfx N2 imate perturbation theory with respect to the system—
size. The operation of a superoperator on an operatoreservoir interaction [30]. The time-local equation of
then amounts to matrix and vector multiplication. The motion is obtained in the Markovian approximation,
detailed introduction to Liouville-space representation where the system correlation time is accepted as much

LA=[H,Al=HA- AH. (21)
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shorter than the relevant system dynamics. For the nextion of motion. This expression can be formally inte-
subsection we consider the optical properties and asgrated:
sume that the reservoir effects on the system density

matrix can be represented by a certain time-local relax- . . i ! .
ation superoperator. pt)=p(to) ++ /dT V(r)p(r)E(r). (31)
to

2.4.2. Series expansion of the density matrix . . .
_In this section we neglect the reservoir and assumd oW we move back to the Schrodinger picture. Since

Hyoi = Hyo as well asi(t) = p(t), where f,,.; we .tr_ea}t the system density matri_x as describing an
is time-independent. The field—system interaction is€quilibrium system state at initial timfg, the molec-
treated perturbatively while the material (molecular) Ular evolution operator does not affect it:

part is the reference (see Ef.}(23)). This scheme of
time-dependent perturbation theory application is typi-
cal of the most spectroscopic calculations. For this type
of description, the interaction picture in the Liouville

space ig more l_JsefuI than Schrbdinger or Heisenberq3y repeatedly inserting the rhs of EF.132) into fife)
picture in the Hilbert space. Essentially it representsterm within the integral, one would obtain an infinite
the description of the problem in the rotating frame. series

Evolution of the whole system can then be described as

§0) = pea+ 5 [ A Una®) V() (7) B(7) . (32)

the reference. The reference molecular evolution oper- ; t
ator in the Liouville space is defined as [29] p(t) = peq + 7 / AT Ul (t) V(T) peq E(T)
. to
U (£) = exp{ _ ;ﬁmolt} (27)
. 2 t T
and any time-dependent quantity (e.g. a system den- + (;) /dT/dT/Umol(t)V(T)V(T/) peq E(7T)
sity operator) can be transformed into the interaction to o
picture as gt - -
1
A0 = Ul 0p(0), @8 B+ (5) [ar [ar [t i)
t t t
Whereufnol(t) denotes a hermitian conjugate operator. b i
The transition between the Liouville and the Hilbert-  x V(") V(") peq E(T) E(r) E(7") 4+ ... (33)

space is accomplished by
1 . Sy Afe) T 2.4.3. Linear response function
U1 (1)p(E) = UT(E) p(t) U (1)

From Eq. [(2) we write for the linear polarization

:exp{;ﬁmow}ﬁ@ exp{‘;ﬁm”f}' (29) PU(H) = / ar SO 7 E(r).  (34)
to

Here operatof/T acts on density operatorsra from

the left andl/ onketfrom the right. Having defined the
molecular evolution operator, we are able to move to
the interaction picture and calculate a time-derivative
of the system density matrix using Ef. [23) for the re-

Here we have defined the linear response function
S (t, ). In the Liouville space it is given by

1 .
duced density operator: SOt 7) = 7 Tlilhma(t)V(7)peq] . (35)
;ﬁl(t) = ih,cmol Ul (6) (1) + UL (2) gt[)(t) By defining the variable change = ¢ — 7 and send-

ing the initial time (when system is unaffected by the

i 1 interactions) td¢g — —oco, one would obtain
= V() F ) E(t). (30)

The system part4,,.1) is included into the evolution P(l)(t) = /dt1 5(1)(151) Elt—t1). (36)
operator and the interactional term is left in the equa- 0
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In the expression of the system response functionmust find an efficient way to calculate the system re-
(Eq. (35)) superoperators are replaced by commutatorsponse function and express the multiplication of elec-

of the Hilbert space: tric fields in a convenient form.
i In the expression of the system response function
SW(ty) = 7 Tr{ilmor(11) V peq } (Eq. [41)) the superoperators are replaced by commu-

tators of the Hilbert space:

i R A
= AU [ peal UT)} BT gy,

or
S () = 00 (1) — T (1) (38) - (;>3Tr{ﬂumol(t3) V ilmor(t2) VUimon (£1) peq}
with 3
J(t) = Tr{fu(t) 1(0) peg} - (39) = (h) Te{aU(ts) [, U(t2) [, Ut1) |2, Peq]
Expressions, which can be useful for calculations, are
obtained by expanding these operator expressions in x U (t1)]UT(t2)]UT (¢3)} . (43)

the system eigenstate basis. Expanding the commutators we get
2.4.4. The third-order response function

N
(3) _(*
From Eq.[(2) we obtain §(ts 10, 1) = (h) 0(t1) 0(t2) 01(t3)

4
/ ar / o0 [ar 5Ot Y [Rafltastart) - Ratata.t1)] . (44)
to a=1
where
x B(t)E(t") E(t"). (40)
. . Ri(ts,t2,t1) (45)
Here we have defined the third-order system response )
function S® (¢, 7,7/, 7"). In the Liowville space itis ~ — At +t2) it + b + 1) i1(0) peq}
iven b
S Raty, ta, 1) (46)
ST, = T {(0)its + to)fu(ts + t2 + t3)fu(t1)feq} -
.\ 3
= (h) Teljilot (1) V(T) V) V(") og) - (1) Bl oot) A - @n
= Tr{(0)a(t1) Aty + t2 + t3)fut1 + t2)peq}
By committing a variable changg = t — 7, to =
T —17,t = 7 — 7" and sending the initial time to Ry(ts, t2,t1) (48)
to — —oo, we obtain = Tr{(t1 +t2 + t3)a(t1 + t2)f1(t1)2(0) peq } -
o7 7 Heaviside functions in Eq[ (44) emphasize the princi-
3 _ (3)
t) = /dt3/dt2/dt1 SP(ts tat) ple of causality: as it is seen in Ef]. {42), the third-order

polarization at time depends on the electric field of
WE(t —t5) B(t —ts —ta) B(t —ts —ts — 1) (42) earlier times. In other words, the e_IecFric _field in the
past (a cause) determines the polarization in the future,
This formula is the most useful expression of the third- so if any of system response function arguments is neg-
order polarization. It was obtained by applying a per- ative, the function must be zero. Also one can notice
turbative scheme upon the equation of motion of thethat the total system response function is always real. It
system density operator. It is a convolution of the third- is clear from the experiment, since the polarization is a
order response function and a product of electric fieldmeasurable quantity and has a corresponding hermitian
functions. From Eq.[(42) it is evident that the third- quantum mechanical operator, the average of which is
order polarization is a function d@f but, however, itis  always real.
also dependent dfi andr via the electric field compo- Because of the cyclic nature of the trace operation
nents representing laser pulse configuration. Now we(it is valid to commit a cyclic permutation of operators
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|b) (0] |b) (0| |b) (bl l9) {9l teraction with the field iC;,;. The interaction part de-
pends on the electric field. At pointof the space

13 o
E(t) = 5 Fo STEi(t — 7)) e
=]

""""" e (50)
o)t (gl lg) taflelg) | tuflella)ftn (gl where&; is a temporal Gaussian envelope function of
jth laser pulse and;, 7, andrs are the central times
l9) (9] l9) (9] l9) (9] l9) (9] of each pulse (see experimental scheme in Fig. (1)).
Ry Ry Rs Ry To select specific polarization configuration, cor-
Fig. 3. Double-sided Feynman diagrams, corresponding to theresponding to certain signal wave vector, one needs
components of nonlinear response function in Egs| (#6)—(49) forto distinguish different density matrices with different
a general multi-level system, wheigc) stand for energy states; \\aye vectors. This is easily accomplished when the in-
l9) 1s ground state. coming pulses do not overlap. For instance, consider
the first interaction. To distinguistik; and—k; den-
sity matrices the former must include only multiplica-
{ion by the dipole operator from the left, while the latter
is obtained by multiplying the dipole operator from the
ight. We then have

inside trace brackets), chronologically ordered dipole
moment operators can act upon the density operato
from either side, i. e. they act uporbaa or ket of the

density operator. These sequences for Hqs. (@6)-(49
are conveniently expressed schematically using the ab-

stract double-sided Feynman diagrams [7,/23/ 29, 31] .
1

(Fig.[3). Vertical arrows denote '_[he time direction; vari- E'@g) (t)= _ﬁ(gmol _ iD),;g) ()
ablesty, t9, andts are the time intervals between two £
successive interactions of the dipole operator and the +1 i p© (t)EL(t —71) e wit=m) (51)

system density operator the (electric field and the sys-

tem); horizontal lines show the side of the dipole oper- and

ator action upon the density operator.kétand abra

during the same time intervaly() (3|) denote a state of " : N

coherenced # 3) or population & = () correspond- ./~ (t)= _ﬁ(['mol —iD)p (1)

ing to an element of the system density matrix being i .

affected. += pO) p&r(t — ) et -m) (52)
However, the whole system response depends on the

electric field (i.e. the direction and time of incident

pulses). So it is possible to express all permutations o

interaction orders and directions in the excitonic basistO solve one equation. 'For the second mtergctlon
by double-sided diagrams as well. It will be shown in W& Would have four possible terms corresponding to

Sec[4.D. +k1 + ko, ﬂ-k1 — ks, —k; + ko, and—k; — k». Rele-
vant equations are as follows:

fNote, however, tha[tp(j)]eg = [ﬁ(f)];e, so it is enough

2.4.5. A non-perturbative propagation of the density

matrix 22 oy _ 1 ) 42
P (t) - _7(£mol - ID) P (t) (53)
The induced polarization can also be calculated non- ot h A
perturbatively. We have the equation of motion of the : . '
time dependent density matrix with the optical field in- +%ﬂ ﬁsr) () Ey(t — 19) e iw2(t=T2)
cluded explicitly as
0 0(6) =~ (Luwot 1D+ La)ilt). (49)
7 - _ﬁ mol — int ) 0 A i ) A
o G20 =~ (Lo — D) P21 (54)
where evolution of the material part is decomposed
into the molecular and dissipational parts given by i

~ Al —iwg (t—T
Lol = [Huol, ...] and D, respectively, and the in- +h” [psr)(t)]T&(t — 7p) e iw2(t=T2)
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and the other two are just complex conjugated. For thehave a quantity as a function of the lattice site, its dis-
third interaction we can choose the photon echo config-crete Fourier transform is given as a functiorkef2k;,

uration—k; + ky + k3, where we have equation: 3k;,... The symmetries of Fourier transform imply that
9 .(3) i o A(3) the amplitude atN — 1)k; is equivalent to—%; and
gi? (1) == (Lol = 1D) P (1) (55) at(v — 2)k; to (N — 2)k; = —2k;. Calculating the
, guantity at/V lattice sites thus allows to decompose it
+%/1 ﬁﬂ(t) Es(t — 73) e iws(tm3) into components corresponding to phases(—inkr)

withn = —-N/2,—-N/2+1,...0... + N/2 — 1 for even
Solution for these equations may be performed in any; (odd N can be incorporated similarly).

arbitrary basis set, however, if the Schrédinger equa-

_ ENONe Such decomposition can be performed for all three
tion for the system can be solved and the dissipational L . . .

T Incoming fields as a three-dimensional lattice, and the
superoperator can be calculated, the solution is much duced polarizati b lculated f bi
simpler in the eigenstate basis. The photon echo po-In uced polarization can be calculated for any combi-

larization is then given by the trace of the polarization nation of the incoming field wave vectors. For instance,

operator with the relevant system density matrix: for configurationks = —k; +k2 +kj itis sufficient to
@) take N = 4 and this configuration can be extracted by
P(r,T,t) = %Naﬁ [ (56)  a discrete Fourier transform of the calculated signal at
«

_ _ various lattice sites. Different lattice sites correspond
here o and 3 represent all possible eigenstates (they, gifferent phases of the incoming fields, thus, this
ground state, one-, and two- exciton states). Specif rocedure is called phase cycling (originally without

resonant manifolds of states can be selected in th . ) . .
. . . . invoking the lattice concept). The convenience of this
eigenstate basis set by considering only resonant inter-

actions. Then, for instance, in E. [49) we select Onlyspatial Fouriertransform is as follows: for a.speciﬂf:
system states which have the energy splitting close tghe calculated signal exactly extracts a particular signal
the optical frequency. If we label the ground statgas Wave vector up tavth order in the field. Higher orders
with energy 0, then only the following solution is nec- in the field are mixed. Thus, by taking largé this

essary: procedure allows us to calculate the signal to a speci-
e ) ) fied order in the field. For instance, the third order in
a[fbr leg = —iweg [ ]eg — Deg,erg [P ]erg ks = —k; + ko + k3 signal direction is the lowest or-

der which contributes. 5th, 7th, etc. order in the field
+1M69 Ei(t — 1) e (t=m1) (57) can there_fore be calculgted by the phgse cycling._ In the

h perturbative scheme this would require calculation of
with we, ~ wi. Note that the zero-order ground state higher order perturbation series expressions which un-

density matrix(5(®],, = 1. fortunately scale very unfavorably with the order in the

The decomposition presented above is equivalent iGje|q. Non-perturbative approadh [25] has been used to
the third-order perturbative expansion presented in pre-

i ) o account for higher than third-order effects in the non-
vious sections. Another type of decomposition is capa- oo signals
ble to select the desired signal. It is basedptiase '
cycling Consider the optical field in Ed. (50). Ther
term in the exponent is the phase of the field. Con-
sider that instead of one system we have a lattice of2.5. Overlapping electric fields in perturbative
systems along the incoming field propagation direc- expansion
tion. Then at each site of the latticgé, the phases
will be k;r,. Having N sites in the lattice separated ) . )
by lattice constant we can perform a Fourier trans- -t US consider the product of the total incoming
form of a quantity, which depends dnand have a set  field (from Eq. (42))
of wave vectorg:’ associated to the lattice. The max-
imum lattice wave vector i&, = 27/a and the step
between these wave vectorsAsk’ = 27/(Na). If
a = 27T/(N/€j), we would getAk:’ = kj. If we then E(I‘,t—tg—tQ—tl) E(I’,t—tg—tg) E(I‘,t—tg) . (58)
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For convenience we can separate a spatial phase factaf slowly-varying terms. This elimination is known as
®; = k;r from the time-dependent factors and identify the rotating-wave approximation (RWA).
the interaction sequence:

2.6. Two-dimensional photon echo signal

Ej (I‘,t - ZLf?) - t2 - tl) E]Ll]ei@j + E][l]e—iq)j 7

The third-order polarization is the main quantity un-

Bl i + FlHg—ie; 7 der consideration in theory of nonlinear response of
! ! bulk isotropic samples. One of the most advanced ex-
perimental set-ups is presented in the scheme irj Fig. 1:
here the polarization is induced by three incoming laser
fields. According to the scheme we can consider the set
of signal wave vectors representing all permutations of
incoming field wave vectork; = +k; + k, + k3 and,

second-interacting pulse, aﬂf] for the third.EJ[-m] = correspondingly, frequencies = +w; + ws + ws. In

E™* indicates the backward propagation (conjugatethis scheme the signal may be defined as the function of
part); here bothj, m = 1,2,3. The expressions for the delay times between the laser puls&sr, T, ¢) =

Ej(r,t —t3 —t2)

Ej(I', t— tg)

EJ[-B]eiq)j + E][-?’]e_@f , (59)

where nowE][.” denotes a forward-propagating pulse
which interacts first with the systelEU[.Q] stands for the

(3)
E™ are as follows: PO Tot). .
J A two-dimensional photon echo spectrum is ob-
Ell = Eilt —ty —tg —t1 — 7)) tained by applying 2D Fourier transform of polariza-
=

tion P (r,T,t), detected in-k; + ky + ks direc-
tion, over time variables and¢. As it was mentioned
in the introduction, separation of the total signal to the

—iw;(t—tz—to—t1—7;) i,
X e J( J)e J s

E]m =&t —tg — ty — 1j)e (I TT)ei0s rephasing and non-rephasing signals is possible accord-
ing to the range of delay time. For the rephasing sig-
BV =&t — t3 — mj)e @ittt m)eids (60)  nal (- > 0),

Since we are considering a response in the directionWr(wr, T',wt)
—k;+ks+ks, we can neglect terms which have spatial
. o (e.)
phase factors different from®; + &5 + &5 after sub- _ /dr e*i“”/dt it
0 0

p®

s kot ks (r,T,t). (62)

stituting Eqgs.[(BP) into Eq[ (42). Assuming all electric
field pulses being of the same frequency E w1 =

wy = w3) and phase not tuned{ = ¢ = ¢3 = 0), In the scheme of the non-rephasing signal generation,
the product of the total incoming field (E{. (58)) is first two pulses are exchanged, but the detection takes
place in—k; + ks + kg direction. The same signal
would be detected intk; —ks+k3 experimental direc-
tion if = was positive. Just its spectral elements would

(EVEPEP 4 Bl g2 EY) eenta—t)

1] &[2 3 1] &[2 3 iw
< (BY EP B + BY B ES) ettt lie in the opposite plane af - with respect to rephasing
W G2 28] | plt) pl2) 03] ieolts +2tat1) spectrum:
X (Ey Ey Ey” + Ey By Ep”) ewoltat2lzth
(B3 E3 By 3 B3 EY) ] Wik(—wr, T, wr)
—iwp (t—7) ) 61 o . 00 .
xe ®n  _ Jareer [are Pl (70 (63)
Terms in this product lie in three groups according to 0 0

their phase factors. They aréo(ts—t1) = giwo(ts+t1)
andewo(ts+2t2+41) - Ag jt will be shown later, system
response function can be decomposed into componen
having opposite phase factors. In a multiplication of
the system response function and electric field prod-

uct some of these phase factors will cancel making3. Response of basic quantum systems

that term slowly-varying, others will be modulated by

the sum frequencies. Integration over time (EqJ (42)) Here we present the least sophisticated systems that
makes the latter ones negligible compared to integralscan be analysed using methods of 2D spectroscopy.

The integration over is carried out only in the positive
axis since the third-order response is not created before
t§1e third laser pulse.
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Purely for the demonstrational purposes some features For an isolated two-level system it is a Lorentzian-
of this technique can be highlighted in an elegant wayshaped function, centred at,.

and analytic expressions of 2D and absorption spectra In the third-order photon echo response function we
can be obtained for some basic quantum systems. have only two contributions, ground state bleaching

This section is organized as follows. In Section 3.1 and stimulated emission:

an isolated two-level system is considered. The phonon SOSB(ty 1o 11) = Ra(ts, ta, 1)

bath is taken into account as the dephasing of the sys- 82 1) =SR2, B2, M
tem response. In Sectipn B.2 the dephasing is expressed 1 giveg(ti—ta)=y(trts)

using an energy-gap correlation function and the line- —H (68)
shape function for a two-level system is introduced.

Depending on the model of a phonon-bath motion, var-  S°F(t3, ta, t1) = Rs(t3, ta, t1)

ious approximations are presented. In Secfion 3.3 a .

model of the two-level system is appended by a third = ptelweslti=ta)titts) - (5g)

overtone state which is a basis of an anharmonic os-

illat ‘ Analvii ) ¢ i while Ry (ts, t2,t1) and Ry(ts, t2, 1) contributions are
ciiator system. ~ Analylic Expressions of System re- ;o4 1o obtain an analytic expression of the 2D spec-

sponse are presented using system—bath interaction d?r'um of the two-level atom, we considéshaped laser

scription as for a two-level atom. And, finally, in Sec- pulses. In this regimérgpulsive limi), 2D spectrum is

tion[3.4, the response of a general multi-level system is, £ rier image of the system response function (third

derived assuming the second-order cumulant eXpanSiOBrder polarization equals the system response func-
of system—bath interaction. tion):

oo [e.e]
3.1. Two-level atom W (@, T, ) = / dt e / Aty et
In this part we consider an ideal quantum system of —o0 —00

two energy levels: the ground stdtg and the excited x SOt =13, T =ty, 7 =1t1) (70)
state|e) . This model effectively represents an isolated
resonant transition of an atom. The total Hamiltonian
in the system eigenstate basis consists of the material
part and the coupling with electric field

and
SO (t3,ta,11) = (h) 0(t1) 0(t2) 0(t3) u*  (72)

H= 59’9><g‘ + 5e‘e><e‘ — [ E(t). (64) % [Rz(tg,tg,tl) 4 R3(i3,t2,t1)]

The evolution superoperator, corresponding to the ma- 3

terial part of the Hamiltonian, acting upon the dipole _ 2(Z> Ot1) 0(t2) O(ts) b et —19) (11 +13)
moment operatorr = pgelg){e|l + pegle)(g| also h

possesses the phenomenologically included dephasingy applying Fourier transform and separating rephas-

term-y. ing (r > 0) and non-rephasing-(< 0) parts, we obtain
Ui (t1) o= 0(t1) expliwegts — vt1}e)(g| + h.c. Wr (wr, wy) (72)
(65)
Inserting this into the definition of the linear response _ A 1 1
function (Eq. [(3Y)) together with., = |g)(g| results <h> K v — i(w — Weg) v Fi(wy — Weg)
in
2
SO(t) = =7 0(t1) lugel? e sin(wgtr) . (66)  WAR(wn ) (73)
The Fourier-transformed linear response function is _9 (l)g T 1 ‘ 1 .
" ; , h Y —i(wt — weg) ¥ — H(wr — wey)
S )(Wl) ~ |Heg The calculated 2D spectra of the two-level system are
depicted in Fig[ 4. Note that non-rephasing 2D spec-
o 1 1 (67) tra of the real and imaginary parts are just mirrored

v+ i(wr — Weg) B v+ i(wi + weg) images of the rephasing spectra with respectuio
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’Imaginary Amplitude freedom (e.g. solvent or lattice kinetics, etc.). In the
\ adiabatic regime the material Hamiltonian is

Hinat = |9)Hy(g] + le) Helel . (74)

Here Born—-Oppenheimer approximation was used as
well as ansatz of the absence of pathway of excited
state relaxation tdg). On the other hand, full energy
of the state is a sum of the electronically excited state
level energye, the kinetic energy of nuclear vibrations
T (Q), and the vibrational potential energy (adiabatic

potential)V (Q) (Fig.[5)
I:Imat = [gg +T (Q) + Vg (Q)] ’g> <g’

+lee +T(Q) + Ve (Q)lle)(e].  (75)

wog ~ I weg weg + BMeg — AT weg weg F Mweg — 2T weg weg + 2T The Hamiltonian can be written in another form by sep-

Wr Wr Wr
Fig. 4. Calculated rephasing, non-rephasing, and sum spectra foraratmg the electronic and bath parts:

weg — 2T “eg weg + 2T weg — 2T “Weg weg + 2T weg — 2T Weg weg + 2T

the real (absorptive signal) and imaginary (dispersive signal) parts 2 1 2 2
and signal amplitude of a single two-level system (isolated two- Humar = Hp + Hs + Hsp (76)
level atom). Here Hg is a purely vibrational part that depends
solely on bath degrees of freedorfils is a purely
at  7Q bt electronic part (system), andélsg is the electron—
| cwy=ri phonon coupling of system—bath interaction as defined
Ve(Q) g in Sec[2.4]l. These parts of molecular Hamiltonian
& 7(Q) T = Ct) = Co can be written as
g AV(Q> e "8 21 24/2mm20"1 2
I VR H = [T (Q) +V, (Q)] (l9){gl + ledel) ,  (77)
(RN
[REK ~
> > Hs =¢e4lg) (9] + [ec + (Ve = V)] [€)(e], (78)
Nuclear coordinate Q Energy

Fig. 5. (a) Scheme of the two-level molecule under consideration Hsp = [Ve (Q) — V5 (Q) — (Ve — Vi) |e){e|. (79)

with elements of molecular Hamiltonian indicated; (b) lineshapes

of absorption peaks of two-level molecule in homogeneous and in-The average energy gap terivi, — Vg> was added to
homogeneous limits. the electronic part and subtracted from the interactional

part (making zero contribution in the material Hamilto-

nian) assuming that the interaction part must be zero in
axis. In the absence of the inhomogeneous broadenthe thermodynamical equilibrium. Thus the interaction
ing both real part rephasing and non-rephasing spectrgart is an operator of energy gap fluctuations with re-
are Lorentzian-shaped along the main diagonal #ith  spect to the ground state. The molecular Hamiltonian

for the FWHM (Fig[%b). in the matrix notation for a two-level system then is
very simple:
3.2. Two-level molecule ~ 10 gg 0 00
Hmat — HB (0 1) + <0 Ee) +AV (01> . (80)

The two-level molecule is described as the system

of the ground statgy) and electronically excited state The dipole moment operator of a two-level system is

e as for the two-level atom. However, this system is written assuming Franck—Condon approximation, i.e.
. ' the polarization operator in the dipole limit is equiva-

adqnlonally coupled to \/_lbratlonal degrees of freedom. lent to the dipole operator, which does not depend on
This coupling to these is expressed through the gens

he vibrational coordinates:
eralized bath coordinates (nuclear degrees of freedomS
Q. These coordinates introduce additional degrees of fi = deg |e)(g] + dg, |g) el (81)
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The energy of the electronic transition is usually in mulant expansion (see Appendi} (7) for details) of this
UV or visible region and energy gap is greater than expression, we obtain
kT, therefore we can assume that initially (at time
t — —oo) the system is in the equilibrium state, de- J(t) = |d|? ewest =9 (87)
fined by equilibrium ground state density operator. So
the dipole moment operator acting upon the equilib-
rium density matrix is

2 ped) = g, plea) . 82 2 L7
fLp g PV ]e) (g (82) o(t)= (;) /dT/dT,
0 0

Linear response. Linear response function of the sys-

tem is given by Eq[(87). In the following we include

vibrational degrees of freedom. Now the response x Trg{AV(Q, ) AV(Q,7') peq} - (88)
function depends on coordinat€s

where

Con . (eq) The functiong(¢) defined here is called tHmeshape
J(t)=Tep{UN(t) pU(t) o p**V'} (83)  function Itis a double integral of the energy gap cor-
; ; relation function:
= [deg | Trp{en 1ot e~ et plea)y
1
= |deg|? e Weat Trg{e #AV(QDE plea)y C(r') = Tre{AV(Q,7) AV(Q, 0) pea},  (89)
Here we extracted the energy gag, and in the expo- ¢ ™
nential of the evolution operators only the vibrational  ¢(t) :/dr/dr’ C(r'). (90)
part is left. Within the trace operation in the expo- 0 0
nential we have a perturbative part of the excited state
Hamiltonian, therefore, it is the excited state evolution Having the linear response function derived we are
operator in the interaction picture. Itis known from the now able to obtain full expression of the absorption
time-dependent perturbation theory that it can be writ- spectra of the two-level system. To make it even more
ten as a positive time ordered exponential [29] simpler, afast modulation limiapproximation will be
ot used. Itis based on the assumption that the bath fluctu-
_ ! /dr AV(Q, T)} . (84) aFions_ are much more intensive than tho_se (_)f the system
h ) vibrations. Then the system—bath coupling is “fast” and

_ _ o . the energy gap correlation function is assumed to be of
By inserting this intoJ(¢) expression (Eq[ (83)) we ob- shape of the Dirac delta function:
tain

061(Q7 t) = eXp+

J(t) = |d|? e west Ct)=~6(t). (91)
i p Here~ is the coupling strength. This type of correla-
X TTB{ expy | — & /dT AV(Q, 7)} Peq} . (85)  tionis denoted as Markovian since the memory of sys-
0 tem initial state is lost extremely fast. That is the case
Expanding Eq.[(85) to the second order, used for calculating expressions for the two-level atom

. in Sectior 3.1L.
2 iwent i We can, in advance, notice that in this regime the
J(t) = |af7e™ {1 " h /dT Tra{AV(Q,7)}(86)  stokes shift will be absent since due to the ultra-fast
0 bath kinetics the electric field always interacts with an
gt - averaged ensemble of two-level systems [29]. By ap-
n (1> /dr /dr’ Trp{AV(Q, ) AV(Q,T’)}, plying a double integration of théshaped correlation
h , J function, we get a linear expression of th&) func-

tion:
we find that the second term in Ef. [86) is zero in the
thermodynamical equilibrium. After performing a cu- g(t) =~t. (92)
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An analytic expression of the absorption coefficient is Real Imaginary Amplitude

—

then obtained by applying Fourier transform to the lin-
ear response function

N\
N

Ka(w) ocw|d|? Re / dt elwmwea)t=Tt  (93) )z ~
0 g ;
7))

! (&
//

W— Weg + 17y

=|d]*wRe

NP%

et
The resulting lineshape is Lorentzian (Hig. 5) centreed §
at wey With 2+ for the Full Width at Half Maximum +3
. . . ~=
(FWHM) as a signature of homogeneous broadening in =
the absorption spectrum. Therefore the fast modulation y ;
limit is also known as theomogeneoutimit. s T G e T e T g s AT es TR g et
In contrast to the homerneous limit, ﬁheom()ge' Fig. 6. Calculated rephasing, non-rephasing, and sum spectra for
neouslimit can also be described. If the system does the real (absorptive signal) and imaginary (dispersive signal) parts
not lose memory of its preceding states, the correlation@nd signal amplitude of a single two-level system at fast modulation
function is constantC(t) = Cy. The resulting line- limit with Gaussian disorder ofy for the FWHM.

shape function ig(t) = %COtQ. The spectral lineshape

is Gaussian witl2/21n 2C; " for the FWHM.

weg — AT Weg weg + AT weg — AT Weg weg + AT weg — AT Weg weg + AT

3.3. Anharmonic oscillator (three-level system)

Here we describe the linear and third-order response

Third-order response and 2D spectrumSpectra of  of a weakly anharmonic oscillator. In this case the
inhomogeneous system are shown in Fig. 6. For themolecular Hamiltonian is
real part of the rephasing spectrum the diagonal peak . A
lineshape is Gaussian (c. f. Lorentzian lineshapes of Hiol = woala+ 5 atataa,
Fig.[4) and elongated with respect to the main diagonal.
Itis an illustration of the fact that the inhomogeneously Wherea anda'! are bosonic annihilation and creation
broadened spectrum can be assumed as the superpogiPeratorswy is known as the fundamental frequency,
tion of spectra of two-level systems with different top- andA < wy is the anharmonicity. Three lowest states
level energies that are Gaussian-distributed. If the inho-Of this system are the ground statg with energy0,
mogeneity is included, a decay of non-rephasing signathe one-quantum state) with the energy., and the
is also evident. This is caused by destructive additiondouble-quantum statef) with energy2w + A. The
of positive and negative diagonal values of the signal.diP0I€ operator is
Thus the rephasing signal gives more information about
the system since the homogeneous and inhomogeneous
contributions are well separated. This gives the fundamental transition amplitydg =

The angle of nodal line (separating positive and neg-.. and the transition from the one-quantum state to the
ative off-diagonal peaks) of the imaginary part of the double-quantum state equalfgg; = v/2p.
sum spectrum also characterizes the system under con- The connection with the oscillator can be easily es-
sideration. In this case it is the ratio of inhomoge- tablished by introducing the dimensionless coordinate
neous and homogeneous contributions. This type off ahd momentunp:
counter-clockwise nodal line rotation is observed when 1
the energy-gap correlation function is of type of slow q= NG (a' +a),
exponential decay (static inhomogeneous broadening)
[21] or as a result of losing of memory of the initial i
excitation of the system [18]. b=/

ﬁspzu(&T+d).
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The linear response function has the same form as
the two-level system since the overtone state is not in-
volved (Eq. [(67)).

In the photon echo rephasing response function we 3
now have three contributions. Due to the presence of
the double-quantum statg), the negative induced ab-
sorption contribution adds up,

wo  wo+4y wo+ 8y

S™ (ts,t2,t1) = Ru(ts, t2, 1) (94)

wo + 4y

— _2/1/4 eiwo(tl7t3)7iAt37'y(t1+t3) ’

W
“0

S8 (t, 2, 1) = Ry(ts, ta, 11) (95)

wo — 45

_ M4 olwo(t1—t3)—y(t1+t3) ,

S (ts,ta,t1) = Ra(ts, ta, t1) (96)

Fig. 7. Real part of the totdl' (w-, T, w:) two-dimensional spec-

) tra of a three-level system (anharmonic oscillatoth denotes
= pt ewoltita)=r(titta) an anharmonicitygp is the standard deviation of the Gaussian-
distributed diagonal disordeft,is pure dephasing rate.

After Fourier transformations we have

N\ 3 4
Wi(wr, T, wy) = 2 <Z> il e — _ _ _
h v —i(wr — wo) 3.4. Multi-level system in contact with the bath:
) cumulant expansion of the third-order response
X { : 1 — . (97) function
v+i(wr —wo) Y+ i(w—wo—A)

Similarly, for the non-rephasing contribution we would ~ We assume that the system is given by a set of energy
obtain states: the ground statg) and|1),|2)...|N) states.
The molecular Hamiltonian is thus

A
1 : o I:Im(ﬂ = Z Ea |a)(al .
X{y—i(Wt_WO)V_i(wt_wo_A) . ( ) a=1

The total spectrum Here and later roman symbails b, andc run over all
the energy states in summations. Again the bath is de-

. 2 . _
! 7” +iy(wr — wo) scribed by the sefa} of harmonic oscillators. The

W(ewor, T, wp) = 4 ()3 o(T)

2 _ 2
R 7* + (wr —wo) system—bath interaction is given by
X [ 1 — 1 (99)
VA (W —wo)? 2+ (W —wo — A2 Hsp =23 d'9 Qo |a) (b= S"dY (B, + ba)la) (b] .

aba aba

It is seen that in case of no anharmonicity = 0),

IA contribution cancelS$E and GSB pathways com-

pletely. If anharmonicity is large compared to the de-  We first neglect off-diagonal fluctuations. In that
phasing constant > ), negative and positive peaks case the system dynamics is adiabatic, i. e. the system
are well resolved in 2D spectrum (F[d. 7). In the other eigenstates are not affected by the fluctuations. Sys-
case, positive and negative peaks overlap and the noddém response functionB; (ts, t2, t1), ... Ra(ts,t2,t1)

line can be drawn. (Egs. [46)4(4P)) can then be written as four-point
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correlation functions of the system and dipole momentThe second-order cumulant expansion of this expres-

operator interaction times sion (for details see Appendix 7) results in
(©)
Rl(tg, to, tl) = F(tl, t1 + 12,01 +to + 13, 0) , (100) fcba (7_47 73,72, Tl)
Ro(ts, ta,t1) = F (0,11 + ta, t, + b + t3,t1), (101) = exp[—Gec(T43) — gob(T32) — Gaa(T21)
R3(ts,to,t1) = F(0,t1,t1 + to +t3,t1 + t2), (102) — 9eb(T42) + gen(743) + gen(T32)
Ralts, to,t1) =F(t1 +ta + t3,t1 + ta,1,0), (103) — gea(T41) + ea(Ta2) + Gea(T31) — Gea(T32)
where = ba(731) + gba(732) + Goa(721)] - (109)

. . . . The lineshape functiop,,(t) is given by the correla-
Pl 7,72, m) = T {lrs) i) () ) P} o umetionCo () isgral 201

(104) .
andji(7) = U(7)j; jvis defined in Eq[{T30). The evo- Jab(t) = /dT/dT' Caapp(T = 7). (110)
lution superoperator (as in S¢c.|3.2) can be expressed 0 0

as a product of a normal and time-ordered exponen- Consider now additional off-diagonal fluctuations.
tial (representing SyStem and bath ﬂUCtuationS, respecnow the System dynamics includes popu|ati0n trans-
tively) port and the system cannot be described using evolu-
- tion operators of the wave function. Using the secu-
_ i/dr’ AVb(r)] lar appr_oximation for the system dynamics it can sep-
“ ’ arated into two types: the coherence evolution and
0 (105) the population transport. During the coherence evolu-
Applying the four-point correlation function to a gen- tion, the dlagongl fluctuations modulate the ogcﬂlgﬂon
eral scheme of system—dipole moment operator inter_frequency, off-dlggonal flgctuatlons, and_ the "fet'me'
actions (Fig[B), one can obtain induced 'dephasmg. Du.rlng Fhe population _evolutlon,
the off-diagonal fluctuations induce population trans-
port and the effect of the diagonal fluctuations is in-
cluded in the transport rate. For Feynman diagrams,
where population transfer is involved, diagrams with
incoherent transport are used [32]. The addition to the
system response function (Ef. (44)) is
Index C denotes the coherent limit — population trans- i
fer is not included. The four-point correlation function T(ts tz,t1) = —(i)° cb%:e Heb i ieg Gere(t2)
is then

uab(T) = exp(_iwabT) €xXp

F(14,73,7T2,71)

=" lige teb tiba tag Foo (T4, 73,72,71) . (106)

cba

0]
fc(fa) (74,73, T2, T1) = exp[—i(e.T43 + €pT32 + €aT21) X Fopere (3, 12,11) (111)

where indices: andb denote states in coheren@e(c|

+ fc(lfl) (14,73, 72,71)] (107)  duringts in population transfer diagramsy/ has to
be changed te’b when the signal is generated on the
where left side of the diagram, and t@’ when it is gener-
©) ated on the rightG.(t2) is Green’s function that is a
feva (T4, 73,72, 71) probability of population staté:)(e| to be transferred
to |e’) (/| in timety (or population survival probability
~ Tip {e+i Jotdr AVge(r) e: Jo? dr AV (7) whene’ = e).

}"c(;l,e(tg,, to,t1) = expliwepts — iwegti — (Ve + W)t3
i fng dr AV (1) —i fOT4 dr AVqg(T)
Ot O+ } - (108) — Yet1 + fc(;()i(t& ta, t1)], (112)
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where 4. Coupled multi-chromophore system
I .
fébz,»(t& to,t1) = expl—gee(t1) — guv(t3) — gre(t3) 4.1. Frenkel exciton model
— Goe(t1 +t2 +t3) + goe(ts + t2) + goe(ta + 13) We consider a general multi-chromophore system
consisting of N electronically interacting two-level
+ Gee(ts + t2 +3) = gee(t1 + 12) = gee(l2 + 13) subsystems. Nonlinear optical properties of such com-
. plexes of coupled chromophores (e.g. molecular ag-
+9eb(ts) + Ghelts) + geelt2) — gue(t2)]. (113)  gregates, proteins etc.) are described using a Frenkel

v, is the dephasing constant, that is a sum of a statei?(;t?sn model[[34, 35]. The Frenkel exciton Hamilto-

lifetime and pure dephasing

N N N
Yo = |Kuwl/2+ 0 - (114) H = Z €m |m){m| + Z Z Tnm |n)(m| + Hipe ,
. . : m=1 ™ nEm
The population Green’s function is a solution of the (121)
Pauli master equation wheree,, and J,,, are site energy of theath chro-

mophore and the resonant coupling betwegm and

Ge/e(t) - Z Ko Gie — (Z Kj€,>ge/e, (115) mth chromophores, respectively;,; denotes inter-
je je! action to the field and the environment and is treated
as a weak perturbation. In the exciton representation a
where K;; are the population transport rates. This mtj-level system is considered. It contains the ground

equation can be represented in a matrix form state|g) and one- and two-exciton bands (manifolds).
9 . . Each state of the one-exciton manifold is denoted as
aG(t) =-KG(t), (116)  |e;) ( = 1...N)with corresponding optical transition

to the ground state.,,. The number of two-exciton
where the population transport rate matrix is con- states isN(N — 1)/2 and they are denoted ag;)

structed asK,, = —Kup + 0ap > Kjp- By apply- with optical transitions to the one-exciton bw@ej;
ing unitary transformation upon the explicit solution of transition to the ground state is forbidden. The one-
Eq. (116)) we obtain exciton Hamiltonian matrix:(!) is simply the refer-
G — 1 o -1 117 ence Hamiltonian of Eq@l}zﬁ? = 0165 + Cikdjks
() =Qexp(-QT KQ)Q (117)  where¢;, = 1 — §;;.. Two-exciton Hamiltoniark(? is
and héii),(mn) = (er+€1)0kmOin + JremOinCrm + JinOkmCin-
Transition from site representation to the exciton ba-
Gee(t) = Qe Qe M. (118)  sis as well as eigen-energies are obtained using unitary
J transformations
A - . . S /‘_1 . . . R
HereQ@ is elgenv_ector matrix of<, ) _ is its inverse, U150 = Q. (122)
and); are the eigenvalues. Population transport rates
gg;] be calculated using traditional Redfield thebry [27, VIO v — W (123)
Ky = Re Cly o (wap) [coth(Bhgs/2) — 1], (129)  Hime = Hsr + Hsp determines the system interac

tions with external perturbations: the optical field (de-
wherew,, = 4 — ey, 8 = (kgT)~!, T is the tempera-  noted as SF, “system-field”) and the phonon bath (SB,

ture, kg is Boltzmann constant, and “‘system-bath”). The former is given by
1 —exp(—Bhw) T .. Hgp =) dpn(|m) + (m]), (124)
(/zlb,cd(w) = p2( ﬁ ) / dt elwt Cab7cd(t) . m

(120) whered is a molecular transition dipole. Applying the
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Fig. 8. Double-sided Feynman diagrams, illustrating Liouville space pathways (LSPs) in the system, induced by a repetitive dipole moment
interaction with both sides of the system density operator.

unitary transformation the dipoles of intra-band transi- is convenient to use the spectral density, which is given

tions (eigen-dipoles) are obtained: by [27]:
o0
=N"Ut 1 _
foes =2 ¢@) = & [ at expliot) (fan (@) an(O)) - 127)
fhe, f, = Z Z U ld,, + Uj_r; d,). (125) In the exciton bas_is, we obtain quctua‘_ting transition en-
m=1n=m+1 ergies and couplings between the eigenstates. These
fluctuations are characterized by spectral densities
Here ") denotes the element &f~! of the kth row ”
and the column, corresponding to a diagonal element Ceres,eses (W)
€, + €, Of the two-exciton Hamiltonian matrix. The { u-l g-l g-l - ]C//
= w y
explicit relation isv¥), = V', wherey = $(2N — Z mes Umes Umey Une |€7()
m)(m—1)+n—m,n, m=1,2... N. We next as-
sume thatf{gg term induces fluctuations of the molec- eves, fafa (@)
ular transition energies: () (f)
=[S vz va, Z vl e,

ﬁSB = ZQm(Qa t) |m><m| ) (126)

where Q are the collective phonon bath coordinates.

We assume that each molecule has its own indepen-
dent set of fluctuating coordinates uncorrelated with the
other molecules. Fluctuations of different molecules

are statistically independent, i. e. the correlation func-

tion matrix is diagonal(g,(t)gn(0)) = 0mnC(t). It

Of1f2,6364 (w) = Ceses,frf2 (w),

C¥1f27f3f4 (w) (128)
k#m l#m
_ {Z( Z y’r(T{I:;) V(fQ))(Z 7/7(7{13) Vr(j?))] C"(w) ‘
m k l
(129)
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Here we have extended the double-exciton eigenvector - =L|f)

matrix by takingy,(,{% = V,S{% which lets us simplify L -

the expressions considerably. €Ll ==lea)

JE =)
4.2. System response function of three-manifold system had
The dipole moment operator for an excitonic multi- —l9) S

level system described above is Fig. 9. Site representation and formation of molecular excitations
) (molecular excitons) of a general hetero-dimer system and illus-
n= Z He |€> <9‘ + Z |f> <€‘ +h.c (130) tration of absorption spectrum with peaks corresponding to optical

e e,f transitions from the ground state to single-exciton states.

In this definition, dipole moments of transitions be- expressed by double-sided Feynman diagrams|[{Fig. 8).
tween excitonic states are not operators due to Franck—l-hey correspond to different physical processes — in-

Condon approximation (dipole moments are excitation-duced absorption{R; and— R3), stimulated emission

independgnt). The systerp also does no_t haV(_a a per(R2 and R,), ground state bleachingzg and R,), or
manent dipole moment(d|/ilg) = 0). By inserting  y4hje_coherence pathways k; and Ry). In further
Eq. (130) into expressions of elements of the responsgise;ssion we will use notation of these diagrams in-
function (Egs. [(4F)+{49)) we obtain oscillating terms stead ofR functions. Complete expressions f&yrand

of the evolutl'on Qperatqr in frequenay of transitions respective diagrams are presented in Appefiix 7.
between excitonic manifolds and ground state (approx.

the same frequency for all inter-band transitions). Sep-

arating the phase of resulting expressions one can seg. Spectroscopy of dimers

that there are two types of phase factorgy(t1 + t3)

and—iw(t; — t3). The opposite phase factors of elec- 5.1. Dimer of two-level chromophores
tromagnetic field oscillations of frequency are in

electromagnetic field expression EF.](61). In the ex- An excitonically coupled dimer is an archetypical
perimentw, ~ @ is set. Multiplication of the system molecular system to be analysed by methods of opti-

response function and the electric field part under inte-C&! 2D spectroscopy. The general scheme of a hetero-
gration in Eq. [[4R) then results in terms of sum phased'mer as W'e|| as the exciton banq structure are pre-
factors. In case of constructive (destructive) interfer- Sénted in Figl 9. The dimer consists of two coupled
ence of phase factors rapidly (slowly) oscillating terms chromophores, represented by two dipafgsandd;

are obtained. Integrals of rapidly-varying functions are With interdipole distance vectdR,» and anglep. In
much smaller and can be neglected (RWA). The third-the Frenkel exciton Hamiltonian the chromophore en-

order polarization then is ergies are denoted as ande; and the the coupling
~ 50 oo constant/,
PO(r, T, 1) = e~ 0(t=7) / / / dtsdipdty  (131)  Hpot = €1l ay+eahan+J (a6 an+abar). (132)
000 The Hamiltonian is diagonalized and the eigenenergies
% { SI(S) x | EP Ef] Ei[f} + E’P E?EQ] Egﬂ} eiwo (t3—t1) for the single-exciton states are

Ee, = €1 €052 0 + €3 sin® @ — 27 cosfsinf, (133)
4 89 (B B EI pY B p gt

' Eey = €1 5IN? 0 + €3 cos? @ + 2J cosfsinf, (134)
+ SI(ISI) x [ Egl] E:[f} EF] + Ez[;l] E%Q} E?]]elwo(t3+2t2+tl)}7

and
where SI(3) = 51(3) (tg,tg,tl) = —R{ + Rs + Rjs, Ef =€ T Eey (135)
S = 9@ (t3,ty,41) = —R5 + Ry + Ry, andS\) =  for the double-exciton state, wheffe= § arctan =L
SI(%) (s, ta,t1) = —R% + Ry are the system response [7,[8]. The transformation to the eigenstate representa-

functions forky, ki, andkyy interaction sequences, (0N matrixis
respectively. These interaction sequences of the evo- U~ sinf cos @ (136)
lution operator and the dipole moment operator can be - cosf sinf )’
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The transition dipoles between the eigenstates and
transition dipoles in the real space are related via -
one-excitonic and two-excitonic eigenvector matrices _ -

(Egs. (125))

Herg\ _ [cos® —sin@ (dy
<1u’egg> B <sin0 cos@) (d2 (137)
and
ffe,\  (—sinf cosf (dy
(/‘fez) N < cos 6 sin@) <d2 (138)

J cos ¢

2 2

. = g, =1+ , (139

’/‘L 1g| ’Hf 1’ (62 — 61)2 + J—2 ( )
J cos

tese|” = ptgey|* = 1 = e (140)

(e —€1)2+J2°

5.2. Excitonically coupled dimer: signatures of
different evolution scenarios and pulse-overlap
effects in 2D spectra

Q)t (10°xem ™)
12.0

Parameters used in calculations are= 11800 cm—!
ez = 12200 cm~!, J =100 cm™!, ¢ = Z. The envi-
ronment is represented by two overdamped Brownian
oscillator coordinates, fast and slow, with relaxation Fig. 10. 2D photon echo broad-bandwidth pulse signal at three
ratesAr and Ag, respectively. Both coordinates in- delay timesI" = 0, 2, and9 ps. Left column is a broad-bandwidth

d lated sit fluctuati d ib ideal signal, right column is full signal reconstructed using the set
uce uncorrelated site-energy fluctuations as describegs ., rqy.handwidth simulations of a homo-dimer. See text for

above. We use the overdamped Brownian oscillator simulation parameters.
model where the spectral density of local chromophore _
energy fluctuations i$ [32] Ko q/J = 2541072, ‘The response function was
A then calculated as described in Sec] 3.4.
CMw)=2 3 N2 141
(@) Z b2y A? (141)

5.2.1. Broad-bandwidth pulse simulations

As a reference we first present the ideal impulsive
D photon echo rephasing signal corresponding to the
case of the short laser pulses when their spectral band-
width is much larger than the width of the spectral re-
gion under consideration. In this regime the pulse over-
lap effect can be neglected and we obtain:

I=S,F

The corresponding lineshape function obtained by a,
direct double-time integral of Eq[_(I]LO) in the high-
temperature limit [2]7, 29] is

2kpT —iA

git) = 3 N (M + At —1). (142)
I=S,F l

All system, bath, and coupling characterizing quanti-
ties are chosen typical of pigment molecules in photo- Wiwr, T, we) % S (wr, T, wr) (143)
synthetic proteins [34, 36]. Bath-induced fluctuations i. e. the signal probes the response function itself. We
are described by overdamped BO parameters= show such spectrum at two delay times in the left col-
30cm™!, A\g = 60cm~!, Ag! =50fs,Agt = 10° ps.  umn of Fig[I0. The dissection of the spectra to com-
The slow bath is used to model the static disorder,ponents corresponding to different LSPs is presented
thus its fluctuation timescalﬁs‘1 — oo. The calcu- in Fig.[1] for the real part of the rephasing signal, in
lated population transfer rates (Eg. (119)) for the eigen-Fig.[12 for the non-rephasing signal. The population
states are: (downwardy;.»/J = 2.69 and (upward) transport diagrams are merged together with the coher-
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Fig. 11. The contributions of different LSPs to the real (absorptive) part of rephasing 2D spectra of excitonically coupled dimer at the

impulsive limit; population transfer contributiond” and SE’ are merged withA and SE; spectra are calculatedlat= 0, 200 fs (" <

Ki',),and 9 psT: > Ki.',). All graphs are normalized to the maximum of the most intensive contribution, contour lines are plotted
using arcsinh scale.

ent (no transport) diagrams in these figures. The spectransfer in the excitonic system. Only andSE con-

tra contain both diagonal and off-diagonal elements.tributions change over population tirfie GSB is con-
Across the diagonal the peaks are broadened due teerved since there is no dynamics in the ground state
the homogeneous broadening caused by the fast term afontrary to thd A andSE diagrams, where the popula-
bath oscillations. The lineshapes are extensively elontion dynamics during time dela¥ is described by the
gated along the diagonal due to the slow term of bath7T-dependent Green functions (population transfer) as
oscillations. The restrictioff, < AS‘1 ensures thatthe well as coherence dephasing terms (Egs.|(1L2)}(114)).
diagonal elongation remains for all delay times. SuchAt long T the diagonal A and off-diagonaBE peaks
approach is very efficient to model the inhomogeneouscome from population transport. The signal can be eas-
broadening, and represents the static disorder effectly correlated with the Feynman diagrams.

Across the diagonal the peaks are broadened due to Due to population transfer it is evident fér= 9 ps

the homogeneous broadening caused by the fast terrthatIA contribution refers to transition from the pop-
of bath oscillations. ulation first single-exciton state; ) (e;| to the double-

At the short delay timesT{ = 0) the population excited state f1)(e;1| solely. This is clearly indicated
transport is negligible and the diagonal peaks consisby a single off-diagonal element, = c.,, w; =
solely of theSE andGSB contributions. These two di- ¢, — €., = e, for T' = 9 fs, while the off-diagonal
agonal peaks represent two single-exciton eigenstatepeak for|es)(ea| — |f1)(e2| transition is dominant
and are created when = ¢/, while the off-diagonal for 7' = 0 fs and7T = 200 fs. The similar ex-
peaks correspond @ # ¢’. At zero delay, the cross- planation holds for the population transfer-related off-
peaks are created by the superposition of negdtive diagonal peak that appears3h diagram forT" = 9 ps.
and positiveGSB andSE contributions. At longer de- However, the double-exciton states are not included
lay time we see the rise of the lower-energy peaks atin SE diagram and the corresponding cross-peak is at
wy = wy; = €¢, demonstrating the down-hill population w; = e, wr = €, .



290 V. Butkus et al. / Lithuanian J. Phys0, 267—303 (2010)

1A’

SE SE/

l9) (gl

Fig. 12. The contributions of different LSPs to the real (absorptive) part of non-rephasing 2D spectra of excitonically coupled dimer in the
impulsive limit. All parameters are analogous to ffig} 11.

5.2.2. Gaussian narrow-bandwidth simulations

The finite-bandwidth Gaussian pulsés(t), j =
1...3, (Egs. [59){(6D)) have two additional parame-
ters: the carrier frequencies and pulse Iengthbt]j.
Changing the length of all pulses tunes the spectral
bandwidthso ! = [oy] ;- Pulses with the increased
length simulate the experiment more realistically, while
the impulsive limit simulations are better for a purely
phenomenological understanding of 2D spectra. Addi- —k; "|+ko "|+ks
tionally, effects of pulse overlap arise [12]. Narrow- Werg |Werg |Weag
bandwidth pulses also act as band-pass filters of 2D
spectrograms [8]. The wavelenghts of laser pulses carrig. 13. Laser pulse wavelength tuning scheme for the FWM ex-

be tuned independently to select certain resonances iHeriment. The wavelenghts of laser pulses are tuned independently
to select certain resonances in the exciton system. In this example,

the exciton system. By comparing the pulse band'first (—k1) and second-{k-) pulses have wavelengths, resonant

widths to the linewidth of a single peak in the spectra, to w.,, = ws., transition, while the third pulse{ks) is tuned to

we can obtain certain detection regimes. We assumee,s = wre, - We use notatiorfes, €1, 2] for such configuration

that the pulse width is narrower than the whole exci- of laser frequencies.

ton bandwidth §, < A.), but broader than the width

of a single peakd, > 7.) by settingo,, = 1.2v, ~ fore, only two resonant pulse frequencies have to be

0.16A.. considered. By considering all possible configurations
The model dimer has two single-exciton states with of the carrier frequencies of incoming three pulses,

energies:,, ande.,; the double-exciton state energy and assuming that the fourth pulse (heterodyne) is

iS e = ce; + e, (EQs. [I3B)f(135)). The transi- broad ¢-shaped), we obtaif® = 8 possible permu-

tion energies arey,, = £, andws,, = €.,. There-  tations of the pulse frequencies, e.u, wa, w3] =
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Fig. 14. Four most intensive narrow-bandwidth signals leading to resonant selection of Feynman diagrams in the signal at delay time
T = 10 ps. The signals were simulated by varying central pulse frequencies while keeping the pulse bandwidths unchanged. Utilization
of other possible laser pulse configurations gives negligible signals st K;.',. All graphs are normalized to the global maximum

([e2, €2, €2] contribution).

[e1, €1, 1], [e1, €1, €2]... etc. This laser pulse wave- The first laser pulse “controls” selection of spectral

length tuning scheme is sketched in 13. However,elements atv.. For instance, in configurations with

once we select the resonant contributions, we find onlyw; = ¢.,, only spectral elements far, = w,, do not

six resonant configurations, four most significant of vanish. The second pulse determines the state, which

them are presented in F[g.|14 (by selecting the resonaniurther evolves in range df'. The third pulse selects

pathways we have also considered population transport. SPs according to the resonant transitions dufiing

at non-zero delay¥)). It is remarkable that pulses select the distinct LSPs
Appearance of specific spectral elements in manipu-with high resolution. Various diagonal peaks and

lated spectra is controlled by laser pulse frequenciesthe crosspeaks now can be separately characterized
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including their shape and amplitude. Their time evolu- to consider pulse durations,!. In two dimensions of
tion follows the density matrix dynamics at correspond- time (7, ¢), the whole area, where the response function
ing LSPs. Some pulse frequency configurations areis not zero, isy; 2. The area, where pulses overlap, is
related to pure coherence pathways, which do not in-;-2 The ration = ¢;2/+; 2, thus, characterizes the

volve exciton populationsigy, ez, 1] andles, €1, €2]  relative pulse-overlap magnitude. Our finite-bandwidth
configurations, not shown). Other pathways filter out g 1ations are in the regimg < o, < A.. We have
. . o ey w e-

dler;_sny mztr;x i:ohe:cenc_?_f] agd ar?[ |n|t|att(.ed byhthe pop—n < 1 and the pulses can thus specifically select reso-
ufation and Its transfer. ' ne density matrix conerence-, ., peaks, the response function decays slowly com-
contributions show beating dynamics alofg (not ared to the pulse duration, and, therefore, the pulse-
shown), which follows the Schrodinger equation. The P | kp ”’ ,'b i W I:D hi
population contributions show monotonical dynamics OVenaps make a very small contribution. We call this

due to classical dynamics according to the master equa’®9imequasi-impulsive That is the ideal regime to be

tion. used for selection of specific pathways of the system
The spectra on the right column of F[g] 10, recon- with well-separated peaks. The ideal impulsive exper-
structed by summing up all the signals of different laseriment can then be reconstructed from a set of narrow-
pulse configurations, resemble the broad-bandwidthbandwidth measurements.
signals (the left column of Fig. 10) very closely. By
comparing the spectra it is noticeable that peaks of re-
constructed broad-bandwidth spectra are slightly nar-5.3. Dimer of three-level chromophores
rower due to the finite bandwidth of the pulses.
The pulse overlap effect in all simulations is small. et us consider a homo-dimer of three-level chro-
That effect may be expected when one of the delaymgphores, that is, two coupled anharmonic oscillators,

times ort is smaller than the pulse duratiop. Then  gescribed in Sed_3.3. Molecular Hamiltonian of the
additional contributions follow: i) when pulse 1 is iso- system is

lated but pulses 2 and 3 overlap and, thus, the term
proportional toE{l]*E?EZ] Egﬂ contributes (this is an ad-

- Lo .. .. 2 2
ditional Sk, contribution), (ii) Wh.er.\ pulse ?*ls[ll?olglted H ool = wo Z &In G+ J Z djn .
and pulses 1 and 2 overlap providing wEt’f E; Es m=1 me#n
contribution to the signal defined by tisg,, term, and A 2
(iii) when all three pulses overlap, then all six terms in + 5 Z &fn &In G, Ay, - (144)
the integral contribute simultaneously. Fourier trans- m=1

formation, used in 2D signal construction, involves the
integrations over delay times and the overlapping con-The one-exciton block is identical to a homo-dimer of
tributions are mixed with the non-overlapping contri- two-level systems
butions. If the response function is strong in pulse non-
overlapping regimes (usually longer delay times, which
A . . ~ 1 wo J

extend to infinity), then the non-overlapping contribu- p = ( > (145)
tions add up and dominate. J wo

The overlap effect can be quantitatively character-
ized as follows. The response function of a dimer and corresponding exciton energies and eigen-vectors
is characterized by two parameters: the splitting of are described by Eqq. (133)-(136). In site represen-
the single-exciton stateg\, and the characteristic tation the two-exciton block is built by adding states
linewidth of each single-exciton resonange The &I&UW andd£&£|0) with energie<wy + A due to the
time-domain response functions then experience splityyertone states of single chromophores. The coupling
ting-related oscillations with frequency. and the de-  nstant between the overtone states and multi-exciton

cay with timescaley; " In our cased. > . and we ﬁtate with energgwy is therefore equal tg/2.J:
observe well-separated exciton resonances. The idea

impulsive conditions are fulfilled whes,, > A, and

0, > .. This corresponds to thenpulsiveregime of R 2wp+AV2J 0

ultrashort pulses, when their overlaps can be neglected.  h® = V2J 2wy V2J . (146)
For realistic finite-bandwidth Gaussian pulses we need 0 V2J 2wy + A
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Diagonalization of one- and two-exciton blocks

(Egs. [122)+4(123)) allows us to move to the exciton ba-

sis
N
lej) = Ujnah,|0), (147)
m=1
N 5
=30 3 8] (G + 222 ) a0} (148)
m=1n=m \/§
Wherez/,(ff,)1 denotes the element & ! of the kth row

and the column, corresponding to the diagonal element

of af af|0) state andV = 2. The one-exciton eigen-
vector matrix is identical to Eq. (I86). The two-exciton
eigenvector matrix is

sind —cos¥—1 sind
1 2005% 2005% ZCOS%
vi=—11 1 0 -1 (149)
ﬂ sind  —cos?¥+1 sind
ZSin% \/isin% 2sing

whered = arctan (%) The eigen-energies of one-
and two-exciton states are

ey = W0 + J, (150)
Eeyg =W — Ja (151)
and
cost —1
=2 2J ——— 152
cp=2w0+2] Sm (152)
€, = 2wo + Al (153)
cosY +1
=9 2J ————. 154
Efs = 2Wo + sin (154)

Dipole moments for the ground to one- and two-
exciton states are

() =a () (@) oo
and
_ sin®+cos¥+1 sin¥+cosd+1
(uelfl) 1 2_6(155 ZC_oslg (dl)
Z:ﬁ V2 _sindtcosi—1 sindcos i1 d>
2sin 5 2sin 5

2

(156)
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Fig. 15. The real part of total 2D spectra of the dimer of three-level
system with dephasing constant= J (left column) andy = 5J
(right column).J = 50 cm™* andA = 15 cm™* in both cases.

and
sin¥—cos¥—1 sin¥—cos¥—1
g g
Hea f1 1 2C015 2 250512 d
Heafa | = o (d ) .
Mezfg ﬂ sin ¥—cos¥+1 sin¥—cos9+1 2
2sin 2 2sin 2

2 2

(157)
Having transition dipole moments defined one would
be able to construct analytic expressions of the total 2D
signal from individual Feynman diagrams. In Hig] 15
the spectra of the dimer of the three-level system using
different dephasing rates are presented. For a dimer of
two-level systems, coupling of the eigenstates is rep-
resented by off-diagonal elements. Coherent induced
absorption diagrams produce spectral elements on the
diagonal and gives oscillations of corresponding diag-
onal peaks, that is perceptible in 2D spectra at the limit
of v = J. However, if the dephasing rateis> J,
the inter-state coherence dynamics cannot be separated
from diagonal elements and the whole spectra resemble
a single anharmonic oscillator.
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6. Applications to multi-chromophore complexes Jo > 0), the exciton Hamiltonian defined by Ef. (158)
_ ) can be diagonalized analytically resulting, thus, for the
6.1. One-dimensional J-aggregates of eigenenergies [34, 42] in

pseudoisocyanine

€; =€ —2Jy cos (159)

)
Molecular aggregates (J-aggregates) are macroscop- N +1
ic clusters of molecules with intermolecular spacing 5nq eigenfunctiong:;) = 3°,, ¢, |n), where
intermediate between the crystal lattice and isolated
molecules. The scientific interest in spectroscopic fea- 2 . Tin
tures of such structures remains high even since 1936 Yjn = N +1 S N+1° (160)
when Jelley|[3[/] and Scheibe [38] independently dis-

covered a significant narrowing of the absorption band,QUantum numbers = 1... N enumerate the exciton
red shifted relative to a monomer band. due to an in-States. The transition dipole moments corresponding to

crease of the concentration of the dye pseudoisocya-eaCh exciton state are defined giving the dipole strength

nine (PIC) in water solution. This narrowing effect [0 @ particular exciton state as follows:
upon an aggregation is known as the superradiance.
The J-band in the streaming solution is polarized
along the streaming direction (see, for instance} [39])
and thus the transition dipole moments of the con-
stituent molecules of the linear one-dimensional J- (Nj)Q -0 (162)

aggregate must have a small angle with respect to the , ) N .
aggregate axis. In this case the optical transition tofOr €venj, wherey, denominates the transition dipole

the lowest exciton states dominates in the absorptiof"oMent of a constituent molecule from the aggregate.
spectrum, while the narrowing of its lineshape is ad- 1Nus. the dipole strength of the lowest energy state
dressed to the motional narrowing [40, 41]. Linear (U = 1), which is red-shifted in comparison with the
one-dimensional J-aggregates are formed by parallelnolecular transition in accord with Eq. (159), is signif-
molecules with an angle of transition dipoles less than!cantly higher than that of the others and contains more
arccos \/1/3 ~ 54.7° with respect to the aggregate than 80% of the total oscillator strength. _
axis. In the other case an H-aggregate is formed with TNe absorption spectrum of pseudoisocyanine (PIC)
the superradiant fluorescence feature at the highest enl-2dgregates features not only the J-band (at 576.5 nm)
ergy. but two weak bands at 536 and 499 nm as well. While
Spectral properties of J-aggregates are usually unihe origin of the J-band is clear, '_thl_s cannot_be said
derstood in terms of the Frenkel exciton thedry| [42]. about the other two bands: Conflicting theories have
The exciton energy spectrum and the correspondin%een put forward but there is no consensus yet. On the

wave functions are defined from diagonalization of the Pasis of detailed analysis of the absorption and fluo-
exciton Hamiltonian of a linear chain d¥ identical  eéscence excitation spectra, the one-dimensional model

202 mJ

2 0 2

N = t? 161
(15) N+1“ a(N+1) (161)

for oddj and

molecules containing four molecules per unit cell was proposed
" N N [43]. According to this model the unit cell of the

Hoo = e+ 8¢ V|m) (m| + Jumln)(m|, ~ 2dgregate consists of four PIC molecules and, within

¢ mzzl( m)lm) i mZ:1 n; ) the dipole approximation, the transition dipoles in the

(158)  unit cell are of the following orientation(zi,, iy, =),
where ¢ is the excitation energy of a constituent (—pz, —fby, ft2), (Ba, — fy, ftz), ANA (=L, [y, f12),
molecule andde,, is the random (inhomogeneous) where i = (g, pty, ) = (0.581, 0.338, 0.738)
Gaussian-distributed energy offset of theh molecule,  (Fig. [I6). These transition dipole moments cause
|n) denotes the state when théh molecule in the ag- the average value of the coupling constant between
gregate is excited an¢h| is its Hermitian conjugate. the nearest neighbour$, being equal to—1.43 in
Matrix elementsJ,,,,, denote the energies of the reso- units of |u|?/(r12)%, wherer, is the translation vec-
nance interaction between théh andmth molecules, tor norm. An experimentally observed exciton band-
which can be calculated from the structural data. Inwidth is achieved by setting:|?/(r12)? to reachJ; =
the absence of the diagonal disorder (wlep = 0) 600 cm 1.
and in the case of the nearest-neighbour coupling ap- To showcase the narrowing of the J-band, we present
proximation (assuming thak,., = —Jod},,—p,,1 With simulations of absorption and 2D total (rephasing +
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Fig. 16. The spatial structure of a single unit cell consisting of four

PIC molecules of a J-aggregate used in the calculations. The tran-

sition dipole moment vector is denoted @asnd their correspond-

ing projections tar0z andy0z planes are depicted. The dihedral

angley and tilt anglea: are known from spectroscopic measure-
ments|[43].

non-rephasing) spectra of J-aggregates consisting of °
different number of molecules (Fig. [17). Absorp-
tion spectra simulations of aggregates of more than
64 molecules did not contain any noticeable differ-
ences. All 2D spectra are presented at population time
T = 0 fs. To simulate inhomogeneous broadening
we first use random Gaussian off-set terpts, in
Eqg. (I58) and average over 1000 distributions to get
the absorption spectra. We set diagonal disorder to -
op = 60 cm~! that is 0.1 of the coupling constaii.
Then we fit the parameters of ,slow" mode of spec-
tral density (Eq.[(141)) to match the aforementioned
absorption spectra. The simulation of inhomogeneous
broadening in 2D spectra is then accomplished using ,‘
the “slow” mode thus allowing us to avoid computa- y
tionally expensive numerical diagonalization of multi- 175
ple instances of the Frenkel exciton Hamiltonian.

Let us first consider the absorption spectrum of a sin-Fig. 17. Absorption spectra and the real part of total 2D spectra of
gle unit cell consisting of four molecules. Four bands  PIC J-aggregate with different number of chromophaves
are visible in the absorption spectrum (even though the
transition to the second excitonic state is very weak, thelhe negative elements, that are due to induced absorp-
corresponding peak is still visible). The J-band is at thetion, contain information about two-exciton states.
bottom of the single exciton manifold. The peaks repre- Now let us consider the effects of aggregation by
senting the fourth and third excitonic states are visibleanalysing the difference in absorption and 2D spectra
as well. of J-aggregates consisting of an increasing number of

The 2D spectra of the unit cell contain more in- molecules. Firstly, we can see the considerable narrow-
formation. The J-band is clearly dominant here asing of the J-band. Obviously, with the increasing num-
well. However, the second excitonic state is not visible, ber of molecules, the oscillator strength correspond-
which is due to the fact that peak intensities are propor-ing to the J-band increases. This effect is more easily
tional to the fourth order of transition dipole moments seenin 2D spectra, where the spectral elements become
in the 2D spectrum and to the second order in the ab-so narrow that it is basically impossible to analyse the
sorption spectrum. As expected, the peaks correspond2D spectra of J-aggregates consisting of 64 or even 32
ing to the third and fourth excitonic states are also vis- molecules when it is plotted on the same scale as the 2D
ible on the diagonal. The positive crosspeaks represenspectra of the unit cell. Moreover, the presence of the
coherences and correlations between excitonic statesiegativel A contribution distorts the appearance of the

0€°LT S€°LT 0OF'LT

N=64

we (103 cm™1)
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T
0€°LT S€°LT O%P'LT S¥ LI

L
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J-band in the 2D spectra in case of 32 or 64 molecules
in the aggregate. Secondly, it can be clearly seen from
both absorption and 2D spectra that the width of the ex-
citonic manifold increases with the aggregate size. The
increase is not linear, however, as the width increase
slows quickly with increasing aggregate size. Finally,
it can be seen that the J-band in the absorption spec-
trum becomes slightly assymetric when the aggregate
consists of 64 molecules. To highlight this we show
two insets in Fig[ 17. In case of the 32-molecule ag-
gregate, the J-band is still symmetric but in case of
the 64-molecule aggregate it becomes assymetric due
to the fact that the third excited state has some oscilla-
tor strength and its peak blends with the main J-bandFig. 18. The structure of Fenna—Matthews—Olson complex. Chro-
peak corresponding to the first excited state. As canmophore numbers as well as exciton states are identified. Arrows
be clearly seen from the insets, the J-band is e|0ngatealustrate excitation tr_ansfer pat_hways_within the system (revealed
along thew, axis. This elongation is due to the cross- Infurther discussion).

peek representing thie1) (es| cohere'nce. This elon- photosynthetic proteins. A single subunit has the same
gation, however, is clearly smaller in case of the 64- ohiica| properties as the whole complex. The absorp-
molecule aggregate. Therefore, from analysing the 2Dyjon hand is narrow and linear absorption simulation

spectra we can conclude that the third excited state ig,ging the Frenkel exciton theory provides very good re-
getting nearer to the first one and it should be notice-gis

able in the absorption spectra. In this paper, simulations of 2D spectra of the FMO
photosynthetic complex are presented. Dipole mo-
ments were calculated from the structural data of the
complex [49]. Molecular Hamiltonian and relaxation

The Fenna—Matthews—Olson (FMO) protein is a rates are the same as in Ref] [3]. System-bath in-
photosynthetic light harvesting complex found in some teraction is represented by the fast and slow modes
bacterias. In the process of photosynthesis, it has ®f overdamped Brownian oscillator, as in Sgc.]5.2:
role in energy transfer between the light-absorbing an-Ar = 30 cm™!, A\s = 60 cm~!, A" = 100 fs,
tennae (chlorosomes) and the reaction ceftre[[34, 36]As " = 10° ps., similar to refs,|[12, 50]. Temperature
The FMO complex has three identical subunits, eachis 77 K.
of them containing 7 bacteriochlorophyilmolecules
(Fig.[18). This complex was the first bacteriochloro- 6.2.1. Spatial delocalization of molecular excitons
phyll containing protein to have its structure deter- In Egs. [128) three different correlation functions
mined with a very high resolution (2.2 A) by means were obtained, involving either single-exciton states,
of X-ray spectroscopy [44]. It was extracted from the double-exciton states, or single- and double-exciton
green photosynthetic bactelorobium tepidum states. The wave function overlap terms have different

A highly-effective energy transfer was observed ex- physical meanings, representing either degree of de-
perimentally in this complex. It is assumed that it localization, or spatial overlaps of molecular excitons
is related to the long-lived electronic coherences ( within the complex.

600 fs), that were observed by means of 2D electronic  First, let us consider thé‘g;ejejej (w) term. The
spectroscopy [14]. The energy is believed to be trans-wave function overlap contribution represents the mean
ferred in a wave-like manner by two dominant path- square of the single-exciton state quctuati(()m§>,

ways. The energy transfer through electronic coher-

ences should ensure high efficiency|[11],/15, 45]. How- > Uni=N;t, (163)
ever, traditional quantum relaxation theories often fail m

in describing such a slow coherence decay in electroniavhereN; is so-called inverse participation ratio (IPR).
systems of strong excitonic couplifg [46+48]. Value of the IPR shows, how many molecules are in-

Intensive researches of the FMO complex are undervolved in thejth exciton, so it is the measure of the ex-
going since its structure is the simplest of all known citon delocalization. If the exciton state is completely

6.2. Excitation transfer pathways in
Fenna—Matthews—Olson photosynthetic complex
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Table 1. Squares of matrix elements of eigen-vector mdirix
inverse participation ratios (IPR), and transition dipole moment &

squares*ugej ®. The most significant values are in bold.

12.4

Single-exciton state
el €2 €3 €4 es €6 er

BChl1 0.00 0.00 0.78 0.00 0.00 0.00 0.22
BChl2 0.00 0.00 0.22 0.00 0.00 0.00 0.78
BChl3 0.88 0.11 0.00 0.01 0.00 0.00 0.00
BChl4 0.11 060 0.00 0.10 0.13 0.06 0.00
BChl5 0.01 0.11 0.00 0.11045 0.32 0.00 ol
BChlé 0.00 0.01 0.00 0.03042 0.54 0.00 1
BChl7 0.00 0.17 0.00 0.76 0.00 0.07 0.00
IPR 128 245 153 1.67 254 247 1.53

‘ugejQ 148 264 222 79 278 63 112

Gy (10°xem™)

122

12.4

[¢9] ¢ (10°xcm ™)

122

localized, N; = 1. At the other limit, when thgith
exciton is completely delocalized infé-chromophore
systemU,,; = N~'/2, that is, the mean square of the
single-exciton state fluctuations becomes very small,
(0923) o« N~ this exchange-narrowing effeds typ-

ical of molecular J-aggregates. Squares of matrix ele- £
ments ofU represent localizations of excitons in each =~
molecule. For the FMO complex, calculated matrix el- "« [
ements and IPRs, as well as corresponding transition ) © a

. . N 7!
dipole moment squares, are presented in Table 1. ) 7l , ~Z:

. . B 122 12.4 12.6 12.0 122 12.4 126
For other correlation functions in Eq$. (128), W (0%em™) W (0%em™)

cl. w) represents the spatial overlap of proba-

eﬂeﬂekek( ) rep P P P Fig. 19. Real (absorptive) part of rephasing 2D spectra of photo-

bility density functions ofjth andkth excitonic state
(squares of eigen-functions in excitonic basis). Cor-
relation functions involving double-excites states have
similar physical meaning [3].

In Table[1 we present calculated square values of thdor various population time#' are presented in Fif. [19.
eigenvector matrix, square values of transition dipoleItis remarkable that the results fit the experimental data
moments, and inverse participation ratios. It is notablewell [3] [13,/25, 31]. While increasing the population
that IPR values are small. This shows that the molecu-time T', some features of 2D spectra change: diagonal
lar excitations are not extensively delocalized. The firstelements decay except for the 1-3 and 5 exciton states.
excitonic statee; is mostly localized in the third chro-  The corresponding off-diagonal elements denote the
mophore.62 and€4 excitons are Commonly localized energy transfer from the h|gher energy molecular ex-
in 4 and 7 chromophoress ander in 1 and 2 chro-  ¢itations downwardszs, e5 — e; andes — ;. So, the
mophorese; andeg in 5 and 6 chromophores. The g, citation, induced in some region of the complex, will
largest square values of transition dipole moments arg o transferred to chromophores 4 and 7, and then to

2 2 - .
gg’rerii|naa}czdt|)gtgﬁ5i|n ’gggoioggﬁzc;%d'zng :bz::)trglon peaks chromophore 1. Therefore, two pathways of excitation
P b ) transfer can be distinguishedj, e; — es, e4 — e3

andes, e — e2. They are demonstrated in Fjg.|18 by
the left and right (green and red online) curved arrows,

synthetic FMO complex.

6.2.2. Energy transfer pathways
By analysing the evolution of 2D spectra and know- ‘
ing how the excitons are localized spatially in the com- "€SPectively.
plex, we are able to describe the excitation transfer 1he total signal can be decomposed to pathways,
pathways within the system. indicated by the double-sided Feynman diagrams, as
In the calculations§-shaped laser pulses were used. it was shown for the excitonically coupled dimer in
It means that all transitions between excitonic levels Sec[5.2]l. The corresponding spectra are presented in
can be induced. Simulated spectra of FMO complexFig.[20.
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consistently from the simpliest quantum two- and
three- level systems to the molecular excitonic aggre-
gates.

For the basic quantum systems the total third-
order response signal can be expressed analytically
by assuming simple models of the solvent dynamics.
The simulated two-dimensional spectra of a two-level
atom (Lorentzian spectral lineshape) and a two-level
molecule (Gaussian spectral lineshape) are presented
and various representations are discussed. For an an-
harmonic oscillator (three-level system) evidences of
anharmonicity are considered.

Two coupled chromophores constitute a more so-
phisticated system of a dimer, in the spectra of which
the quantum coherence dynamics is observed. Two
types of the dimer description are presented: the con-
stituting chromophores are considered as two-level
or three-level subsystems. In the case of the two-
level chromophore hetero-dimer, extraction of individ-
ual spectral elements by means of two-colour two-
dimensional spectroscopy is demonstrated. It is pos-
sible to characterize the dipole moment configuration
T / o and resonant coupling constant value by performing
! : LA \ VA such measurements. For the homo-dimer of three-level
12.0 122 12.4 126 .0 122 12.4 12.6 . .
W, 0%em™) @ (oem™) chromophores, complete expressions for the transition
to the excitonic eigenstate basis are derived and time-
resolved two-dimensional spectra are presented. In
case of low dephasing rate, spectra demonstrate typ-
7. Concluding remarks ical spectral features of anharmonic nature, while in

the limit of the dephasing rate being much higher than

The basic concepts of two-dimensional optical spec-the intrinsic system dynamics the total spectra are not
troscopy are presented in this study. By performing clearly separable from the spectra of a single three-level
the four-wave mixing experiment, the detected photon-system.
echo signal fully represents the third-order polariza- Finally, in the analysis of complex molecular aggre-
tion dynamics induced within the system and separa-gates all the powerful capabilities of this spectroscopic
tion of quantum coherence and population dynamics,tool can be demonstrated. For the two-dimensional
homogeneous and inhomogeneous broadening is pospectra of linear one-dimensional J-aggregates the
sible. Such sophisticated experimental method adds ugpectrally narrowed peak due to motional-narrowing,
one more dimension to the time-resolved spectroscopi¢he J-band, demonstrates a great complexity of the
measurement with respect to the other nonlinear specspectral behaviour due to different excitation pathways
troscopic techniques. Therefore, it allows us to directly producing spectral elements of different time-resolved
observe ultra-fast quantum phenomena such as excidynamics in the vicinity of the J-band. Analysis of
tonic energy transfer and quantum coherence dynamicthis spectral region helps to distinguish the mecha-
in time-resolved two-dimensional spectrograms. Uti- nisms of excitation transfer and nuclear-motion in-
lization of so-called two-colour two-dimensional opti- duced motional-narrowing and consider the timescales
cal spectroscopy also provides means of implementingof these processes within the aggregate. The forma-
guantum coherence control of the relevant system agion of the J-band with respect to the aggregate size
well as specific excitation pathway induction. is presented and analysed in this paper. The exci-

To illustrate the main features of the two-dimensionaltation transfer dynamics in the photosynthetic light-
optical spectroscopy a number of examples are conharvesting Fenna—Matthews—Olson complex is com-
sidered in this study. The examples are presentegrehensively described in this study. The systematic

|

YL qGill

.

©

Fig. 20. Components of 2D spectra of the FMO compleX at 0
and 2 psIA (first row), SE (second row)GSB (third row).
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separation of the spectral elements with respect to theo the terms of infinite order and truncate the cumulant
corresponding physical mechanisms is carried out andexpansion to the certain length, containing only terms
the dominant highly-efficient excitation transfer path- of the lowest order.

ways within the system are identified. For the second-order cumulant expansion of time-
ordered exponentials of energy-gap correlation func-
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Appendices . .
for the expectation value of(¢) we obtain

A. The cumulant expansion

t T
The cumulant expansion technique is widely used (A(t)) = GXP{ - /dT/dT'@V(T)AV(T/))}-
to

to simplify expressions of perturbational series in time. £o
Assume that we have a perturbational series of some (A6)
guantity A
2
A(t) = 1T+ AAL() + X As (1) + .. (A1) B.Response function of an open excitonic system
and want to recast it into the exponential form with diagonal and off-diagonal fluctuations
_ 2
A(t) = exp[AFi(t) + A Fa(t) + .. - (A2) Here we present the third-order response function

If the Taylor expansion of exponential is carried out €Xpression written out in terms of Feynman diagrams,

and terms of the sameorder are collected, the relation shown in Fig['8. We are considering tkeexperimen-
betweenF; and A, terms is obtained: tal technique, where the spatial configuration of inci-

) . dent pulse wave vectors isk; + ko + k3 [21]. The
At) = (1 +A\F + —)\2F12 + —/\3F13 4., ) (A3) pulses are generally nétshaped, therefore the pulse-
2 6 overlap effects are present, that mix thesignal with

the signals of other experimental techniques.
X (1+XNFR+.. )1+ NPRE+..) J P a

1 kr = —k, + kg + k., diagrams
:1+)\F1+/\2<2F12+F2> ' a7 %y Al

1
3 3
e'#e f
For the cumulant expansion to the second order we
have X exp {iwegt1 — iwerets — iwpets
1
— 2 — — . * *

(A4)
The cumulant expansion is also a way to represent —gg ¢(t2 +t3) + gz ¢(t2) + gor ¢ (t3)
a truncation of perturbation series. If we truncate
Eq. (Al) to the values of a certain order, we stillhave an =~ —gerc(t1) + 9o/ (t2 + t3) + gere(t1 + t2) — g (t3)
infinite series in exponential of Eq. (A4). On the other
hand, we can sketch that we have EQ.](A1) calculated —ges(t1 + t2) + 927 (t3) + ges(t1 +t2 +13)] }
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kir = +ko — ks + k, diagrams
SIAP = - Z Z Ge’e(t2) <|Ne"2|ﬂe’f|2> (BZ)

e'=e f

X exp {iwegts — iwgets
§He = = 373" Gerelta) (lnersPluc?)  (B7)
+conj[ — goe(t2) — g7 (t3) = gee(ts +t2 +t3) e'=e f

—girp(ta + t3) + gl (t2) + gl (ts) X exp { — lwergty + iwefts
_ge’e(tl) + g:’e(t2 + t3) + ge’e(tl + t2) - g:’e(t?)) +conj [ - g:/e’(tl + tg) - g;;f(t3) - gee(t2 + t3)
—Ges(t1 +t2) + g0 (t3) + gep(t1 +t2 +13)] } —gorp(t1 +t2 +13) + gor p(t1 + t2) + gor ¢ (£3)
_g:/e(tl) + g:’e(tl + t2 + t3) + ge’e(t2) - g:’e<t3)
§%Fe = 37 (Inellnel?) (B3) )
e’ —gse(t2) + gfe(ta) + gre(ta +t3)] }

X exp {iwegtl + 1Weerty — iwerts

_g:e(tl + t2) — Ge'e’ (tQ + tS)

* IA" 2 2
—gr (1) + gl (b1 Ata+13) + geer (ta) — gl (t3)} S = ; ;Gae(ta) <|Meff! | e > (B8)
e'#e
SSEP —_ Z Ge’e(t2) <|Me|2’,ue’|2> (B4) X exp {1wegt1 — 1we/ft3 — ’)/e/tg — ’Yetl
e=e

+eonj[ — gee(t1) — g7y (ts) — gures (t3)
X exp {iwegt1 — iwergts

—gfe(ty +ta +13) + gre(ts + t2) + gre(ta + t3)
_g:e(tl + t2) — Gele! (t2 + 753)

+ge’e(t1 + t2 + t3) - ge’e(tl + t2) - ge’e(tQ + t3)
—Geer (1) + goo (L1 t+tatt3) + geer (t2) — gier(t3) }

+g€’f(t3) + g;e’ (t3) + gere(t2) — gf(i(t?)]}

S =" Goelta)(|pel*|per]?) (B5)
e#e!
X exp { — lwegl1 + iwergts — Yerts — Yeln
SIAC = — Z Z <,u6’:u6/f/‘6f€,u€> (BQ)
—Gee(t1) — gorer (t3) + gere(tr +t2 + t3) c'Fe f
—ge’e(tl + tg) — ge’e(tQ —+ t3) + ge’e(t2)} X exp { — iu}e/gtl + 1Weerto + iweftg

+eonj[ — ghrer(t1 +t2) — g5(t3) — geelta + t3)
SUSE = %" <\ fre|?| ue,12> exp {iwegts — iwergts (B6) , . .
ce! —gep(t1 +t2 +13) + gorp(ts +12) + gorp(t3)
—Gee(t1) = gerer(t3) — goer (t1 + t2) —gore(t1) + gire(ty +to +13) + gere(t2) — gore(t3)

ety +t2 +t3) + gior(t2) — g (t2 + £3)} —gre(ta) + ghe(ts) + grelts +t3)]}
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SSEP = Z Ge’e(tQ) <’Ne|2’/~Le’|2> (BlO)

e'=e

X exp{ —iwegti — ie/yts
_g:e(tQ) - ge’e’(tl +t2+ t3) - gee’(tl)

+ 900 (ta +13) + geer (t1 +t2) — gl (t3) }

SSEI == Z Ge/e(tQ) <|N€|2’u€l|2>
e'#e

(B11)

X exp { — wegts — iwergts — Yerts — Yet1
_QEE(tl) — Gele! (t3) - ge’e(tl + t2 + tS)

+ge’e(t1 + t2) + ge’e(tQ + t3) - ge/e(tZ)}

(B12)

SSEC = Z <’Me|2‘ﬂe’|2>

e'#e
X exp { — wergti + iweerts — iwergts
79:6(1’-2) - ge’e’(tl +i2+ t3) - gee’(tl)

+ e (t2 +13) + geer (t1 + t2) — Gl (t3) }

(B13)

S99 =3 (|l lnel?)

ee!

X exp { — iwergts — iwegts
—gee(t3) - ge’e’(tl) - gee’(tl +t9 + t3)

+Gee’ (t2 + t3) + Gee! (tl + t2) - gee’(tQ)}

S2Q1 = ZZ<M@’N@’foe/~Le>
ee f

§2Q = _ZZ </~L6,U/efﬂfe’,ule’>
ee f
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ki = +kq + kg — k, diagrams

(B14)

X exp { — iwegts — iwpgly — lwergts
—gerer(t3) = grp(t2) — gee(tr) — gerp(ta + t3)
+9erf(t3) + ger(t2) — gere(ts + t2 + 13)
+gere(t2 +13) + gere(ts + t2) — gere(ta)

_gfe(tl + t2) + gfe(t2> + gfe(h)}

(B15)

X exp { — lwegl1 — lwygta + wer pt3

+conj[ — gle(t1) — g7 (t2 +t3) — gis(t1 + t2 + t3)

+g:f(t1) + g:f(t2 + t3) - g:e’(tl + t2) - ge’e’(t?))

+gze’ (tl + 1t + t3) + g:e’ (t2) - gZe’ (tQ + t3)

—Ger(t2) + gher(t2 +t3) + gper(t3)] }
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DVIMAT E OPTINE MOLEKULINIY AGREGATY SPEKTROSKOPIJA
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Santrauka Siame darbe yra pristatoma bendra keturiy bangy maiSymo eks-
Dvimate elektronife spektroskopija yra vienas naujausiy bei pa- Perimento modeliavimo schema bei iSvestogioe eibs atsako
angiausiy daugiaimpulsis spektroskopijos metody, $iuo metu funkcijos iSraiSkos daugelio lygmenuy eksitoninei sistemai, trum-
intensyviai naudojamas analizuojant vyksmus itinitimjuose fo- ~ Pai aptartos alternatyvios teorijos, paremtos neperturbaciniu kine-
tosintetiniuose dariniuose. Sis metodas leidzia geriau suprasti kolines tankio matricos lygties sprendimu. Pateikiami sumodeliuoti

herentikumo gesimo ir uzpildy pernagos vyksmus, stebimues sud €lémentariy kvantiniy sistemy dviitiai spektrai bei analizies
tingose daugiachromoforise eksitoninio rygio sistemose. trecios eibs atsako iSraiSkos. Atskirai aptariami dimery spektrai,
Pagrindiniai io spektroskopijos metodo privalumai yra puiki k@i juos sudaratios chromoforos aproksimuojamos kaip dviejy
laikiné skiriamoji geba (stebimi femtosekundziy trudsnvyksmai) ~ arba trijy lygmeny sistemos. Dviejy lygmeny chromofory dimero
bei koherentigs ir nekoherenties prigimties saveikaujaiy sis- ~ atveju demonstruojamos galimg® pritaikyti dvispalve dvimate
temy evoliucijy atskyrimas. & pastarosios savs galima stekti spektroskopija siekiant iSskirti spektrinius elementus bei indukuoti
suzadinimo pernaga sistemos viduje, itin efektyvy energijos perda_sklrtlngus fizikinius vyksmus sistemoje. Tokiy matawmq rezultatai
vima lemiargias koherentiskumo osciliacijas bei dar geriau i$skirti Sudaryty prielaidas jvertinti makroskopinius nagfamos sitemos
nevienalytiskai isplitusias spektro linijas. parametrus —rezonansing saveikg, dipolinius momentus. Degmat.
1§ (bakterio)chlorofily sudarytuose bakterijy ir augaly fotosin- spektroskopijos pritaikymui molekuliniams agregatams pateikiami
tezs reakciniuose centruose, Sviesos energijos surinkimo bei pervienm&io tiesinio J agregato bei fotosintetinio Fenna-Matthews—
davimo kompleksuose chromofory skiais yra didelis, tad iki ~ ©!son (FMO) komplekso sugerties ir dvitiai spektrai. IS sumo-
Siol naudota supaprastinta netiesinio atsako teorija, iSvystyta daugteliuoty FMO komplekso spektry galima daryti iSvadas apie suza-
mazesems struktGroms, pavyzdziui, dimui, apradyéirantiesio- ~ dinimo perdavimo tarp chromofory scenarijus sistemoje bei kohe-
giai taikytina. Tokiy kompleksy modeliavimas tampa &t rg_ntlékumo f_Iluktugcuas,_kurlos, manoma, lemia itin efektyvy ener-
gas, to@! taikomos jvairios aproksimacijos, naudojamas eksitoni- 90 perdavima sistemoje.
nis vaizdavimas.
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