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ANTICIPATING OF CHAOTIC STATES VIA ANTI-PHASE DIAGONAL
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Anticipating synchronization is considered as a tool for a real-time forecasting of chaotic dynamics. An anti-phase diagonal
coupling scheme is introduced in order to supply the long-term prediction of behaviour of a drive system. The efficiency of
such a scheme is studied analytically using a simple model of unstable spiral and justified numerically for two unidirectionally
coupled chaotic Rdssler systems. The maximum prediction time attained with our algorithm equals to the half of characteristic
period of chaotic oscillations.
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1. Introduction ics of the master and drive systems are the necessary
condition for the anticipating synchronization [20].

Long ago the notion of chaos was associated with  Two principal schemes have been proposed in order
the devoid of structure, absolutely uncontrollable andto achieve anticipated synchronization. Both schemes
unpredictable state or proces$ [1]. In the end of 1980sse delay lines which allow forecasting ofreastertra-
the things have been changed due to the progress ifectory by aslaveidentical system. The first scheme
computer technology: the qualitative measures of ordeimplies the presence of delay in the master system and
for the chaotic system were introduced (e. g., Lyapunovuses the technique ebmplete replacemefid]:
exponents) and classical control of dynamical systems

turned into chaos control aread [2]. Finally, in 2000, a i1(t) = —ary(t) +1(ra(t — 7)), (1a)
way of forecasting of chaotic dynamics was introduced ) B

by Voss [3]. The proposed method relies on the phe- () = —ara(t) +1(ra(t)) (1b)
nomenon ofnticipating synchronizatian wherea > 0 is a constantf(r) is a function which

The phenomenon of synchronization refers to thedefines the autonomous dynamical system under con-
collective timing of coupled systems and manifests it- sideration, and- is the delay time. The first equation
self in physical, chemical, as well as biological sys- describes the behaviour of the master system and an-
tems [4]. Recently the notion of synchronization was other manages the evolution of the slave system. The
generalized and applied to different chaotic systems [S-second schemalelay coupling[21], is one that does
11]. Anticipating synchronization refers to a particular not imply the presence of delay in the master system
regime, which appears in unidirectionally coupled sys-and includes only a delay in the slave dynamics:
tems in a master—slave configuration. In this regime, )
two dynamical systems synchronize in such a way that T () =f(r(t)), (22)
the slave system anticipates the trajectory of the mas- .
ter. Anticipating synchronization has been studied the- Fa(t) =1(ra(t) +K[ra(t) —ra(t = 7)), (2b)
oretically and experimentally in many systems, e. g., inwhereK is a coupling strength matrix. It is easy to see
chaotic semiconductor lasefs [12+-14], in electronic cir-that in both schemes the manifald(¢) = rq(¢t + 7)
cuits [15], in excitable systems [16], in coupled inertial is a solution of the equations, i.e., the slave antici-
ratchets|[1/7], and in neural networks [18] 19]. It is re- pates by an amount the output of the master. In the
markable that neither nonlinearity nor chaotic dynam-first case, Eqs[[1), the anticipated solution is globally
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stable independent of both functid(r) and the arbi- 2. Analytical treatment for the coupled spirals

trarily large delay timer [3]. Delay couplingscheme,

Egs. [2), deserves more attention than thatahplete When analysing the anticipating synchronization it

replacementlespite the fact that it requires some con- is usual to study simplified models describing the es-

straints on the anticipation time and couplingk for sential features of system’s behaviour (e.jg.] [16]). A

the synchronization solution to be staljle|[20, 21]. This simplified dynamical model we have used to imitate

is because the anticipating timds included as an ex- the essential properties of the Rossler system is de-

ternal parameter and does not influence the dynamicscribed by two linear equationst = vz — wy and

of the master system. In principle, any dynamical sys-y = wz +~y, which define an unstable spiral with pos-

tem can be predicted by using this scheme [18]. itive incrementy and frequencw [23]. For the com-
Naturally, one attends to construct the coupling plex variablez = x + iy, this system can be presented

schemes with a possibly large anticipation time. Theby a simple equatiod = (v + iw)z. Then equations

analysis of the schemp (2b) with a diagonal makix  for anticipating synchronization of two spirals take the

shows that it is ineffective [3]. Its maximum stably an- form

ticipation time is much shorter than the characteristic

time scales of the system’s dynamics. Then Vbs$ [21] Za= (7 +iw)za, (4a)
proposed to extend Ed. (2b) with a chain/gfunidi- ] ,
rectionally coupled slave systems = (v+iw)z —klzq —2(t = 7)]. (4b)
ri(6) =F(ri(t)) + kK[ri—1(t) — ri(t — 7)], Herezq(t) andz(t) are the complex amplitudes in the
i=2 .. . N+1. 3) point of timet¢. The dynamical variabley character-

o _ _ izes thedrive (maste) system described by Eq. (4a).
Formally, the prediction time of this schemeNstimes  The response(slave system described by Ed. (4b) is

larger as compared to the scheme described by [Hgs. (2ponnected to the first one via the anti-phase delayed
However, more recently it has been shown that thecoupling—k[zd — z(t — 7)]. The solution of thelrive

chain is unstable to propagating perturbations [22].  system [@g) is

In our recent publication [ [23], we considered the _
single-slave scheme with coupled Rossler-like] [24] za(t) = et (5)
C.h aotic systemg. We proposed an algorithm of the de'It is easy to see that the anticipating synchronization
sign of the matrixK based on a phase-lag compensat- manifold zq(t + ) — =() is a solution of the equa-
ing coupling (PLCC). We took into account the pecu- . d h_ del i h qua
liarity of a topology of the Réssler system [24] and in- tions. However, the delay coupling scheme requires

troduced a coupling matrix that projects the vector field some constraints on the anumpaﬂqn tlmeand cou
onto the unstable spiral manifold and rotates this pro-pllng strengthk for the synchronization solution to be

jection by the angle: — wr. Herew is a frequency of stable[[21]. That is why we proceed with the analytical

the unstable spiral. The advantage of this choice is inlreatment of the system stability. First, we introduce

providing a stabilizing negative feedback. In this paperthe deviation

we suggest the way to simplify the experimental imple- A(t) = 2(t) — za(t +7) (6)
mentation of the PLCC method. We study the case of

a = m, i.e., an anti-phase diagonal coupling (APDC) and obtain the dynamical equation for it

scheme. First, we consider the simple model of two . )

identical spirals with delayed unidirectional coupling. A=y +iw)A+EAR-T1). ()
Obtained results enable us to estimate the optimal valy qking for a solution of Eq[{7) in a form of

ues of the control gain and the largest prediction time.

Then we deal with two identical chaotic systems and A = g iwt (8)
perform numerical calculations to justify the anticipat-
ing synchronization in unidirectionally coupled Réssler
systems With_the anti-phas_e diagonf_;ll coupling sch_eme (A —7)e — pe—ioT — (. 9)
and with anti-phase coupling only in one dynamical

variable. It is shown that prediction time attained by Taking W (y) = 7(A — 7) with y = kre e %7
the APDC scheme is equal to the half of characteristicwe see that functiod (y) satisfies the definition of
period of chaotic oscillations. the Lambert function:W(y)eW(y) = y [25]. Hence,

we obtain the characteristic equation
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Fig. 1. The dependence RE (z€'¥)] versuse for the casesy =

/2 (dotline),7/2 < ¢ < 3w /2 (solid line), andp = 37 /2 (dash

line). Herep = wr, w is the frequency of the spiral, andis the
prediction time.
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Fig. 2. Anticipating synchronization stability diagrams in thek
plane for coupled spirals at = 0.997 andy = 0.074. The dotted
line bounds the region of the stability for diagonal coupling=£

0). The boundaries of stability for the PLC& & wr) are depicted

by the dashed lines. The solid line confines the region of stability of

the solution of the characteristic equatid[r]u (9) can pethe synchronization manifold for the anti-phase diagonal coupling

expressed through the Lambert function:

W(k_Te—(’yT-‘riwr))

T

A=+ (10)

Now we are interesting in the stability of the synchro-

(APDC, a = 7).

Making use of Eq](T5) we plotted the anticipating syn-
chronization region in th€r, k) plane for the anti-
phase couplingd = ) in Fig. [4, solid lines, and

nization regime and its boundaries on the system’s pacompared it with the stability regions for the PLCC
rameter plane. Synchronization regime is stabile only(o = wr) [23], dash lines, and diagonal coupling €

when

ReA(k)] < 0. (11)

Taking into account the expressign (10) for the eigen-

values, at first we analyse when the condition
RAW (ze “")] <0 (z=kre?" >0) (12)

is satisfied. T_he character of behaviour of the func-
tion R§W (ze~'“7)] depends on the prediction time

0), dot lines. We see that synchronization regime is
possible forr = 3.6, as it was obtained via the PLCC
method [23]. Additionally, we depict a dependence
of the eigenvalues R@) versus coupling strength pa-
rameterk for prediction timer = 3.6 making use of
Eq. (10) (Fig[B). The minimum of this curve lies in
the region of negative values of the eigenvalues when
coupling parametet = £, = 0.15.

as demonstrated in Fig] 1. We see that the condition

(I2) is satisfied when

s 3m
o <7< 0

In order to find the synchronization ranges, i. e., the val-

ues of the control parametérsatisfying Ré\(k)] =0,

we substitute\ = iQ2 in Eq. (9). This gives the expres-

sion for the critical value of the control parametegr

(13)

ke =Q% 447, (14)
and for the critical value of the prediction timg,
= arctg$d/y) + . (15)

Q4w

3. The forecasting of chaotic dynamics

The obtained analytical results encourage us to pro-
ceed with the forecasting of chaotic dynamics via antic-
ipating synchronization with the APDC. We consider
two unidirectionally coupled identical dynamical sys-
tems:

fl = f(rl) , (16&)

I;QZf(FQ)—I-Ki[I’l—I'Q(t—T)], (16b)

where the anti-phase diagonal coupling makix =
—diag[1,1,1] is introduced in contrast to commonly
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Fig. 3. Dependence of R&) on coupling strengtk for coupled
spirals with the parametets = 0.997 andy = 0.074. Prediction
time equals to 3.6. Optimal value of the coupling paramkeigr=
0.15.
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used diagonal coupling matrix = diag[1,1,1]. In
the case of anticipating synchronization we have
ri(t) =ra(t—1), 17)

and the coupling ternfiK ~[r; — rao(t — 7)] vanishes.
In order to analyse the stability of the synchronization
state we derive the dynamical equation

af

O0fy = (SFQ*K_(SrQ(t*T) (18)
Ora |y (t)=r1 (t+7)
for the deviation vector
(5I’2(t) :rz(t)—rl(t+T). (19)

To specify our investigation we restrict ourselves to the
Rossler system [24]

r=f(r) (20)
with vector variable = [z, y, z] and vector field
fry=[-y—2, z+ay, b+ z(z—7)], (21)

wherea, b, and ¢ are positive parameters, and both
r andf are the vector columns. The phase portrait
of the Rossler system is given in Figl 4. Here the
strange attractor is originated from the fixed point
[(c—$)/2,(s—¢)/2a,(c— s)/2a] located close to the
origin, wheres = (¢ — 4ab)'/2. The fixed point is a
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Fig. 4. Phase portrait of the Rdssler systemdfee 0.15,b = 0.2,
andc = 10.

valuex = ¢, thez variable comes into play. The phase
point leaves for a short time the, y) plane and then
returns to the origin via a stabteaxis manifold.

We proceed with the investigation of the two coupled
Rossler|[24] systems. That is, in Eds.]|(16) werget
[z1, 22, z3] andry = [y1,y2,y3] and in Eq. [(2[L) we
set such values of the parametetis= 0.15, b = 0.2,
andc = 10. Dynamical equatiorj (18) for the deviation
of the slave system with the dynamical variable=
[y1, Y2, y3] transforms to

oY1 = —0y2 — 0y3
0y = dy1 + adys +
0ys = [y1(t + 7) — c|oys + y3(t + 7)oy
oy1(t —7)
+K | oyt —7) | (22)
oys(t —7)

Wheredrg(t) = |'2<t> — rl(t + 7') = [(5y1, 5y2, (5y3].

The negative value of the maximal Lyapunov expo-
nent is the essential condition for the synchronization
regime to be stable. Making use of Ef.](22) we ob-
tained the value-0.017 for the largest Lyapunov expo-
nent of the slave for the value of the coupling strength
k equal to 0.17 (optimal) and the prediction time equal

saddle focus with an unstable two-dimensional man-t0 3.6. Numerical simulations of dynamics of two cou-
ifold (an unstable spiral) almost coinciding with the pled Rossler systems demonstrating anticipating syn-
(z,y) plane and a stable one-dimensional manifold al-chronization at specified system parameters are shown
most coinciding with thez axis. The phase point of in Fig.[g.

the system spends most time in the y) plane mov- In order to further simplify the coupling scheme and
ing along the unstable spiral. Whenewesipproachesa make it more attractive for experimental implementa-
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Fig. 5. Dynamics of the Rossler systems in the anticipating syn-
chronization regime. The prediction timess= 3.6 and the cou-
pling strength isk = 0.17. System parameters ate= 0.15,b =

0.2, andc = 10.
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Fig. 6. Dynamics of the Rdssler systems in synchronization regime

with anti-phase coupling im axis direction. The prediction time is

7 = 3.6 and the coupling strengthis= 0.3. System parameters
are:a = 0.15,b = 0.2, andc = 10.

tion, we consider the coupling lal® = diag[1, 0, 0]
in the schemg (16):

fl :f(rl), (238.)

f2:f<r2)+Kx (rl—rg(t—’]')> . (23b)

Here we introduce the coupling only in one, vari-
able. Numerical simulations of dynamics of two cou-

pled Rossler systems in such a case are demonstrated

in Fig.[§. We observe again the anticipating synchro-
nization with the prediction time = 3.6. The negative
value (-0.01) of the maximal Lyapunov exponent con-
firms the stability of this regime.
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4. Conclusions

Anticipating synchronization can be used as an ef-
fective tool for a long-time forecasting of chaotic dy-
namics in real time. We constructed a new coupling
scheme in order to simplify the experimental imple-
mentation of the earlier introduced phase lag com-
pensating coupling (PLCC) schenie [23]. The anti-
phase diagonal coupling (APDC) scheme and the one-
variable APDC were introduced. Performed analyti-
cal treatment and numerical simulations demonstrate
that the attained prediction time with these coupling
schemes is equal to the half of characteristic period of
chaotic oscillations. The proposed APDC scheme has
an obvious advantage of a simple experimental imple-
mentation in comparison to the PLCC algorithm.
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CHAOTINIY B USENY PROGNOZE NAUDOJANT PRIESINGOS FAZ ES RYS|

T. Pyragiem, K. Pyragas

Fiziniy ir technologijos moksly centro Puslaidininkiy fizikos institutas, Vilnius, Lietuva

Santrauka diagonalia rySio matrica, kurios konstravimo algoritmas paremtas

Nagrirgjama prognozuojanti sinchronizacifg [3]. Toks sinch- fazes delsos kompensacija (FDK) imtuvo sistempje [23]. Sis me-
ronizacijos rezimas stebimas siystuvo—imtuvo konfig racijoje, kaitodas Zymiai prailgina prognes trukme tiek, kad ji tampa palygi-
siystuvas veikia imtuva, o atvirkatinio rySi@ra. Imtuvas sinchro- ~ nama su b udinguoju chadigsistemos periodu. _ _
nizuojasi su siystuvu ateitimi, t.y. imtuvas numato siystuvo dina-  Darbe siulomas modifikuotas FDK algoritmas: imtuvo siste-
mikos ateitj. Chaotiniy sistemy progriszuzdaviniuose siekiama Moje uzdelstas griztamasis rySys jjungiamas prigjéaz Si mo-
gauti kiek jmanoma ilgesne progretrukme. Atlikti tyrimai pa- d'fv”.‘ac'la Zymiai supaprastina prognozudj#us sinchronizacijos
rode, kad paprastai naudojama diagonali matrica yra neefekiyvi [3], €2imo eksperimentinj jgyvendinima. Pasi ulyto algoritmo atveju
nes $iuo atveju maksimali progrie trukne Zymiai maZzesa uz prognozs trukne yra lygi charakteringo chaos sistemos pe-
budingasias dinanés sistemos trukmes. Neseniai pasing ne- ~ 10do pusei.
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