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IMAGE FORMATION OF RADIALLY AND TEMPORALLY
TRUNCATED BESSEL BEAMS
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The Fourier-lens-formatted image of a radially truncated Bessel beam is theoretically calculated and compared with the
experimentally measured results. A peculiarity – the weak central spot in the focused image of an apertured Bessel beam – has
been recorded for the first time. Femtosecond-domain temporal evolution of the image of two types of superluminal localized
wave packets – the so-called Bessel-X pulse and the focused X wave – is studied theoretically. For the Bessel-X pulse the
aperture truncation leads to appearance of twin pulses in the image plane. In the case of the focused X wave, the ring changes
its colour revealing the full bandwidth of the ultrashort wave packet.
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1. Introduction

The existence of apparently non-diffracting and non-
spreading ultrabroadband wave packets – the so-called
localized waves [1] – in vacuum or linear media was
theoretically predicted already in 1983 [2] and in the
optical region experimentally proven afterwards [3].
Classification of the localized waves into subluminal,
luminal, and superluminal ones – according to their
group velocity ratio to the speed of lightc in vacuum –
along with their characteristic properties has been pre-
sented in the review [4] and references therein.

Our aim in this article is to demonstrate what the in-
tensity distribution in the back focal plane of an imag-
ing device (lens, camera, etc) would look like if these
superluminal light fields were to hit the device along its
optical axis. In figurative words – we are investigating
what a person would see if a faster-than-light wavefield
was to fall straight into one’s eye. The main wave-
field under consideration is the Bessel-X pulse a. k. a.
Bessel-X wave (BXW) [3]. To simplify the understand-
ing of the image formation of the BXW, we first con-
sider the image formation of a (monochromatic) Bessel
beam. The reason for such approach is that the Bessel-
X pulse is nothing but a specific superposition of Bessel
beams of various frequencies. After studying the BXW
we take a glimpse at another more general wavefield
having superluminal group velocity: the focused-X-

wave (FXW). Throughout the text we consider only
the far-field paraxial case and image formation is cal-
culated by means of the Fourier transform only in the
rear focal plane of the imaging device.

2. Bessel beam

A perfect Bessel beam can be thought of as con-
sisting of an infinite number of plane waves, whose
wave vectorsk (distributed uniformly) in the momen-
tum space lie on a conical surface that has a fixed cone
vertex angle2θ. The result of such an axisymmet-
ric superposition is a wavefield which has a complex
wave field distribution that can be described by the ze-
roth order Bessel function of the first kindΨX (r1, t) =
J0 (kρr1) ·exp (ikzz − iωt) where the axial wave num-
ber kz is the component ofk that is parallel to the
optical axis and the radial wavenumberkρ is perpen-
dicular to it. Since a realistic Bessel beam cannot
have an infinite aperture nor can the imaging device,
we put a circular aperture stop with a known radius
r0 on the focusing lens that is used to find the im-
age (Fourier transform) of this radially truncated Bessel
function. Mathematically the operation and its re-
sult can be expressed as follows (the two-dimensional
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Fig. 1. The simplified scheme of set-up of the experiment to find the peculiar central intensity maximum. A HeNe laser at 633 nm, the
axicon’s cone vertex angle 175 deg, and glass with refractive index1.45 were used.

Fig. 2. The circular aperture stop with a radius of 0.7 mm – placed on the lens symmetrically with respect to the optical axis of the Bessel
beam – produced a central maximum which can be seen in centres of both images. The image on the right is the experimental result and the

image on the left is the theoretical prediction.

Fourier transform of axisymmetric functions can be
taken via the one-dimensional Hankel transform):

Ψρ (ρ, t) =

2π exp (−iωt)
r0∫
0

r1J0 (kρr1) J0 (ρr1) dr1 =

2π exp (−iωt)
r0

k2
ρ − ρ2

[kρJ0 (ρr0) J1 (kρr0)−

− ρJ0 (kρr0) J1 (ρr0)] , (1)

wherer1 denotes the radial coordinate in the front focal
plane and we have setz = 0 to the front focal plane.
As can be seen from the result (1) by setting the radial
coordinater3 = ρ F/k ⇒ r3 ∼ ρ of the rear focal
plane to zero, the intensity of the central spot depends
on square of the Bessel function of the first orderJ1.
The relationship betweenJ0 andJ1 is that the deriva-
tive ofJ0 is−J1 which in our case means that if there is

an intensity minimum at the edge of the aperture stop,
then there is an intensity maximum in the centre of the
image and vice versa. To verify the existence of such
an effect, we carried out a simple experiment (Fig. 1)
with two aperture stops – one of which should provoke
a maximum in the centre of the image (Fig. 2) and the
other one should not (result not shown in this article).

It might be noteworthy to say that to our best knowl-
edge this peculiar central maximum has never before
experimentally recorded on a picture – at least we
found no publication on such an experiment. Mathe-
matically this central spot has been derived in [5], but
the central maximum in their experimental result is in-
distinguishable – presumably because they did not use
a small enough aperture. The focusing properties of
Bessel beams have also been theoretically studied in [6]
and [7], but in these no particular emphasis has been put
on this central spot nor do they have the relevant ex-
perimental part. From our experimental result (Fig. 2)
we can see that there is a sufficiently good accordance
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between the theoretical and the experimental results.
By “sufficiently good accordance” here we mean that
even though the theoretical image has been computed
for an ideal Bessel beam – i. e., we have not consid-
ered the Gaussian intensity profile before the axicon
nor the axicon-specific-effect of intensity growth after
the axicon, neither have we considered the effects of
monochromatic light to our CCD-camera or the exact
“noisy” shape of the aperture stop – still we can see
a remarkable resemblance of the two images and most
importantly we see the central maximum spot.

3. Bessel-X pulse

Whereas the Bessel beam could be described by
a cone of fixed-length (monochromatic) wave vectors
that form a static intensity distribution as well as a static
image, the BXW is formed from an infinite number of
ultrashort coherent pulses. The wave vectors of these
pulses also lie uniformly on a conical surface with a
fixed cone angle, but now the spectrum is polychro-
matic – as is the case with short pulses – which allows
us to describe the Bessel-X pulse as a special superpo-
sition of Bessel beams. The BXW also is the simplest
localized wave field which has its apex moving rigidly
(the wave packet is propagation-invariant) and super-
luminally (in the case of BXW the intensity distribu-
tion as well as the wave function or EM-field distribu-
tion have these properties) along the optical axis of the
pulse.

Keeping in mind that the BXW is a superposi-
tion (S(k) representing the spectrum of it) of many
monochromatic Bessel beams,

Ψbxw (r3, t) =
∞∫

−∞

Ψρ (r3, k, t) S (k) dk =

=
r0

F 2 sin2 θ − r2
3

∞∫
−∞

exp (−ikct)
i

× exp
[
ik

(
2F +

r2
3

2F

)]
S (k)

[
F sin θJ0

(
r3k

F
r0

)

× J1 (kρr0)− r3J0 (kρr0) J1

(
r3k

F
r0

) ]
dk , (2)

it is possible to derive some properties of the image of
the Bessel-X pulse intuitively. Namely – by changing
the monochromatic Bessel beam’s colour, but not the
cone angle, we get different width to the Bessel func-

tion hitting the lens, which in turn means that for some
frequencies – in fact for most of them – the image has
to have a central intensity spot. This means that the
image of a BXW always has to show a central intensity
spot. Since all the component Bessel beams of different
frequencies produce a ring in the image, it also has to
have a very intense ring. Here we have not considered
relation between the phases of different Bessel beam
components – therefore we do not know the temporal
behaviour of the image. The time-dependence will be-
come clear if we approximate the complex electric field
distribution of ultrashort optical pulses, that the BXW
consists of, with the first derivative of the Dirac delta
functionA δ′(z) (in time domain) and take the Fourier
transform of such a wave field.

After some cumbersome derivation1, using the cir-
cumstance that far from the argument’s origin the func-
tion J0 can be approximated by thecos function and
J1 with thesin function, we get the approximate wave
field near the intense ring to be

Ψbxw_far (r3, t) =
4 cos θ(

F 2θ2 − r2
3

) √
F

r3θ

×

1
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(
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3

2F
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=
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r3 θ
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δ
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3
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. (3)

Heres(z) = A δ′(z) represents the ultrashort pulse in
time domain andg(z) is the backward Fourier trans-
form of the sin− cos approximation of (1). The as-
terisk denotes convolution operation as usual,F is the
focal length of the focusing lens,r0 is the radius of the
aperture stop, andr3 is the radial coordinate in the back
focal plane.

1 To make the equations shorter, the sine and tangent of a paraxial
angle are substituted with the angle.
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It gets even more complex in the centre of the image
(here we denote(−tc + 2F )/ cos θ ≡ z):

Ψbxw_cen (0, t) =
∞∫

−∞

Ψ3 (0, k, t) S (k) dk =

=
2πr0

iF θ

1
2π
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1
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(−tc + 2F )
]
dkz

=
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z
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√
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. (4)

By examining the time differences between these
flashes, the results can be interpreted in the way that the
so-called boundary waves [8] (in the sense of bound-
aries acting as if they were the secondary sources ac-
cording to the Huygens–Fresnel principle) appear from
the edges of the aperture stop – Fig. 3 parts1 and3 –
and contribute to the temporally resolved image. If we
were to look at the ring’s position (Eq. (3)) and we
could measure the temporal behaviour of such fast ef-
fects, three time instances could clearly be resolved:
first we would see the boundary wave that appears
when the BXW’s two-sided “light cone” first meets the
aperture stop (Fig. 3 part1), then we would see the
main field converged by the lens, and finally we would
see the second boundary wave appear; this last one is
formed when the light cone’s tail hits the aperture stop
(Fig. 3 part3). We are interested in the central spot of
the image: from the theory we can conclude that at two
instants the central spot “shines out” when the intensity
is particularly high (Eq. (4)). Both of these central spot
flashes (Fig. 3 parts6 and 7) can be interpreted as a
sum of boundary waves from the geometric shadow re-
gion diffracting to centre of the image. Between these
pulses – the spots that we predicted from the intuitive
model – the intensity is very small but oddly not zero.

Fig. 3. An illustration to our interpretation of the time-dependent
intensity distribution in the central cross-section of the imaging de-
vice. The focusing lens in the centre of the aperture stop is not
depicted nor are the different intensities distinguishable. The nine
subpictures are enumerated according to their order of occurrence.
In part1 the double light cone first hits the aperture stop and pro-
duces a secondary wave (1st boundary wave) in the shadow region.
In part3 the tail of the light cone hits the aperture stop and the sec-
ond boundary wave is formed. In parts6 and7 the moving central
spots can clearly be distinguished. In part7 the boundary wave
reaches the ring’s position, part8 shows the arrival of the intense
converged geometrical field, and part9 depicts the arrival of the
second boundary wave to the Fourier plane in the ring’s position.

Intensity differences between the ring and the bound-
ary waves are not depicted on Fig. 3 but of course
the converging geometrical waves are much more in-
tense (Eq. (3)) than the boundary waves. The X-shaped
cross-section of the converging geometrical waves –
a so-called Bessel pulse [9] that is most clearly de-
picted on Fig. 3 parts4 and5 – and its central max-
imum’s accelerating motion have already been di-
rectly recorded [9] using a novel technique called SEA
TADPOLE [10].

4. Focused X wave

Just for the purpose of exploring the theoretically de-
rived images of the superluminal localized wave fields
we introduce the FXW and its image. As already men-
tioned, a generalized localized wave field can be syn-
thesized [11] which has its central intensity maximum
moving at superluminal group velocity – the Focused-
X-Wave (FXW, the term proposed in [12]). To avoid
confusion, we note that the word focused here has noth-
ing to do with optical focusing – it simply describes the
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shape of the wave function of the FXW. The FXW can
also be described as a superpostion of Bessel beams,
but with another dispersion relation between the ax-
ial wavenumber and the frequency, which makes the
angle θ frequency-dependent [11]. Here the Bessel
beams’ cone vertex angles as well ask-vector lengths
vary – they are following a hyperbolic relation be-
tween the wave number’s axial componentkz and the
radial componentkρ. The longer wave vectors that
have a larger angle between the optical axis and them-
selves are weighed down by some spectral function like
falling exponent.

When calculating the Fourier image of such a wave
field – for simplicity the aperture has been taken in-
finitely wide – we found that the result should be a
static picture of a concentric “rainbow”. This result is
of course a purely theoretical one and at first glance
also illogical – there should be some temporal depen-
dence since it is a pulse – but the ideas of infinite aper-
ture and a perfect lens are also quite illogical so the
static rainbow hypothesis here might as well be true.
These problems we left to a future study.

5. Conclusions

We have investigated the image formation of Bessel
beams and found a peculiar aperture-dependent spot in
the centre of the image. We have also experimentally
verified the existence of such central spot for the first
time. We have carried out calculations of the spatiotem-
poral properties of the image of a Bessel-X pulse and
we found out that the resultant time-dependent image
can most easily be interpreted by the notion of bound-
ary wave diffraction. As a result, which needs further
study, we considered the oddities found in an infinite-
aperture image of a FXW light field: namely the appar-
ently static intensity distribution for a pulsed wave field
such as FXW.
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LAIKE IR ERDV ĖJE APRIBOTŲ BESELIO PLUOŠTŲ VAIZDO FORMAVIMAS
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Santrauka

Lęšio suformuotas radialiai apriboto Beselio pluošto Furjė vaiz-
das yra apskaičiuotas teoriškai ir palygintas su eksperimentiniais
matavimo rezultatais. Jo ypatybė – silpna centriṅe ḋemė apert ūrą
peṙejusio Beselio pluošto fokusuotame vaizde – užfiksuota pirmą
kartą. Teoriškai tiriama dviejų tipų šviesos lokalizuotų bangų pa-

ketų – vadinamojo Beselio X impulso ir fokusuotosios X ban-
gos – atvaizdo evoliucija femtosekundiniame diapazone. Beselio
X impulso apert ūrinis apribojimas sukelia dvigubų impulsų atsira-
dimą atvaizdo plokštumoje. Fokusuotosios X bangos atveju žiedas
keičia spalvą, parodydamas visą ultratrumpųjų bangų paketo spek-
trinį plotį.


