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The energy in nuclear power plants is produced by thermal fis-
sion. It is extremely important to be able to monitor the pro-
cesses in the  reactor to ensure the  safety and reliability of 
the power plant. One of the main traits of the reactor core is 
neutron flux. It changes in time and space therefore it is cru-
cial to be able to simulate its changes with computer codes. In 
the research work a program code was established in the Mat-
lab software with which the neutron flux of a one-dimensional 
zone can be simulated with homogenous and heterogenic zone 
parameters as well. The  code is written using the  one-group 
one-dimensional time- and space-dependent diffusion equa-
tion. The  equation of an average delayed neutron group and 
xenon and iodine distributions was also included in the  sys-
tem to give a more precise look on the problem. The main in-
novation in the code is that numerical methods were used to 
solve the problem: the finite difference approach was applied 
for the place-dependent and for the time-dependent solution. 
The  advantage of this code compared to other ones is that 
one-dimensional zones can be simulated in a really short time 
and it still gives a precise solution because of the complex nu-
merical methods used.

Keywords: nuclear power plant, neutron flux, simulation, fi-
nite differences

INTRODUCTION AND MOTIVATION

Nowadays, nuclear power plants are being 
used and planned to build in many countries 
around the  world to meet the  growing energy 
needs. Most of the  currently planned and un-
der construction nuclear power plants have an 
installed capacity exceeding 1000  MW. One of 
the most important parameters of these types of 
nuclear reactors is the  xenon flux. The  essence 

of the  process is that the  xenon isotope being 
non-uniformly distributed in space during op-
eration of the reactor can result in strong insta-
bilities during the power control. Neglecting this 
process endangers the maintenance of a critical 
state of the reactor during its normal operation 
[1]. A good example of this is the Paks II proj-
ect. Two new VVER-1200 units [2] are planned 
in the  framework of the  project where the  in-
creased reactor size requires high performance. 
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The  axially large zone of the  reactor cores is 
typically sensitive to changes in high non-uni-
formly generated xenon concentrations. On 
this basis, monitoring and determination of 
changes in xenon concentration, and compen-
sation of its effect on performance are essential 
to guarantee nuclear safety.

The  aim of this research is to simulate 
the  neutron flux distribution and the  spatial 
and temporal changes of xenon concentration 
during reactor operation. The main goal is to get 
to know how xenon oscillation affects the reac-
tor power and neutron flux distribution. To in-
vestigate this phenomenon, we firstly developed 
a  code for a  one-dimensional, time-dependent 
model to solve the diffusion equation, and then 
a  program was written to solve the  non-linear 
equation system consisting of equations which 
describe the concentration variations of the xe-
non. With this one can numerically solve the dif-
ferential equation system describing the  phe-
nomenon and examine the properties of xenon 
oscillation and the  change of neutron flux and 
xenon concentration.

SOLUTION OF THE STATIC DIFFUSION 
EQUATION

During the research the diffusion equation was 
applied to describe the problem. In this chapter, 
the solution of the static diffusion equation with 
the finite difference method is presented.

The finite differences method
In the first step, the method of finite differences 
is applied to the  one-group diffusion equation, 
the form of which in a homogeneous reactor is 
as follows:
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Here D is the diffusion constant, ϕ is the space-de-
pendent group flux, ν is the  average neutron 
yield, Σf is the macroscopic fission cross-section, 
Σa is the macroscopic absorption cross-section, 
and keff is the  effective multiplication factor. In 
the  one-group approximation, the  energy of 
the neutrons is considered equal.

When applying the  finite difference method, 
the  examined domain is divided into arbitrary 
small parts according to the  variable x within 
which the material parameters are considered to be 
homogeneous and the  flux between the  dividing 
points is also considered to be constant. The point 
of the  x coordinate is indicated with index 1, 
the last with index n and in between with the index 
of the endpoint of the domain. An example of this 
division is shown in Fig. 1 in the range (i – 1) and 
(i + 1). The boundary conditions of the problem 
are the vacuum conditions that are implemented at 
the i = 0 and i = n + 1 points.

Fig. 1. An example of division in the  (i – 1)  –  (i + 1) range by 
the finite difference method

Integrating the  first equation in the  [xi  –  1/2, 
xi + 1/2] range with the finite differences the equa-
tions can be described as follows:
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The average neutron yield is considered to be 
constant in all ranges because its change can be 
neglected. Thus, the stationary diffusion equation 
is a finite differential approximation to the i-th di-
viding point:

Φi–1     Φi          Φi+1

∆xi ∆xi+1
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In order to simplify the  solution, it is worth 
writing the equations in a vector or a matrix form, 
therefore, Equation 5 is simplified to the follow-
ing form:

0 = aiϕi+1 + biϕi+1 – eiϕi + fi. (6)

Here
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Arranging Equation 6 into a matrix, the flux 
vector can be calculated as follows:

ϕ = –A–1f. (10)

Here matrix A is
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To solve this equation, iterations shall be 
used. Two types of iterations were utilized during 
the calculations which are presented below.

SOURCE ITERATION WITH DIRECT 
INVERSE CALCULATION

In this method, firstly the  neutron flux for 
the source is calculated which is then normalized 
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Using Equations 10 and 12 and finite differen-
ces, the following equation can be obtained:

Φk+1 = Bϕk + f ’. (13)

Here
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The flowchart of internal iteration is shown in 
Fig. 3.

Fig. 2. The flowchart of source iteration

f1 = f0

Φl+1 = –A–1fl fl+1 = PΦl+1
norm

Φl+1
norm

 = Φl+1 || PΦl+1||

f0

keff,0

P

keff, l + 1 = || PΦl+1||

∆ = (keff, l + 1 – keff, l) / keff, l + 1

keff, l = keff, l + 1

∆ < ε
keff = keff, l + 1

Φ = Φl+1
norm

by a  special norm (which equals the  effective 
multiplication factor during iteration) to ensure 
the convergence of iteration [4]. Thus, the effec-
tive multiplication factor is calculated during 
the whole process. Iteration ends when the rel-
ative difference between the  effective multipli-
cation factors in two consecutive iteration steps 
falls below a specified error. The flowchart of it-
eration is shown in Fig. 2.

The method can easily solve the  equation; 
however, if larger matrices are used, the value of 
the numerical error increases due to the inaccu-
racy of the  matrix inversion. Although Matlab 
solves the  matrix version by iterating, we tried 
to solve the equation with a new iteration pro-
cedure instead of a  matrix version to increase 
the  accuracy of the  calculations. This method 
is called internal iteration and is described in 
the following section.

SOURCE ITERATION WITH INTERNAL 
ITERATION

To apply the internal iteration matrix B is 
defined [4]:

Φk+1 = BΦk+fl

δ = (Φk+1 – Φk )/ Φk+1 Φk = Φk+1

B

δ < ε1

Φl+1 = Φk+1

h

Fig. 3. The flowchart of internal iteration
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Applying Equation (5) to the right side, Equ-
ation (13) with finite differences is as follows:
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By space dependence the  components of 
the  flux can be sorted into a  vector therefore 
the term is simplified to the matrix equation
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After that time discretization can be per-
formed and the entire time range can be divided 
into small intervals. The dividing points are de-
noted by index p. The solution using an implicit 
scheme is as follows:

1
1– ,

p p
p

t

�
��

�
Φ Φ KΦ  (20)

NUMERICAL TESTING
The accuracy of the  code was tested with cal-
culations on a  critical one-dimensional reactor 
based on the example of Zoltán Szatmári’s Reac-
tor Physics Calculations [3]. During these calcu-
lations the values of the effective multiplication 
factor are obtained by two methods of the solu-
tion for a different number of the dividing points 
given in Table 1.

Table  1 .  Values and relative deviations of the ef-
fective multiplication factor using two methods

Number of 
dividing points

Source 
iteration

Internal 
iteration

Relative 
difference, pcm

10 1.0308 1.0308 9.11E-03

20 1.0161 1.0160 2.77E-02

30 1.0108 1.0108 5.51E-02

50 1.0066 1.0066 1.22E-01

75 1.0044 1.0044 2.26E-01

100 1.0034 1.0033 3.50E-01

The test was done up to 100 dividing points 
because the effective multiplication factor above 
this number changes only marginally within one 
division. In both cases, the deviation of the effec-
tive multiplier for 100 dividing points differs less 
than by 0.34% from the analytically calculated, 
therefore, the program can be considered to be 
accurate enough for further calculations.

SOLUTION OF THE TIME-DEPENDANT 
DIFFUSION EQUATION

In the next step, a program was established for 
solving the time-dependant diffusion equation.

Presentation of the time-dependent 
solution [1]

In this case the examined equation is

1 ( , ) ( , ) [ – ] ( , ),f a
x t D x t v x t

v t
��
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�  

(15)

and the method of solving is also the finite diffe-
rences method as in the stationary case. The equ-
ation with this can be described as follows:
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Φp+1 = (1–K∆t)–1Φp. (21)

EXAMINATION OF THE SYSTEM WITH 
DELAYED NEUTRONS

The systems described in the  previous chapters 
describe only the prompt neutrons; however, late 
neutrons play a particularly important role in re-
actor operation [1]. These neutrons do not occur 
at the moment of fission but they are generated in 
the negative beta decay of the nuclei. This process 
makes it possible to control the reactor.

Presentation of the equations applied for 
delayed neutrons
A new source appears in the  diffusion equa-
tion when introducing the  delayed neutrons to 
the system [3]

6
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where β is the delayed neutron ratio, λi is the de-
cay constant of the parent nucleus i, and Ci(x, t) is 
the concentration of the parent nucleus i. The lat-
ter can be described by the following equation:

( , ) –λ ( , ) β ( , ),i
i i i f

C x t C x t v x t
t

�
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To speed up the  calculation an average de-
layed neutron group was used instead of 6 groups, 
the parameters of which were defined as follows:

6

1
β β ,i

i�
��  (24)

Φp+1 = (1–K∆t)–1Φp. (25)

The effect of delayed neutrons to the flux
To study the effect of delayed neutrons on the time 
dependence of the  flux, a  slightly supercritical 
system was examined with neglecting and taking 
into account the delayed neutrons. The results are 
presented in Fig. 4.

It can be seen that with the delayed neutrons 
the  change of the  neutron flux is much slower. 
The  reason for this is that the  delayed neutrons 
are generated later in time (not in the  moment 
of fission), therefore they decelerate the increase 
of the neutron flux. Without them the controlled 
chain reaction could not be achieved.

XENON

Presentation of the process of xenon poisoning 
and xenon oscillation
The xenon-135 isotope has a capture cross-sec-
tion of 2.65 · 106 barn which is 4000 times more 
than the same value of the uranium-235 isotope 
[5]. The  incidence of xenon-135 is also very 
high with 6.4% [5]. These two properties result 

Fig. 4. Flux change with neglecting late neutrons and taking them into account
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in a significant effect regarding the reduction of 
reactivity in the zone, therefore its effect should 
be taken into account throughout the lifetime of 
the reactor.

The xenon-135 isotope can also be formed di-
rectly during the  cleavage or from tellurium-135 
(cleavage product) via iodine-135 with beta de-
composition. The  half-life of tellurium is very 
short, therefore it can be assumed that iodine is di-
rectly formed during cleavage. The concentration 
of the xenon-135 isotope can decrease by negative 
beta decomposition and neutron capture.

Figure 5 shows a simplified scheme for the gen-
eration and decomposition of xenon-135 [1].

For reactors with a  small built-in capacity 
the  concentration of xenon can be considered 
independent of space with only small spati-
al inequalities in the  flux. The  same cannot be 
claimed for high-performance reactors where 

the spatial distribution of neutron flux can vary 
widely.

The concentration of xenon during flux chan-
ges is presented in Fig. 6 as a function of time:

The cause of xenon oscillation is the inhomo-
geneity of power distribution within the reactor. 
As an example, when a control rod is displaced, 
the flux increases in one part of the reactor and 
decreases in the  other part because of the  con-
stancy of performance. Thus, the concentration of 
xenon differs in the two different parts of the re-
actor. As a  result, reactivity will increase in one 
half of the reactor and decrease in the other. How-
ever, the process reverses xenon poisoning, while 
the direction of power change remains for a while. 
As the power change direction changes, the reac-
tor continues to return to its original state, caus-
ing a period of oscillation to occur. The process 
period is about 30 h. After the end of the period, 
the swing starts again and the performance and 
flux will swing in time and space. Thus, testing 
and simulating xenon poisoning is particularly 
important for high-performance reactors.

Presentation of the applied model
To describe xenon poisoning equations describing 
the  concentration of iodine and xenon isotopes 
were attached to the code that solves the diff usion 
equation [6]Fig. 5. Xenon-135 – A scheme of generation and decomposition

Fig. 6. Changes in xenon-135 concentration as a function of location at different time points

Fission

Fission

136 Xe

135 Xe 135 Cs135 I 6.7 h 9.2 h
β– β–

Φσc, Xe
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where N denotes the core density, y is the genera-
tion frequency, λ is the  decomposition constant 
while the Xe and I indices refer to the xenon-135 
and iodine-135 nuclei.

These equations were also built into the code 
using the  finite difference method. Due to 
the  appearance of xenon, the  absorption part 
changes in the original diffusion equation there-
fore it was modified as follows:

1 ( , ) ( , ) [

– ] ( , ) – ( , ) ( , ),

f

a
a Xe Xe

x t D x t v
v t

x t N x t x t

∂φ
= ∆φ + Σ

∂

Σ φ σ φ . (28)

Here σcXe is the microscopic capture cross-section 
of the xenon-135 nucleus.

In the  solution, the  xenon concentration is 
continuously overwritten and so is the  absorp-
tion part of the equation. The scattering part also 
changes slightly due to the appearance of xenon, 
but this vanishes in one group model.

The spatial and temporal discretization of 
the  equations was performed as described in 
Equations 2 and 3. An iteration solver code was 
established to solve these numerical equations.

Investigation of a homogeneous symmetric 
reactor
With the code one-dimensional zones can be ex-
amined in a really short time as a run with it only 
takes some seconds. When looking at the  xenon 
concentration, a cosine distribution was expected 
regarding the center of the zone. The reason for this 
is that the cosine function is an appropriate solu-
tion when solving the static xenon balance equa-
tion. Running the code resulted in the distribution 
shown in Fig. 6 which meets our expectations.

It can be clearly seen that the xenon concen-
tration increases over time, which is also in line 
with our expectations.

From these first runs, the code will be further 
developed in the future, not only for xenon con-
centration but also for xenon flux in homogene-
ous and heterogenous reactors.

CONCLUSIONS

During this work a diffusion code was built that 
can calculate flux in the reactor in stationary and 
transient cases using the finite difference meth-
od. For this differential equations describing 
the  changes in the  concentration of xenon and 
iodine nuclei were attached to the  code which 
allowed us to investigate the spatial and tempo-
ral distribution of flux and nuclei using the finite 
difference method.

Although this is only the beginning of a great 
research project, there are still some advantages 
regarding the code. One-dimensional zones can 
be simulated in a really short time with the code 
and it still gives a  precise solution because of 
the complex numerical methods used. It is even 
coupled with the  equations regarding the  xe-
non-135 concentration, therefore information 
about the xenon concentration can be obtained 
as well.

There are many possibilities for future devel-
opments. The main goal is to increase the accura-
cy of numerical solutions using the Runge–Kutta 
method. In addition, a more detailed examina-
tion of the  effects of xenon toxicity and xenon 
flux on reactor power needs to be done as well, 
investigating the  spatial and temporal charac-
teristics and the  influencing parameters which 
will require further development of the  code. 
We are still working on comparing our results 
with the literature and the work of other authors 
as it is still the  beginning of a  great research 
project.

As a  further development option, code ex-
tension from one group to several groups arises, 
which would allow one to examine the problem 
more accurately. In addition, there is a great po-
tential for testing heterogeneous systems with 
the code which would also open up another area 
of research. The  code will also be verified with 
the existing published data to ensure its accuracy.
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NEUTRONŲ SRAUTO MODELIAVIMAS 
VIENMATĖJE REAKTORIAUS ZONOJE 
ATSIŽVELGIANT Į KSENONO GENERAVIMĄ

Santrauka
Branduolinėse jėgainėse energija generuojama šilu-
miniams neutronams dalijant branduolius. Siekiant 
užtikrinti jėgainės saugą ir patikimumą, nepaprastai 
svarbu mokėti kontroliuoti šiuos procesus reaktoriuje. 
Vienas pagrindinių reaktoriaus aktyviosios zonos pa-
rametrų yra neutronų srautas. Jis keičiasi bėgant laikui 
ir erdvėje, todėl svarbu mokėti iš anksto prognozuo-
ti jo pokyčius kompiuterinėmis programomis. Šiame 
straipsnyje pristatoma autorių „Matlab“ programinė-
je aplinkoje sukurta programa, kurią naudojant gali-
ma modeliuoti vienmatį homogeninį ir heterogeninį 
neutronų srautą. Programa parašyta naudojant vienos 
grupės 1D laiko ir erdvės difuzijos lygtį. Siekiant tiks-
lesnių rezultatų, į programą buvo įtrauktos tarpinių 
vėluojančių neutronų grupės, taip pat ksenono ir jodo 
pasiskirstymo aktyviojoje zonoje lygtys. Pagrindinė 
naujovė  –  skaičiavimams naudoti skaitmeniniai me-
todai, t.  y. nuo vietos ir laiko priklausantiems spren-
diniams gauti buvo taikomas baigtinių skirtumų me-
todas. Lyginant su kitomis panašiomis programomis, 
ši programa taikant kompleksinius skaitinius metodus 
leidžia greitai atlikti 1D zonos modeliavimą ir gauti 
pakankamai tikslius sprendinius.

Raktažodžiai: branduolinė jėgainė, neutronų srau-
tas, modeliavimas, baigtinių skirtumų metodas


