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The problem of the axisymmetric laminar flow of a two-phase 
(liquid-gas) flow inside the infinite system of coaxial tubes 
with a circular cross-section located vertically is considered. 
Analysis of the analytical solution showed that increase in ve-
locity of the gas flow leads to the appearance of the hold-up 
regime (then the velocity of media at the interface is zero) 
and flooding regime (when volume flow of liquid is zero). It 
is discovered that these regimes occur at lower values of the 
velocity of the gas flow for the heated medium in comparison 
with the cold medium.
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ABBREVIATIONS

dp/dz, Pa/m – pressure gradient in the pipe, 
g, m/s2 – acceleration of gravity,
h, m – thickness of the water layer,
Q1, m

3 /s – volumetric flow of gas,
Q2, m

3 /s – volumetric flow of liquid in the layer 
placed near the internal surface of the channel,
Q3, m

3 /s – volumetric flow of liquid in the layer 
placed near the external surface of the channel,
r, m – radial coordinate,
R0, m/s – characteristic channel radius,
R1, m – internal channel radius,
R2, m – external channel radius,
Re = (U0 R0)/ ν1 – Reynolds number,
Recr1 – critical Reynolds number in the hold-up 
regime,
Recr2 – critical Reynolds number in the flooding 
regime,
U0, m/s – maximum gas velocity in the middle 
part of the channel,

U1(r), m/s – velocity profile of gas,
U2(r), m/s – velocity profile of the liquid layer 
placed near the internal surface of the chan-
nel,
U3(r), m/s – velocity profile of the liquid layer 
placed near the external surface of the channel,–U1, m/s – average velocity of gas,–U2, m/s – average velocity of liquid in the layer 
placed near the internal surface of the channel,–U3, m/s – average velocity of liquid in the layer 
placed near the external surface of the channel,
z, m – longitudinal coordinate,
μ1, Pa∙s – dynamical viscosity coefficient of gas,
μ2, Pa∙s – dynamical viscosity coefficient of liq-
uid,
ν1, m2/s – kinematical viscosity coefficient of 
gas,
ρ1, kg/m3 – density of gas,
ρ2, kg/m3 – density of liquid.
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INTRODUCTION

Theoretical description of hydrodynamics in 
a contact apparatus without a separating wall, 
for example, cooling towers or contact econom-
izers, presents a complex scientific problem. A 
definition of the flooding regime on the regular 
packing of a contact apparatus that indicates the 
transition to the bubble counterflow regime of 
liquid film and gas is important and relevant 
during operation of such devices. There are 
many theories to determine the flooding regime 
on the regular packing of a contact apparatus in 
scientific literature. These theories describe the 
hydrodynamics of the interface of the interact-
ing phases at the regular packing of a contact ap-
paratus, taking into account unsteady forces on 
this surface. In particular, many investigations 
apply the theory of stability.

The stability theory of travelling film, which 
can describe the interface evolution between 
two parallel flows, is often used for the qualita-
tive analysis of physical regularities on the in-
terface between two media. The restoring force 
(capillary force) can restore the broken interface 
to the original form. However, the surface does 
not recover immediately, inertial effects lead to 
the appearance of surface waves [1, 2]. The am-
plitude of the waves can grow rapidly under cer-
tain conditions, the surface becomes unstable. 
As a result, the channel can go into a flooding 
regime [8].

Many researchers [4] apply the statistical 
equilibrium approach based on the equilibrium 
analysis between gravity force, shear stress and 
aerodynamic pressure on the interface. If the av-
erage fluid velocity in the thin liquid film tends 
to zero for channels oriented vertically, then the 
hold-up regime appears. It means that liquid 
does not move down.

This approach exists in some variations, but 
all of them require parameters of the wave mo-
tion, which can be determined experimentally.

Today the theory of soliton [5] is actively used 
in this problem. Water soliton can be observed 
on the interface at the flooding process even for 
moderate gas velocity in the channel. However, 
these models of soliton formation are developed 
mainly for flow-through horizontal flow and can 
be extended to an inclined counter-current flow.

The theory of separated motion [6] is based 
on the assumption that the flooding regime is 
the limit case for operating conditions when 
liquid or gas velocities have increased. In this 
case, stratified flows of liquid and gas are con-
sidered separate cylinders with the friction force 
describing their interaction. There are many 
models in modern scientific literature because 
of different boundary conditions and different 
approaches of the friction force.

Many researchers use a separate-flow mod-
el for analyzing physical processes within two-
phase channels [7]. They consider the water-gas 
interface based on a static equilibrium between 
the gravity force tangential stress and the pres-
sure distribution that controls gas flow. If the 
average fluid velocity is zero, then it is assumed 
that the film has a hold-up regime, downward 
motion is absent. A separate cylinders model 
of the interaction of two-phase flows exists in 
various variations, but all of them require ex-
perimental determination of the parameters of 
motion [8, 9].

Recently, the theory of separated motion has 
fast developed [10, 11], which is based on the as-
sumption that the flooding process occurs at the 
moment when the velocity of liquid or gas in-
creases sharply. Stratified fluid and gas flows are 
considered in individual cylinders, the frictional 
force between which describes their interaction. 
Such a model has a number of varieties because 
of different boundary conditions and values of 
the coefficient of friction.

However, the use of the friction coefficient 
reduces the use of such models. In particular, in 
[7] a model for a friction in a laminar and tur-
bulent motion is described separately. In addi-
tion, in [12] the flooding regime is described, if 
the friction between water-gas flows is neglected 
and the channel diameter is greater than 0.43 m 
at normal conditions.

In many cases, the dynamic range of the 
steady motion of the gas flow in contact devices 
is determined from the results of experimental 
studies for fixed pipe geometric dimensions [9]. 
These studies made it possible to reveal the main 
regularities and general trends in the interaction 
of two-phase flows in vertical segments of con-
tact devices, the conditions for the appearance 
and development of various regimes of motion 
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and interaction of liquid and gas in the interior 
space of contact devices for various purposes. 
Nevertheless, the quantitative data in these cases 
are of empirical nature for the specific geometric 
parameters of a contact apparatus and values of 
the volume flow of liquid and gas [10].

Also, one of the main tasks is the influence 
of the temperature regimes on the flooding re-
gime at the laminar flow motion. Consideration 
of such influence in determining the regime of 
flooding allows to more accurately calculate the 
operating mode of a contact apparatus without a 
separating wall.

The main goal of this study is to construct a 
model of the regime of flooding without the val-
ue of the coefficient of friction on the water film-
air boundary within the theory of separated mo-
tion. Using the constructed model, quantitative 
dependences of the volume flow rate of liquid 
on the flow rate of gas inside the vertical system 
of coaxial pipes (that correspond to the regular 
packing in cooling towers or contact economiz-
ers) were obtained. The results are obtained in 
the approximation of an axisymmetric, laminar 
flow of the water film-air at the flooding regime 
and close to them.

MATHEMATICAL MODEL OF THE FLOW

Let us consider a laminar stationary axisym-
metric motion of a two-phase (gas-liquid) flow 
inside two coaxial infinite tubes with a circular 
cross-section (Fig. 1) located vertically. Let R1 be 
the radius of the inner tube and R2 the radius of 
the outer tube. A gas with a density ρ1 and a dy-
namical viscosity coefficient μ1 fills the middle 
part of the annular space (R1 + h ≤ r ≤ R2 – h), 
and a liquid with a density ρ2 (ρ1 << ρ2) and 
dynamical viscosity coefficient μ2 adjoins hard 
surfaces (R1 ≤ r ≤ R1 + h, R2 – h ≤ r ≤ R2), where 
h is the thickness of the liquid layer. A pressure 
gradient dp/dz = const is formed in the pipe, 
which drives the gas in the upward direction. It 
is necessary to determine the distribution of the 
longitudinal velocity components of the media 
U1 (r), U2  (r) and U3 (r) in the cross-section of 
the tubes.

The governing equations describing the mo-
tion of media are the Navier-Stokes equations 
[11], which for an axisymmetric case in a cylin-

drical coordinate system (r, z) reduce to a system 
of ordinary differential equations:

    (1)

where g is acceleration of gravity.
The mathematical formulation of the problem 

must be supplemented by the following boundary 
conditions:

. (2)

The first and last conditions (2) are no-slip 
conditions for a viscous liquid to solid walls, the 
second and fourth equations express conjugation 
conditions for media with respect to velocity, and 
the third and fifth equations are conjugation con-
ditions of media with respect to shear stress.

To perform a comparative analysis of flow 
parameters within coaxial tubes, it is necessary 
to dimension the equations of motion (1) and 

Fig. 1. Geometry of the problem
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boundary conditions (2). We apply for normal-
izing the following values: R0 = R2, U0, ρ1 and μ1. 
In this case, the dimensionless quantities (marked 
with an asterisk) have the following values:

       (3)

Here, Q1, Q2 and Q3 are the volumetric flow of 
media with a corresponding index. Here and be-
low, the asterisks in dimensionless quantities are 
omitted.

Substitution of eqs. (3) into differential eqs. (1) 
leads to a normalized system of equations:

   (4)

The normalized boundary conditions take the 
following form:

 (5)

Note that the normalized value of gravity ac-
celeration can be expressed in terms of the Reyn-
olds number in the notation defined before:

. (6)

The first integration of eqs. (4) with respect 
to the variable r leads to the following system of 
equations:

     (7)

where A, B and C are integration constants. Eqs. 
(4) use the notation: R1H = R1 + h, R2H = R2 – h.

The second integration of eq. (7) with respect 
to the variable r allows us to recover unknown 
functions:

(8)

where D, E and F are integration constants. All 
integration constants have to be determined from 
the boundary conditions (5).

The first boundary condition (5) for the sec-
ond eq. (8) allows to express the integration con-
stant E in terms of the constant B. We obtain

. (9)

By analogy, the last boundary condition (5) in 
the third eq. (8) gives equation for the constant F 
in terms of the constant C. In this case,

. (10)

Therefore, the solution of the problem (8) can 
be represented now in the following form:

 (11)

The substitution of the third boundary condi-
tion (5) into the system of eqs. (11) leads to the 
equality
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. (12)

Similarly, substituting the fifth boundary con-
dition (5) into the system of eqs. (11) allows us 
to express the integration constant C through the 
constant B. We obtain

. (13)

At this stage of the construction of the solu-
tion, the system of eqs. (11) already contains only 
two constants of integration:

 (14)

with notation R12 = (R1 + h)2 – (R2 – h)2.
The second boundary condition (5) allows us 

to express the integration constant D in terms 
of the value of the constant B. Substitution of 
eq.  (14) into this boundary condition gives the 
following equality:

(15)

Finally, the fourth boundary condition (5) al-
lows us to determine the value of the integration 
constant:

 (16)

Thus, the solution of problem (4) with bound-
ary conditions (5) can be represented in the fol-
lowing form:

taking into account eq.  (16) and the notations 
adopted earlier.

To determine volumetric flow of media, it is 
necessary to calculate the integrals

 (18)

The substitution of the solution (17) into the in-
tegrals (18) and the subsequent integration within 
these limits leads to the following expressions:

(17)

(19)
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       (19)

To determine the mean velocity values over 
the cross-section, one can use the following equa-
tions:

. (20)

These equations will be used for performing 
a numerical analysis of physical parameters of a 
two-phase flow inside two coaxial tubes.

NUMERICAL ANALYSIS 

Let us consider the features of a stationary two-
phase flow (air-water) inside an infinite channel 
formed by two coaxial tubes. The air flow moves 
in a vertical direction; the liquid is located near 
the hard surfaces. To carry out the dimension-
less quantitative analysis, let us consider the case 
with the following characteristic parameters: 
R0 = R2 = 0.005 m, ρ1 = μp0/RT is the gas densi-
ty for isothermal flow in the temperature range 
0…100°C (excluding limit values at atmospheric 
pressure), where R = 8.34 J/(mol∙deg) is the uni-
versal gas constant, μ = 0.029 kg/mol is molar air 
weight, p0 = 105 Pa is an atmospheric pressure.

The dynamical viscosity coefficient of air and 
water in this range of temperatures varies within 
fairly wide limits [12, 13]. The filled circles in the 
figure show the tabulated values. It is shown that 
the viscosity of the gas μ1 increases in a first ap-
proximation linearly with respect to the temper-
ature T, and the water viscosity μ2 decreases with 
increasing temperature. That is why the ratio of 
the dynamical viscosity coefficients μ = μ1/μ2 
varies widely. Consequently, it can be assumed 
that the quantitative dependences of the gas and 
liquid flows rates should differ in the tempera-
ture range under consideration. Therefore, when 
carrying out further analysis, we select three 

characteristic cases: regime A (T = 1°C), μ = 
103.5; regime B (T = 50°C), μ = 28.0; and regime 
C (T = 99°C), μ = 13.0.

The negative pressure gradient dp/dz = const, 
applied to the coaxial channel system, drives the 
gas motion in the middle part of the section in 
the direction from the bottom to the top. It is 
known [13] that the parabolic velocity profile of 
the gas is formed inside the channel for small 
Reynolds numbers. At the media interface, the 
equality of shear viscous stresses entrains a part 
of the liquid on the surface in a vertical motion, 
forming on the surface a flow with a velocity 
different from zero. The direction motion of the 
liquid at the media interface is determined by 
the ratio of the shear viscous stress force upward 
and the gravity of the liquid directed downward. 
Examples of gas and liquid velocity profiles with-
in coaxial tubes are shown in Fig. 2 for different 
values of Reynolds numbers for the case μ = 28.0 
(regime B), h = 0.02. R1 = 0.8. Here, U(r) = U2(r) 
for R1 ≤ r ≤ R1H, U(r) = U1(r) for R1H ≤ r ≤ R2H, 
and U(r) = U3(r) for R1H ≤ r ≤ R2. The features of 
the velocity distribution near the inner surface 
of the channel are shown in the figure with the 
index “b”.

The dependencies presented in Fig. 2 were ob-
tained as a result of the solution of the transcen-
dental equation, in which the right-hand side 
of the first equation (17) is zero for r = R1 + h. 
Following the second boundary condition (5), 
analogous results can be obtained by equating 
the second equation (17) to zero for r = R1 + h. 
Studies show that the parameters of the hold-up 
regime for the inner layer of the liquid practical-
ly coincide with the parameters of the hold-up 
regime for the outer layer of the liquid. Note that 
in the second case it is necessary to equate the 
second or third eq. (17) to zero for r = R2 – h. The 
difference in these parameters for the inner and 
outer layers depends on the values of the inner 
radius R1. An increase in the value of R1 leads 
to a decrease in the difference in the values of 
the corresponding parameters. In the range of 
values R1 = 0.1 ... 0.9, this difference does not ex-
ceed ≈0.1% and does not actually appear in the 
graphs presented in this research.

At low gas velocities, the gravity force for liq-
uid is predominant, and the flow velocity of the 
liquid takes on negative values at all radii values 
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in the cross-section of the channel. An increase 
in the velocity of the gas leads to an increase in 
the gradient of the component of the axial veloc-
ity of the gas and, as a result, to an increase in 
the shear viscous stress on the media interface. 
The velocity of the liquid downward increas-
es by module (see the case Re = 200 in Fig. 2); 
however, in the whole range of radial values the 
liquid velocity assumes negative values. In this 
case, the maximum value of the velocity of the 
liquid is in the layer adjacent to the media in-
terface.

At Re = 1000, the liquid velocity profile 
changes. The maximum value of the liquid ve-
locity is shifted to the inner region of the liquid 
layer. At the interface between the media, the liq-
uid velocity asymptotically tends to zero. Subse-
quently, the hydrodynamic regime, in which the 
value of the velocity of the liquid (or gas) on the 
media interface has a zero value, is conditionally 
called the hold-up regime. Note that in this case 
the volumetric flow rate of the liquid takes on 
negative values, because the liquid flows down 
the entire section of the liquid layer.

A further increase in the rate of gas veloci-
ty leads to the case which is characterized by a 
change in the sign of the velocity of the near-sur-
face liquid layer. Under the action of viscous 
shear stress, the liquid can move upward (for 
example, the case Re = 2000). At the same time, 

part of the liquid adjacent to the interface of the 
media moves upward, while part of the fluid ad-
jacent to the solid surface moves downward un-
der the action of gravity. Therefore, a case can 
appear in which positive and negative fluid flows 
through the cross-section of the channel com-
pensate each other. Subsequently, the hydrody-
namic regimes, in which the volumetric flow 
rate of the liquid in the channel cross-section 
achieves a zero value is conditionally called the 
flooding regime.

The value of the gas velocity at which the 
hold-up regime arises depends not only on the 
ratio of the dynamical viscosity coefficients of 
the fluid and gas, but also on the geometry of 
the channel and the thickness of the liquid lay-
er. Figure 3 illustrates the dependence of critical 
values of Reynolds number Recr1 (or correspond-
ed gas velocity) in the hold-up regime on the 
thickness h of the liquid layer for certain values 
of the radii R1 of the inner tube and the temper-
ature of the media. It is shown that an increase 
in the thickness of the liquid layer first leads 
to an increase in the gas velocity at which the 
hold-up regime arises. For large values of h, the 
corresponding Reynolds numbers decrease. The 
critical value of Reynolds numbers Recr1 for large 
values of μ (cold media) becomes larger in com-
parison with the cases in which μ takes smaller 
values (hot media).

Fig. 2. The flow velocity profile in the cross-section of the channel (a) and near the inner surface of the channel (b) for h = 0.02, R1 = 0.8

(a) (b)
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It is interesting to note that the critical val-
ues of the Reynolds numbers Recr1 for the hold-
up regime decrease gradually for large values of 
the thickness h of the liquid layer. This effect is 
explained by the mutual influence of the liquid 
layer on the inner surface and the liquid layer on 
the outer surface. As the values of h increase, the 
thickness of the gas layer in the cross-section of 
the channel decreases. In this case, the gradient 
of the longitudinal component of the gas veloc-
ity near the interface increases. This leads to an 
increase in the viscous shear stress. For this rea-
son, the hold-up regime occurs at lower Reynolds 
numbers Re.

Analysis of scientific literature [1, 7] shows that 
the gas flow in a narrow channel (R2 – R1 – 2 h) ac-
quires a dynamic instability, which is accompa-
nied by a violation of the symmetry of the flow, 
the formation of a wave surface at the media in-
terface. In some cases, this can lead to the rup-
ture of the surface of the liquid, the formation 
of droplets of different diameters. Note that the 
surface tension forces play an important role in 
this process. Similar effects can be observed with 
an increase in the gas velocity to values charac-
teristic of the transition and turbulent gas flow 
regimes. Some details of the physical effects that 
arise in the turbulent flow of a two-phase medium 

inside an infinite tube can be found in the mon-
ograph [1]. For this reason, the increasing theo-
retical branches of the dependencies in Fig. 3 can 
be considered physically unstable solutions; their 
observation in real currents is problematic.

The dependence of the critical values of the 
Reynolds numbers Recr1 under which the flooding 
regime on the radius R1 of the inner tube at fixed 
values of the thickness of the liquid layer is shown 
in Fig. 4. There is a general tendency associated 
with a decrease in the velocity of the gas flow with 
increasing radius R1. Note that the critical value of 
Re decreases with decreasing value of μ. In other 
words, the process of hold up in a heated system 
occurs at lower values of the gas velocity inside 
the pipe system under consideration.

Fig. 4. Dependence of Reynolds numbers Recr1 in the hold-up re-
gime on the radii R1 of the inner tube for different values h of the 
liquid layer

Fig. 3. Dependence of the critical Reynolds number Recr1 in the 
hold-up regime on the thickness h of the liquid layer for different 
values of the radii R1 of the inner tube

Figure 5 illustrates the dependence of the vol-
umetric flow of the gas and the liquid on the gas 
velocity inside the coaxial tubes for the various 
regimes mentioned earlier. The figure shows the 
case: R1 = 0.8, h = 0.02. It can be seen that this de-
pendence is nonlinear. An increase in the values 
of Reynolds numbers leads to an increase in the 
values of the dimensionless volumetric flow of the 
gas (3). At Re ≈ 1000 ... 2000, the curves gradually 
reach a constant value. Hence, starting with these 
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Reynolds numbers Re, the volumetric flow of the 
gas becomes directly proportional to the gas ve-
locity inside the coaxial tubes. Note that increase 
in the temperature of a two-phase medium leads 
to a displacement of this effect in the region of 
large values of the gas velocity.

values of the gas velocity gradually begin to de-
crease. This trend takes place for different tem-
peratures of the two-phase mixture. Neverthe-
less, the flooding regime occurs at lower critical 
Reynolds numbers over the entire range of val-
ues of h for a heated two-phase medium.

The dependence of the critical Reynolds 
number Recr2 values, at which the flooding re-
gime occurs, of the normalized radius R1 of 

Fig. 7. Dependence of the critical Reynolds number Recr2 for the 
flooding regime on the thickness h of the liquid layer for different 
values of the radii R1 of the inner tube

Fig. 6. Dependence of Reynolds numbers Re for regimes A, B and C 
on volumetric liquid flows Q1, Q2 and QF

Fig. 5. Dependence of Reynolds numbers Re for regimes A, B and C 
on volumetric flow of gas Q1

The dependence of values of Reynold num-
bers on the normalized volumetric flow of liq-
uids for different regimes is shown in Fig.  6 
(R1 = 0.8, h = 0.02). The dashed line in the figure 
shows the Re(Q2) dependence, and the dotted 
line shows the Re(Q3) dependence. The solid line 
shows the total volumetric flow QF = Q2 + Q3. It 
is shown that increase in the gas velocity leads 
to a change in the direction of liquid motion. 
When Q = 0, a flooding regime of liquid occurs 
inside the coaxial tube system. We note that the 
flooding regime for a cold two-phase medium 
occurs at large values of the gas velocities in 
comparison with the analogous case for a heat-
ed medium.

Figure 7 illustrates the dependence of the 
critical Reynolds number Recr2 values, at which 
the flooding regime occurs, on the thickness of 
the liquid layer for different values of the radius 
R1 of the inner tube. Increasing the thickness of 
the liquid layer requires large values of the gas 
velocity. However, at some value of h, the op-
posite solid surface begins to influence, and the 
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the inner tube for different thicknesses h of the 
liquid layer is shown in Fig. 8. It is shown that 
the flooding regime occurs at lower gas veloc-
ities for large values of R1. Simultaneously, the 
general tendency is preserved: the flooding re-
gime for a heated two-phase medium occurs at 
lower Reynolds numbers Re.

At the interface between media, this force en-
trains a part of the liquid on the surface in a 
vertical motion, forming a flow on the surface 
with non-zero velocity. The direction of the liq-
uid motion at the media interface is determined 
by the ratio of the viscous shear stress force di-
rected upward and the gravity force of the liquid 
directed downward.

For certain values of the gas velocity, a hold-
up regime may occur, which is characterized 
by vanishing of the velocity of the liquid (or 
the gas) at the media interface. Increase in the 
thickness of the liquid layer leads to increase in 
the gas velocity, at which the hold-up regime oc-
curs. Further increasing the values of h, the cor-
responding values of the gas velocity decrease. 
In this case, the gradient of the longitudinal 
component of the gas velocity near the inter-
face increases as shown on Fig.  3 for h  >  0.04 
at R1 = 0.7. This leads to increase in the viscous 
shear stress force and, as a result, the hold-up 
regime occurs at lower Reynolds numbers Re. 
If radius R1 of the inner tube increases and the 
dimensionless value of h is a constant, then gas 
velocity in the channel for the hold-up regime 
decreases. This regime occurs in the system at 
lower values of gas velocity inside the channel 
under consideration.

The flooding regime, which follows the hold-
up regime, has similar properties. This regime 
is determined by the condition of equality to 
zero of the volumetric flow of the liquid in the 
cross-section of the channel.

Received 17 March 2018 
Accepted 15 May 2018

References

 1. Bezrodny M. K., Pioro I. L., Kostyuk T. O. Trans-
fer Processes in Two-Phase Thermosyphon Systems. 
Theory and Practice. Kyiv: Fact, 2005. 704 p.

 2. Levich V. G. Physical-Chemical Hydrodynamics. 
M: Fizmatgiz, 1959. 700 p.

 3. Vijayan M., Jayanti S., Balakrishnan A. R. Experi-
mental study of air-water countercurrent annular 
flow under post-flooding conditions. Interna-
tional Journal of Multiphase Flow. 2002. Vol. 28. 
P. 51–67.

Fig. 8. Dependence of the Reynolds number Recr2 for the flooding 
regime on the inner tube radii R1 for different values of h of the 
liquid layer

CONCLUSIONS

The problem of the interaction of a two-phase 
flow (liquid-gas) inside a system of vertical 
coaxial tubes with a circular cross-section is 
considered. The basic equations describing the 
motion of a viscous, axisymmetric flow are Na-
vier-Stokes equations, which for a laminar flow 
regime reduce to a system of ordinary differen-
tial equations. This mathematical problem has 
an analytical solution.

Analysis of the numerical solution of the 
problem shows that the gravity force of the liq-
uid is the predominant force at low gas veloc-
ities, and liquid velocity takes negative values 
for all radii in the cross-section of the channel. 
An increase in the velocity of the gas leads to an 
increase in the gradient of the axial component 
of the gas velocity and, as a result, an increase 
in viscous shear stress at the media interface. 



63Axisymmetric laminar flow of two-phase medium inside the system of two coaxial pipes

 4. Kutateladze S.  S., Styrikovich M.  A. Hydrody-
namics of Gas-Fiquid Systems M: Energia, 1976. 
296 p.

 5. Bankoff S. G., Lee S. C. A Critical Review of the 
Flooding Literature. Evanston: Northwestern 
University, 1983. 121 p.

 6. Labuntzov D. A., Yagov V. V. Mechanics of Two-
Phase Systems. M: MEI, 2000. 374 p.

 7. Klyuev N., Solov’eva E. Mathematical Models 
of Two-Phase Flows: Textbook. Samara: Samara 
University, 2010. 51 p.

 8. Park I., Mudawar I. Climbing film, flooding and 
failing film behavior in upflow condensation. 
International Journal of Heat and Mass Transfer. 
2013. Vol. 65. P. 44–61.

 9. Nada S.  A. Cooling of very hot vertical tubes 
by falling liquid film in presence of countercur-
rent flow of rising gases. International Journal of 
Thermal Sciences. 2015. Vol. 88. P. 228–237.

 10. Berrichona J.  D., Louahlia-Gualous H., Bande-
lier Ph., Clement P., Bariteau N. Experimental 
study of flooding phenomenon in a power plant 
reflux air-cooled condenser. Applied Thermal En-
gineering. 2015. Vol. 79. P. 214–224.

 11. Celata G.  P., Cumo M., Serato T. A data set of 
flooding in circular tube. Experimental Thermal 
and Fluid Science. 1992. Vol. 5. P. 437–447.

 12. Vijayan M., Jayanti S., Balakrishnan A. R. Effect 
of tube diameter on flooding. International Jour-
nal of Multiphase Flow. 2001. Vol. 27. P. 797–816.

 13. Lamb H. Hydrodynamics (6th ed.). Cambridge: 
Cambridge University Press, 1932. 928 p.

 14. Kikoin I. K. Tables of Physical Quantities. M: At-
omizdat, 1976. 1008 p.

 15. Kaye G. W. С., Laby T. H. Tables of Physical and 
Chemical Constants. London: Longmans Green 
& Co, 1986. 432 p.

Igor Kuzmenko, Alexandre Gourjii

AKSISIMETRINIS LAMINARINIS TEKĖJIMAS 
DVIFAZINIAME SRAUTE DVIEJŲ 
KOAKSIALINIŲ VAMZDŽIŲ SISTEMOJE 

Santrauka
Aptariama aksisimetrinio laminarinio tekėjimo dvie-
jų fazių (skystis–dujos) srauto begalinėje koaksialių 
apvalaus skerspjūvio vertikalių vamzdžių sistemoje 
problema. Analitinio sprendinio analizė parodė, kad 
dujų srauto greičio padidėjimas veda prie stabdymo 
režimo (tada terpės srauto greitis sąsajoje yra lygus 
nuliui) ir užliejimo režimo (kai skysčio srautas yra 
lygus nuliui). Nustatyta, kad šie režimai pasireiškia 
esant mažesniems dujų srauto greičiams šildomoje 
terpėje, palyginti su šalta terpe.

Raktažodžiai: koaksialiniai vamzdžiai, dvifazis 
srautas, laminarinis tekėjimas, pasipriešinimo reži-
mas, užliejimo režimas


