ENERGETIKA. 2017. T. 63. Nr. 3. P. 93-104
© Lietuvos moksly akademija, 2017

Monte Carlo simulation of district heating system
short-term operation in electricity markets

Ilias Dimoulkas,
Mikael Amelin

Royal Institute of Technology,
Brinellvigen 8,

114 28 Stockholm, Sweden
E-mail iliasd@kth.se

Energy generation in district heating (DH) systems is usually done
in combined heat and power (CHP) units which can efficiently
produce both useful heat and electric power. There can also exist
heat only boilers, electric heaters, heat pumps and heat storage
tanks. The coupling of heat and power generation in the CHP units
and the possibility to store heat for later use makes the short-term
operation scheduling of such systems quite challenging. Further-
more, big DH systems produce power that is sold in the electricity
markets. This makes the operation scheduling problem even more
complex as the uncertainty of the electricity prices in the markets
should be considered. To make optimal decisions under uncertain-
ty, various mathematical optimization tools were developed, such
as stochastic programming and robust optimization. In this paper,
an approach based on a Monte Carlo simulation is followed. Ini-
tially, a model of DH system short-term operation and power trad-
ing is mathematically formulated. Then, this model is used to run
a Monte Carlo simulation for a case study system where the values
of stochastic parameters are simulated using autoregressive models.
Results demonstrate that simulation is fast, taking 300-400 runs to
converge. A comparison of two system configurations shows that
the use of heat storage increases the daily expected profit by 11%.
Finally, the electricity price volatility in this case study is such that
mainly two CHP units are operating for most of the time.

Keywords: district heating, combined heat and power, short-term
operation, Monte Carlo simulation, electricity markets

INTRODUCTION

by the year 2050, district heating should cover
50% of the total heat demand in contrast to 10%

District heating (DH) systems can generate
both useful heat and power with high efficiency
in the combined heat and power (CHP) units.
Furthermore, they have the capability to store
heat in heat storage accumulators or even con-
sume power to produce heat by means of elec-
tric boilers and heat pumps. According to [1],

which covers today.

Short-term operation scheduling of a dis-
trict heating system involves decisions regard-
ing units to be operated and cover the heat and
power demand during the following period
which may range from the following hours to
the following few days. The coupling of power
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and heat production in the CHP units increas-
es the complexity of this scheduling problem.
The first studies in the literature considered only
CHP units using non-linear deterministic mod-
els [2]. In such models the system was consid-
ered to have both fixed power and heat loads.

The introduction of competitive electricity
markets increased the complexity of the prob-
lem and altered the objectives. While previous-
ly the CHP operators were trying to minimize
the operational costs and cover the power and
heat loads under a fixed price scheme, now
the target includes among others the profit max-
imization in the electricity markets [3]. Fur-
thermore, new modelling techniques that help
derive optimal decisions under uncertainty have
found application in the operation scheduling of
power systems in general, and in district heating
systems in particular. For example, stochastic
programming is used in [4-5] while robust opti-
mization in [6].

Monte Carlo simulation [7] is an efficient
method to solve problems with stochastic pa-
rameters using a deterministic model. Its gen-
eral approach is based on random sampling
of the stochastic parameters. For each sam-
ple, the deterministic problem is solved and if
enough samples have been used, the solution
to the original probabilistic problem is given by
the expected value of all solutions. Monte Car-
lo methods have been previously used in power
system unit commitment problems [8], produc-
tion cost calculation [9] and security assess-
ment [10].

In this paper, the Monte Carlo method is
used to derive the optimal day-ahead operation
scheduling of a DH system which also includes
the power traded in the electricity markets.
Three types of electricity markets are consid-
ered: day-ahead (spot) market, intraday market,
and balancing (real-time) market. Electricity
market prices and volumes are the stochastic pa-
rameters of the problem. As the time series of
these parameters present autocorrelation and
interdependence, various autoregressive mod-
els (SARIMA, ARMAX, AR) are used to simu-
late them [5, 13].

The rest of this paper is organized as follows:
Section 2 provides the methodology. It starts
with a short description of the DH systems

and the electricity markets in order to make
easier the understanding of the mathematical
formulation which follows right after. The sec-
tion closes with the description of the sample
creation procedure. Section 3 is the case study.
The short-term operation of a realistic DH sys-
tem is simulated with the Monte Carlo method
and the results are presented. Finally, section 4
concludes the paper.

METHODOLOGY

District heating system overview

A DH system consists of CHP units, heat boil-
ers, electric boilers, heat pumps and heat accu-
mulators (Fig. 1). CHP units are characterized by
the type of turbine they use to produce power.
These are: a) back-pressure steam turbines, b) ex-
traction condensing steam turbines, and c) gas tur-
bines. The back-pressure steam turbines operate
with a fixed power-to-heat ratio. In some installa-
tions, there is the possibility for the steam to bypass
the turbine and operate as heat only boiler. The re-
lation between power and heat generation for these
two modes can be seen on the right side of Fig. 2.
The gas turbines also operate with a fixed power-
to-heat ratio and can be operated as only power
generation units. The extraction condensing steam
turbines are characterized for their higher flexibil-
ity and can be operated in any point of the feasible
operation zone described by the grey coloured area
in Fig. 2, the left side. Heat boilers produce only
heat and they are usually used as back-up systems
of the CHP units. The electric boilers or immer-
sion heaters and the heat pumps are consuming
power to produce heat. The difference is that heat
pumps need a heat source, such as a lake, and they
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Fig. 1. Main units operating in a district heating system
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Fig. 2. Power-heat charts of extraction condensing (left) and back-pressure (right) steam turbines

are much more efficient compared to the electric
boilers. Finally, the heat accumulators can store
hot water for many hours and with very few loss-
es. This provides a possibility for a DH operator to
decouple the heat generation from heat demand.

Electricity markets overview

There are three main trading floors in modern elec-
tricity markets. These are the day-ahead, the intra-
day, and the balancing electricity markets. Respon-
sible for the first two is the market operator (Nord
Pool in Nordic and Baltic region [11]) while for
the balancing market responsible is the transmis-
sion system operator (TSO, ISO).

The day-ahead, or spot, market is the main trad-
ing floor where the majority of power is sold and
bought. Power producers and consumers decide
on their offering/bidding curves and submit them
to the day-ahead market usually until noon the day
before the actual power delivery. Then the prices
are calculated according to the bids and they are
announced to the market players along with power
volumes. The long-time interval between market
closure and power delivery allows enough time for
conventional power plants to start up their units if
needed.

The intraday market operates in a similar way
to the day-ahead market but trading takes place
closer to the power delivery time. This allows pro-

ducers with non-dispatchable generation (wind
power, solar power, etc.) to make better estimation
of their actual generation and take actions that
reduce the risk of participating in the day-ahead
market.

The balancing market acts as a mechanism
where TSOs can obtain balancing power offered
by dispatchable power producers in order to keep
the power system balanced. This is the so called
tertiary control. Pricing in the balancing market
provides some incentive for power producers to
participate. When they have to up-regulate in-
creasing their power output, they will be paid at
a price higher to the price in the day-ahead market.
On the other hand, if they have to down-regulate,
they will buy back the power which was previously
sold to the day-ahead market at a lower price.

Mathematical formulation

The mathematical formulation of the problem
consists of an objective function (1) and several
constraints (2-39) which are grouped in different
categories for easier reference. More analytically:

Objective function

The objective function of the problem (1) stands
for the profit maximization of a DH system opera-
tor. This profit consists of the income of power sold
in day-ahead, intraday, and balancing markets,
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minus the cost of power bought from these mar-
kets and the cost of operating the units. This last
cost includes the variable fuel consumption cost
and the costs of starting-up and shutting down
the units. An artificial heat shedding cost is added
to the objective function to avoid such condition
but also to keep the solution feasible.
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Unit operational limits and fuel functions

The feasible operation zone of an extraction con-
densing steam turbine (Fig. 2, left side) is defined
by constraints (2-5). The fuel consumption func-
tion is given by (6).
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There are two operational modes for a back-
pressure steam turbine, either producing both heat
and power or producing only heat. In the first case
it operates with a fixed power-to-heat ratio (7)
inside its technical limits (8). In the second case
only the heat generation limits are applied (9).
Total heat generation is equal to the sum of heat
generation in each mode (10) but the unit can op-
erate in only one mode each period (11). The fuel
consumption function is given by (13).
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The operation of a gas turbine is similar to that
of a back-pressure steam turbine in CHP mode.
It operates with a fixed power-to-heat ratio (14).
Here the inequality allows for only power genera-
tion while heat is wasted. Power generation limits
are given by (15) while fuel consumption by (16).
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The operation of a heat boiler is described by
the heat generation limits (17) and the fuel con-
sumption function (18).
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The capacity of an electric boiler is given
by (19) while the heat generation is a function of
the power consumption (20).

Qg}r < g Ug,t Vg t (19)

Q, =n, P Vgt (20)

Similarly, heat pump output is limited be-
low and above (21) while the heat generation is
the coefficient of performance times the power
consumption (22).

a;"-U,<Q,<q U, Vgt (21)

Qg)t: cop, - P;j” Vg, t (22)



Monte Carlo simulation of district heating system short-term operation in electricity markets 97

The operation of a heat accumulator is defined
by its upper and lower heat content limits (23)
and the limits of heat flow towards and out of
it (24).
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Unit commitment constraints (25-26) define
the operating status of all units: operating, start-
ing-up, and shutting down.

Y, 2U -U, Vgt (25)
z,2U,  -U, Vgt (26)

Minimum on (27) and off time (28) con-
straints indicate the requirement of the units to
stay on or off for some time after they have been
shut down or turned on, respectively.
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Heat and power output of units can change
inside some limits from period to period. These
restrictions are defined by the heat (29-30) and
power (31-32) ramp constraints.
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Energy balance constraints

Heat balance constraint (33) defines the balance
of heat in the heat storage accumulator: each pe-
riod the heat content of the storage is equal to
the heat content of the previous period reduced
due to the losses plus the total heat generation
and any heat shedding minus the heat demand.
Similarly, power balance constraint (34) defines
the power balance between power generation and
consumption and the power which is traded in
the electricity markets.
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Limits on trading volumes in the electricity markets
These limits are imposed by the electricity markets
operation and their characteristics. Total power
sold in the markets should not be greater than sys-
tem capacity (35). Furthermore, liquidity of intr-
aday and balancing markets is limited. Therefore,
constraints (36-39) are used to avoid trading big
quantities of power in these markets, which would
not be applicable.
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Stochastic parameter modelling

Stochastic parameters in this study consist of elec-
tricity prices in day-ahead, intraday, and balancing
market and electricity volume traded in intraday
and balancing markets. Figure 3 shows the values
of the electricity prices in the three markets taken
from Nord Pool [11] for three consecutive days. As
it can be seen, prices present autocorrelation and
interdependence. This is a general characteristic of
electricity prices, and the reason why autoregres-
sive models are used for modelling them.

Day-ahead market

Day-ahead electricity prices are modelled with
a seasonal autoregressive integrated moving ave-
rage (SARIMA) model as in [5]. Historical data
from the Elspot day-ahead electricity market are
used [11]. SARIMA models are suitable for fitting
non-stationary data with some degree of seasona-
lity. The general form of SARIMA model is:
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Fig. 3. Electricity prices in day
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9,(B) ® (B) (1-B)°(1 - B)y, = 6,(B) ® (B)e, (40)

where y, is the time series value at period t,
(pP(B) and Gq(B) are the autoregressive and mov-
ing average functions of the back-shift opera-
tor B:B'y, = y, | respectively, ®(B) and ©(B) are
the seasonal autoregressive and moving average
functions, respectively, D is the non-seasonal in-
tegration degree, s is the order of seasonality, and
g, is a white noise process (error or innovation
distribution). Box-Jenkins methodology is used
for building a qualitative forecasting model [12].

The model that is chosen for the day-ahead
electricity prices is:

(1- (PIBI - (Psz) (1- CD24B24 - (D4sB4s) (1 —B))/t

=(1+6B +6,B)(1+0,B, +0© B )e, (41)

24B24
where y, is the day-ahead electricity price at pe-
riod t. This model captures the daily pattern of
electricity prices having two seasonal autore-
gressive and moving average parameters with
24 and 48 hours seasonality. Parameter values of

Intraday market

An autoregressive moving average with exog-
enous input (ARMAX) model is used to model
intraday electricity prices following a similar
approach as in [14]. Furthermore, an autore-
gressive (AR) model is used for the traded vol-
umes. The exogenous input parameter in the AR-
MAX model is the day-ahead electricity prices.
It should be noted that the intraday market in
Nord Pool is a continuous market. The proposed
model is a discrete approximation as it pro-
vides one price and one volume for each hour of
the day. The model that is chosen for the intra-
day electricity prices is:

(1 - (P1B1 - (Psz - (P3Ba_(Pz4Bz4)yz

=Bx, + (1+6,,B, )¢, (42)
where y, is the intraday electricity price and x,
is the day-ahead electricity price at time t.  is
the regression component coefficient. The intra-
day volumes model is:

the model are given in Table 1. (1-¢B -9,B,-9,B,)y=c+e, (43)
Table 1. Parameter values of day-ahead market prices model (SARIMA)
Parameter | 9, | 9, | 0, | 0, | 0, | 0, | 9, | 0,
Day-ahead Price 095 -021 089 008 -081 -0.10 -061 -024

market
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where y, is the intraday volume in this case and
c a constant. Parameter values of the two models
are given in Table 2.

Balancing market

A method presented in [13] is used to model
the balancing market prices and volumes. This
method uses a combination of an AR model
and a Markov state switching model. The AR
model is used to model the values of market
premiums (premium is the difference between
the price in the balancing market and the price in
the day-ahead market for the same period) while
the Markov model is used to model the state tran-
sition of the prices. There are four states: (1) no
balancing prices are defined at time ¢, (2) only up
regulation price is defined at time t, (3) only down
regulation price is defined at time ¢, and (4) both
up and down regulation prices are defined at
time ¢. Furthermore, the up regulation price is al-
ways greater than the day-ahead price for the same
hour and the opposite is for the down regulation
price. A similar approach is used for the volumes.
The corresponding AR models for balancing
market up regulation premiums and volumes
are:

(1 - (PIBI - (Psz - (PsB3)yt =E (44)
(1 _(P1B1_(Psz_(P3B3_(P4B4)yt:£r’ (45)

while for down regulation premiums and vol-
umes are:

(1-¢B)y,=¢, (46)

(1- q)lBl - (Psz)yr =g (47)
Parameter values of the four models are given
in Table 3.

Sample creation procedure
The procedure to create a sample set of prices and
volumes has 5 steps:

1. SARIMA model (41) is used to create 24
hourly prices in the day-ahead market for the fol-
lowing day.

2. Using day-ahead prices from the previous
step and the ARMAX model (42), 24 hourly pric-
es in the intraday market are created.

3. Using the AR model (43), 24 power volumes
which are traded in the intraday market are creat-
ed.

4. With the help of the Markov state model, 24
balancing market states are simulated for the next
day.

5. The AR models (44-47) in combination with
the balancing market states of the previous step are
used to generate 24 premiums and volumes for up
regulation and 24 premiums and volumes for down
regulation in the balancing market. The premiums
are then added to the day-ahead prices from step 1
to create the up and down regulation prices.

CASE STUDY

A case study is performed to test the performance
of the proposed method. A DH system is consid-
ered which consists of 32 units. The type of each
unit and their parameters are given in Table 4.
BP stands for back-pressure, EC for extraction

Table 2. Parameter values of intra-day market prices (ARMAX) and intraday volumes (AR) models

Parameter | ‘p1 | q’Z | ‘PS | (p24 | (p25 | e24 | B | ¢
Price 0.66 0.04 -0.06 0.01 - 0.13 0.37 -
Intraday market
Volume 0.78 - - 0.17 -0.11 - - 83.3
Table 3.Parameter values of balancing market models
Parameter 9, 9, 9, 9,
. Premium 0.88 -0.33 0.17 -
Up regulation

Balancing Volume 0.77 -0.09 0.01 0.07

market Premium 0.81 - - -

Down regulation
Volume

0.79 -0.03 - -
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Table 4. Case study system parameters

snit | 1 [ 2 | 3 [ a4 s | 6 | 7 | 81 | B3
Type BP BP EC GT HB HB HB EB HP
Fuel Wood Coal Oil Oil Qil Diesel Qil

Nl 1 25 30 30 30 27 30

cgrt 10¢ 100 2x10°  10°

B 35

o 03

a, 06 06 06

n, 09 088 087 08 088 08 087 098

cop, 3
pre 140 150 250 55

py" 40 80 60

qpe 340 250 350 125 150 330 40 15
gy 100 160 0 35 30 35 0 0

condensing, GT for gas turbine, HB for heat boiler,
EB for electric boiler, and HP for heat pump. When
there is no value, it means that the specific param-
eter is not applicable to that type of unit. Two dif-
ferent system configurations are considered, one
without any heat storage and one with 500 MWh
heat storage capacity.

For each one of the two configurations a Monte
Carlo simulation is conducted considering a max-
imum number of 3000 sample sets. That means
the model is solved 6000 times in total for both
configurations. Results are shown in Table 5 for

Table 5. Simulation results (system without heat storage)

the first configuration and Table 6 for the second.
Results are presented for various sizes of the sam-
ple set, starting from 1 sample set and going up
to 3000. Mean simulation time and the minimum,
maximum, average and standard deviation values
of the objective function are provided.

In a Monte Carlo simulation the optimal solution
is considered to have been reached when the aver-
age value and standard deviation have been stabi-
lized. If this does not happen, then the simulation
continues with more samples. In this case, as it can
be seen in Fig. 4, for the first system configuration,

Samples 1 20 100 600 1000 2000 3000
Mean time [sec] 4.20 1.58 1.48 0.25 0.74 0.74 0.49
Min. 5.79 4.02 340 2.23 2.23 2.23 2.23

u:: ‘5 Mean 5.79 6.81 6.77 6.69 6.70 6.69 6.67
a é Max. 5.79 10.61 10.61 11.72 13.00 14.82 14.82
Std. 0 1.45 1.59 1.60 1.59 1.56 1.57

Table 6. Simulation results (system with heat storage)

Samples 1 20 100 600 1000 2000 3000
Mean time [sec] 1.63 1.49 1.48 1.50 1.50 0.74 0.72
Min. 6.29 4.63 3.92 2.54 2.54 2.54 2.54

%’ § Mean 6.29 7.62 7.57 7.50 7.52 7.51 7.51
a & Max. 6.29 11.84 11.84 13.40 14.73 16.19 16.19
Std. 0 1.63 1.78 1.80 1.79 1.75 1.76
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this happens after approximately 400 sample sets.
Considering also the low mean simulation time, it
can be said that the method is quite fast.
Comparing results in Tables 5 and 6, there is
an increase of the mean profit by approximately
11%, when a heat storage is used. The daily profit
distribution for the first configuration system is
shown in Fig. 5. It should be clarified that this

sample sets

profit includes only the income from electricity
sold to the markets.

Finally, Fig. 6 shows the share of power and
heat generation among the units of the system.
The electricity price values and volatility are
such that only unit 1 and unit 2 share almost
the total generation. These units have the lower
fuel cost as seen in Table 4.
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NOMENCLATURE
Indices and numbers
g Index of units, running from 1 to N, gfov Maximum flow to and from storage

Index of time periods in hourly resolution, Volume traded in balancing market for

[BM?

t running from 1to N, Vol up regulation

Volume traded in balancing market for
Parameters vol®M . 9

down regulation
Nppet Day-ahead market price vol  Volume traded in intraday market
Am Intraday market price gl Heat demand
Nom- Balancing market down regulation price /g Minimum on time
\omt Balancing market up regulation price f Minimum off time

g9

7\;“5’ Fuel price Variables
o Start-up cost P+ Power sold to day-ahead market
g Shut down cost P Power bought from day-ahead market
cshed Heat shedding cost pim Power sold to intraday market
B;’ Marginal fuel consumption for power production  PI™ Power bought from intraday market

[3;” Marginal fuel consumption for heat production pom+ Power sold to balancing market
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Py Power generation capacity pom- Power bought from balancing market

p;""” Power generation lower limit P Fuel consumption

q;” Heat generation capacity ngt Power generation

q;""” Heat generation lower limit Py Power consumption

a, Power-to-heat ratio Q, Heat generation

n, Efficiency Qy Heat generation in mode 1

cop, Coefficient of performance Qr Heat generation in mode 2

f Heat storage losses parameter QP Heat shedding

ymax Heat storage capacity v, Heat storage content

ymin Heat storage lower limit U, Unit commitment binary variable

rat Upward ramp rate for heat Y. Start-up binary variable

r;” Downward ramp rate for heat Z, Shut-down binary variable

rZT Upward ramp rate for power M;r Binary variable for mode 1

r;’T Downward ramp rate for power M;,t Binary variable for mode 2
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CENTRALIZUOTO SILUMOS TIEKIMO
SISTEMOS VEIKLOS TRUMPUOJU
LAIKOTARPIU MODELIAVIMAS TAIKANT
MONTE KARLO METODA

Centralizuoto $ilumos tiekimo sistemose energija daz-
nai gaminama kogeneracinése jégainése, kurios efek-
tyviai gali gaminti tiek Silumos, tiek elektros energija.
Be $iy jégainiy, tikslui pasiekti gali buti naudojami
vandens $ildymo katilai, elektriniai $ildytuvai, $ilumos
siurbliai ir $ilumos saugojimo talpos. Kogeneracija ir
galimybé sukaupti $ilumg, kuri bus panaudota véliau
sistemos valdymui, kelia nemazai is$tkiy. Be to, didelé-
se centralizuoto $ilumos tiekimo sistemose gaminama
elektros energija yra parduodama elektros energijos
rinkose. Todél sistemos veiklos planavimo problema
tampa dar sudétingesné, nes reikia atsizvelgti j elek-
tros energijos kainy neapibréztumg rinkose. Siekiant

optimaliai spresti neapibréztumus yra taikomi jvai-

ris matematinio optimizavimo jrankiai, pavyzdziui,
stochastinis programavimas ir optimizavimas. Siame
straipsnyje aprasomi rezultatai, gauti taikant tradicinj
Monte Karlo modeliavimo metods. I$ pradziy mate-
mati$kai formuluojamas centralizuoto $ilumos tie-
kimo sistemos veiklos trumpuoju laikotarpiu ir elek-
tros prekybos modelis. Tada $is modelis naudojamas
parinktai sistemai modeliuoti Monte Karlo metodu, o
modelio stochastiniy parametry reik§més apskaiciuo-
jamos taikant autoregresinius modelius. Rezultatai
parodé, kad skai¢iavimai yra greiti ir reikalauja tik
300-400 skaiciavimy konvergavimui. Dviejy sistemos
konfigaracijy palyginimas parodé, kad silumos saugo-
jimas kasdien padidina tikéting pelna 11 %. Galiausiai,
elektros energijos kainos nepastovumas $iuo atveju yra
toks, kad didzZigjg dalj laiko daugiausia veikia du koge-
neracinés jégainés blokai.

RaktaZodziai: centralizuotas Silumos tiekimas, ko-
generacija, trumpalaiké veikla, modeliavimas Monte

Karlo metodu, elektros rinkos



