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The use of antibiotics is becoming increasingly limited. This is 
mainly due to the development of resistance to pathogenic bacte-
ria, and, over time, more and more bacteria will become resistant 
to antimicrobials. This problem inevitably leads to the conclusion 
that studies into alternative methods of combating pathogens, 
which are necessary to develop sufficiently reliable and effective 
therapies for bacterial infections, are indispensable. This review 
highlights some recent developments in conventional antibiotic 
and non-antibiotic treatment strategies. It has been shown that 
traditional antibacterial targets include derivatives of known an-
tibiotic classes, new chemical classes with new targets, as well as 
unknown or undefined agents with unclear targets. Promising 
strategies for combating microbial pathogens have been identi-
fied, including new targets, namely, toxin secretion systems, bi-
ofilm formation, and adhesion mechanisms that affect quorum 
sensing of microbial populations. In addition, it is important to 
use new antimicrobial agents with other, non-antibiotic, mecha-
nisms of action: phage and phage-derived peptides, microbiota-
modulating therapies, and enhancing immune response.
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INTRODUCTION

The advent of antibiotics in the  first half of 
the  twentieth century catalysed a  medical 
revolution by drastically reducing mortality 
from bacterial infections. Antibiotics contrib-
uted significantly to an extension in the average 
life expectancy in the USA from 59.7 years in 
1930 to 78.7 years in 2010 (Arias et al., 2016), 
providing clinicians with a  wide range of 
tools to prevent and fight bacterial infections. 
The mechanisms of action of these substances 
are mainly related to blocking the development 
and reproduction of bacterial cells, which leads 
to the  disruption of the  synthesis of their cell 
wall and cytoplasmic membrane. Very quickly, 
however, due to the high adaptability of patho-
gens and the  acquisition of resistance, these 
substances lose their relevance as antimicrobial 
substances. To solve this problem, the existing 
classes of antibiotics with limited cross-resist-
ance to existing drugs have been modified and 
new classes of antibiotics have been introduced 
(Aminov, 2010).

However, the result of uncontrolled or wide-
spread use of antimicrobials is microbial resist-
ance to the use of each new drug, and the pro-
liferation of resistant pathogens is becoming 
a major problem (Palumbi, 2001; Tsiodras et al., 
2001; Lewis et al., 2005; Clatworthy et al., 2007; 
Gentry et al., 2008; Morgan et al., 2011). Moreo-
ver, due to the high doses of antibiotics required 
to trigger efflux mechanisms in gram-negative 
bacteria, intoxication of the  body can occur 
(Baker et al., 2018). This threatens with the situ-
ation when microbial pathogens do not respond 
to the  existing antibiotics, and therefore there 
is a need to develop new effective strategies for 
treating infectious diseases with substances of 
a different nature. These methods include treat-
ment aimed at modeling the microbiota, namely, 
the  use of antibacterial vaccines and antibod-
ies; phages or phage-derived proteins , antiviral 
agents, potentiators that enhance, augment, or 
transform other agents, and the  use of immu-
nomodulators developed to treat bacterial dis-
eases (Tenson, Mankin, 2006; Motley, Fries, 2017; 
Theuretzbacher, Piddock, 2019; Kortright et al., 

2019; Miró-Canturri, 2019; Rello  et  al., 2019; 
Monserrat-Martinez  et  al., 2019; Vaccines to 
tackle drug resistant infections 2019).

In this review, we explain some traditional 
targets to fight given the development of antibi-
otic resistance of bacteria, and discuss alterna-
tive ways to control microbial pathogens.

The main effect of antibiotics is achieved 
through direct destruction of the  pathogenic 
flora. The  vast majority of antibacterial mol-
ecules are artificially synthesised; they are not 
natural compounds. Their registration by regu-
latory authorities occurs according to simple and 
well-known algorithms. The development of this 
trend in pharmacology takes place in several 
directions: derivatisation of well-studied mol-
ecules; research into new known molecules with 
new target organisms and into innovative unex-
plored molecules with undefined targets.

DISCUSSION

Derivatives of the  classes of known antibiot-
ics. Most modern antibiotics are derivatives 
of natural substances that have been used for 
many years (Fernebro, 2011). The  develop-
ment of resistance of pathogens to antibiotics 
can be slowed down by modifying known and 
already used substances. Such modification 
may include increased intermolecular and in-
tramolecular interactions and is considered 
an effective way to combat resistant forms of 
pathogens (Fernebro, 2011; Silver, 2007). For 
example, vancomycin could interrupt bacterial 
cell wall synthesis by binding with high prox-
imity to peptidoglycan and preventing cell wall 
assembly (Perkins, 1982; Romaniuk, Cegelski, 
2015). The emergence of vancomycin-resistant 
enterococci (VRE), which was associated with 
their ability to disrupt the factors of interaction 
with the  antibiotic (repeats d-Ala-d-Ala), was 
recorded after several decades of use of this an-
tibiotic (Noble et al., 1992; Murray, 2000; Mc-
Kessar et al., 2000). Modified vancomycin was 
developed to avoid this ability of pathogenic en-
terococci (Xie et al., 2011; Okano et al., 2017), 
but this did not stop the growth of bacteria and 
they soon became resistant again.
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New targets for new chemical groups. New 
target molecules contain new sites for inter-
actions in the  area of ribosomes, membranes, 
gene interference, and metabolism (Ma  et  al., 
2016; Silver, 2016; Xie et al., 2018; Ciumac et al., 
2019). Some of these approaches have already 
been studied, but clinical development has not 
begun.

Unknown or undefined agents with un-
clear targets. This group includes several basic 
groups of antimicrobial molecules depend-
ing on their origin and structure: synthetic or 
natural antimicrobial peptides and proteins 
(AMPs), natural products, and UDP-3-O-(R-
3-hydroxymyristoyl)-N-acetylglucosamine 
deacetylase (LpxC) inhibitors. AMP is a  well-
studied natural compound with clear antibac-
terial effects. These molecules are the basis for 
the synthesis of peptides and peptide-like mol-
ecules (Kang  et  al., 2017; Molchanova  et  al., 
2017; Moravej et al., 2018; Torres et al., 2019). 
The  main goals for research in this direction 
consist in reducing the  cost of production of 
the substances, reducing the impact of protol-
ytic degradation to increase the half-life in vivo, 
and improving safety (Kuppusamy et al., 2019). 
The basis of the modern market for antibiotics 
is precisely such natural substances. Develop-
ments in the  field of genomics and chemical 
technologies enable increasing the  effective-
ness of research in the  field of pharmacology 
of natural molecules (Fedorenko  et  al., 2015; 
Wright, 2017; Rossiter  et  al., 2017). LpxC in-
hibitors targeting the first stage of lipid A pro-
duction have been studied exclusively prior to 
phase I clinical trials. This is due to toxicity, 
which was identified in a mouse model. In ad-
dition, significant local inflammatory reactions 
were noted after injections (Erwin, 2016; Liu, 
Ma, 2018; Cohen  et  al., 2019). The  toxicity of 
the molecules used to inhibit LpxC is the main 
obstacle to the  development of this direction. 
A growing body of knowledge in this area, such 
as recent CARB-X-supported studies related to 
LpxC inhibition (the Shared Platform for Anti-
biotic Research and Knowledge (SPARK), Pew 
Trusts), may provide an impetus to overcome 
some of the barriers to the use of this group of 

antibiotics. This instance highlights the general 
difficulties associated with toxicity in transfer-
ring molecular safety models from preclinical 
trials to clinical use.

New nonantibiotic target. In this section, 
we present an overview of several ‘nonantibi-
otic’ approaches aimed at the  treatment and 
prevention of bacterial infections. When bacte-
ria-caused infections occur, pathogens produce 
virulence factors. The  molecules allow patho-
gens to resist the  body’s self-cleansing, gain 
access to deeper tissues, penetrate them, and 
damage host cells. For the productive treatment 
of bacterial infections, agents have been devel-
oped that block the activity of virulence factors 
and therefore halt pathogenesis until the host’s 
immune response limits or kills the bacteria.

Targeting toxins and secretion systems. Se-
creted toxins play a significant role in the patho-
genesis of many medically necessary bacteria, 
and several of these have been targeted with 
the aim of blocking infection. Usually, antibod-
ies and antibody-drug conjugates are the inhib-
itors of a toxin. Currently, only three antibodies 
against bacterial infections have been ap-
proved for use (Lowy et al., 2010; López et al., 
2015; Wilcox et al., 2017). Their main effect is 
the neutralisation of toxins that affect virulence 
and, consequently, the pathological process. To 
date, studies into the antibodies with multiple 
virulence determinants have not yielded posi-
tive results.

Some of the  antibody problems described 
also arise in the  development of vaccines 
against multi-resistant pathogens. The  lack 
of preclinical predictive models has led to 
the failure of a number of bacterial vaccines in 
late stages of clinical trials. The absence of such 
models may lead to poor vaccine efficacy in 
the future (Priebe, Goldberg, 2014; Redi et al., 
2018). Published studies on the  evaluation of 
promising vaccines showed the  inconsistency 
of the target pathogens used for development or 
the uncertainty of development results (https://
vaccinesforamr.org). In order to affect human 
cells, toxins must overcome the  membranes 
of the bacterial cell, since they are synthesised 
directly in the bacterial cytosol. A number of 
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specific secretory systems acquired by bacteria 
are associated with this. These systems can be 
used as targets for pharmaceuticals. An exam-
ple is type III secretion systems (T3SSs) inher-
ent in gram-negative bacteria. Type III secre-
tion (T3S) is a  multiprotein needle apparatus 
with which the bacterium can inject the pro-
duced compounds directly into the  cells of 
the host. It is known that T3S of different types 
of bacteria are similar to each other, despite 
differences in the secreted toxins. This leads to 
the conclusion that T3S inhibitors can be used 
to combat a  wide range of pathogens (Swiet-
nicki et al., 2011).

Targeting biofilms and adherence. Biofilms 
that form on inert surfaces such as catheters, 
prosthetic joints, or heart valves can interfere 
with the penetration of antibiotics and are ma-
jor sources of infection (Kester, Fortune, 2013; 
Ribeiro et al., 2016). To prevent the occurrence 
of microbial infections both in the  biofilm 
and in the planktonic phase of growth, target-
ing the adhesins is used. With the help of such 
adhesins the pathogen is fixed on the mucosal 
surface (Krachler, Orth, 2013). In the process of 
infection, microbial pathogens change the  in-
ternal environment of the  host cell by attach-
ing to cellular receptors of their own proteins, 
which leads to the disruption of the  structure 
of cell membranes and stimulation of vari-
ous intracellular processes (Shaw  et  al., 2001; 
Ide  et  al., 2001; Pinchuk  et  al., 2010; Wilson, 
2014; Jimenez et al., 2016; Gilbert et al., 2017). 
One of these processes is the  inhibition of 
the activity of the membrane enzyme sortase A, 
which is a determining factor in the interaction 
of antibiotics with the peptidoglycan of the cell 
wall of gram-positive pathogens (Mazmani-
an  et  al., 2001; Ton-That, Schneewind, 2004; 
Zhang et al., 2014; Thappeta et al., 2020).

Quorum sensing. Quorum sensing is one 
of the  leading mechanisms of microorganism 
interaction within the  population thanks to 
which they can sense the  influence of the  ex-
ternal environment as a  single organism and 
produce a collective response. Such a response 
is often the  activation or expression of genes, 
which depends on the concentration of autoin-

ducers, hormone-like molecules that are syn-
thesised because of intercellular interactions 
(Vasil, 2003; Waters, Bassler, 2005).

The critical concentration of autoinducers 
is a  signal to the  microorganism population 
to suppress the  manufacture of its own viru-
lence factors in order to conceal and postpone 
the  host immune system’s reaction. (Deep, 
2011). The  restoration of the  biosynthesis of 
substances responsible for the pathogenesis of 
inflammation occurs after the  accumulation 
of a high concentration of pathogens that can 
neutralize protective mechanisms, and thus 
the inflammatory process begins.

In the  regulation of the  synthesis of viru-
lence factors by pathogens, their formation in 
the form of a biofilm also plays a role.

Among other factors, the  functioning of 
the quorum sensing (QS) system is ensured by 
the  biosynthesis of peptides that are specific 
to each microorganism, so they can be effec-
tive targets for the  action of new antiseptics. 
For example, gram-negative bacteria are de-
pendent on acyl-homoserine lactones (AHL) 

(Pearson  et  al., 1994; Whitehead  et  al., 2001; 
Njoroge. Sperandio, 2009), the  precursor of 
which is S-adenosylmethionine (SAM) (Pap-
enfort, Bassler, 2016), and oligopeptides are 
the signaling compounds for the QS system of 
gram-positive bacteria. The  latter have an in-
dividual sequence for each species of bacteria, 
and their synthesis is genetically determined 
(Ng, Bassler, 2009).

However, the  protein nature of these pep-
tides (AHL, SAM) allows the use of appropriate 
enzymes (lactonases, acylases, or oxidoreduc-
tases) for their degradation, and thus inactiva-
tion of QS signals of pathogens and its inhibi-
tion (Leadbetter, Greenberg, 2000; Dong et al., 
2000; Dong et al., 2001; Uroz et al., 2005; La-
Sarre, Federle, 2013). The  possibility of non-
enzymatic inactivation of these peptides is also 
being studied. Another approach is based on 
blocking autoinducers of pathogens to deprive 
them of the opportunity to disguise themselves 
and become immediately ‘visible’ to the host’s 
immune system. By removing or inactivat-
ing autoinducers, it is possible to achieve high 
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specificity of action of such antimicrobial drugs, 
which will also minimise the  development of 
pathogen resistance.

Phage and phage-derived peptides. Bacte-
riophages were used for antibacterial therapy 
before the  advent of antibiotics, and the  rise 
in infections caused by multidrug-resistent 
(MDR) strains of bacteria has sparked re-
newed interest in this therapy (Knoll, Mylona-
kis, 2014). Compared to traditional antibiotics, 
phages have important advantages: they do not 
infect human cells and practically do not affect 
the normal microbial flora (Rohde et al., 2018; 
Kortright  et  al., 2019; McCallin  et  al., 2019). 
In the  past, phages were used in preparations 
only for external use (Morozova  et  al., 2018); 
currently, preparations for intravenous ad-
ministration and aerosols are being developed 
(Chang et al., 2018).

To improve phage therapy, phages are devel-
oped to increase their infectivity and host range, 
and individual phage components are purified 
to target bacteria (Nobrega  et  al., 2015). Par-
ticular attention should be paid to endolysins, 
which are obtained from phages (Fischetti, 
2018; Abdelkader  et  al., 2019). This group of 
substances is characterised by a highly specific 
bacteriolytic effect that occurs upon direct con-
tact. There are reports of the  development of 
drugs against Staphylococcus aureus infections 
based on endolysins (Gentry et al., 2008). Mo-
lecular methods, namely protein engineering, 
lead to the emergence of new methods of com-
bating gram-negative microorganisms (Olivei-
ra et al., 2018), although such projects are not 
numerous and require in-depth study (Briers, 
Lavigne, 2015).

Microbiota-modulating therapies. Over 
the  past decades, we have become increas-
ingly aware of the  importance of the  micro-
biome for human health and disease. A  link 
has been established between the human mi-
crobiota and disease condition, including dia-
betes, cardiovascular disease, and even mental 
health. The  main target of preclinical stud-
ies is Clostridium difficile, a  representative of 
the  intestinal microbiota. There is practically 
no mention of the microbiota from the lungs, 

sinuses, or the  skin. The  results of the  study 
of metagenomic, computational, and syn-
thetic biology helped to renew the interest of 
researchers in the  human microbiota (Falo-
ny et al., 2019). In order to reduce the occur-
rence of C. difficile relapses and to correct oth-
er disorders, a  microbiota modification was 
used to study and test its effectiveness (Cam-
marota  et  al., 2017; Iqbal  et  al., 2018; Keller-
mayer, 2019). The  accuracy of genetic engi-
neering using known probiotics is improved 
by such approaches (Waters, Bassler, 2005). 
Thus, it is possible to increase the expression 
of specific antimicrobials (Fehér  et  al., 2017; 
Ozdemir et al., 2018; Ghosh et al., 2019) and at 
the same time reduce the likelihood of transfer 
of potential pathogens (Ramachandran, Bik-
ard, 2019).

Modulation of the  immune response. 
The  ability to adjust the  mechanisms of 
the  host’s immune response to infection can 
be considered one of the  important methods 
of combating pathogens that will prevent 
the  spread of infection in the  early stage. Di-
recting macrophages to the site of infection and 
enhancing the immune response may eliminate 
the need for antibiotics altogether.

A number of authors demonstrated the role 
of antimicrobial peptides and proteins in eu-
karyotic and prokaryotic organisms in the for-
mation of the immune response at the first line 
of infection (Zasloff, 2002; Ganz, 2003; Red-
dy  et  al., 2004; Bahar, Ren, 2013). Contain-
ing up to 60 amino acids, these molecules, act 
as antibiotics under physiological conditions 
and their antimicrobial activity is mainly due 
to membrane-lytic action. However, the con-
comitant effect of AMPs has been established, 
which consist in influencing the processes of 
cytokine activity, chemotaxis, antigen detec-
tion (Territo et al., 1989; Yang et al., 2000; Ni-
yonsaba  et  al., 2002; Yang  et  al., 2002; Kuro-
saka  et  al., 2005), increased protection and 
inhibition of the infectious process, as well as 
wound healing (Heilborn  et  al., 2003; Toku-
maru et al., 2005; Baroni et al., 2009), comple-
menting the  bactericidal effect of other anti-
microbials (Lai, Gallo, 2009).
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The latest research has developed vitamin-
based nanoparticles. These nanoparticles are 
particularly good at delivering messenger RNA, 
while constructing messenger RNA encoding 
antimicrobial peptides and signal proteins and 
transporting them to macrophages produced 
by donor monocytes in the  cell. Since mac-
rophages naturally have antibacterial activity, 
adding other antibacterial peptides to the cells 
facilitates further enhancement of the antibac-
terial activity and helps the macrophages elimi-
nate bacteria (Hou et al., 2020).

Classical antibacterial drugs act on target 
organisms by altering cellular processes. As 
a result of many years of treatment of the popu-
lation with high doses of antibiotics and their 
misuse, we have entered the ‘postantibiotic era’. 
Many microorganisms have become resistant 
to a  wide range of antibacterial drugs. New, 
modern antibiotics are being developed, but 
the same problem arises: the body is able to de-
velop resistance to them.

CONCLUSIONS

The control of pathogenic microorganisms, 
which has been going on since the discovery of 
antibiotics, has led to the  emergence of super 
pathogens capable of withstanding high concen-
trations of antibiotics and their combinations. It 
is said that it is possible to return to the pre-anti-
biotic era, when there were no means to combat 
infectious diseases; a future is possible, however, 
when there really will be no such means, because 
human activities will lead to the  emergence of 
resistant forms of pathogens.

Obviously, the  control strategy must be 
radically changed and focused not on killing 
the  pathogens themselves but on influencing 
the factors of their pathogenicity and virulence. 
Numerous attempts to find such approaches 
can be seen in recent decades. They are gener-
ally targeted at inhibiting host-pathogen con-
tact, cell adhesion, or immune system response 
regulation, which opens up the  possibility of 
developing medications that can prevent dis-
ease progression even after the  pathogen has 
entered the body. The development of new an-

timicrobials should be based on an in-depth 
study of the pathways and mechanisms of path-
ogen virulence, and therefore the choice of tar-
gets that are associated with non-vital cell pro-
cesses and are least protected by pathogen cells. 
The development of such new generation drugs 
has the  prospect of long-term effectiveness in 
overcoming the  current problem of pathogen 
resistance and can provide a chance for the host 
organism with a  low rate of evolution to suc-
cessfully resist infectious diseases.
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Santrauka
Antibiotikų vartojimas vis labiau ribojamas dėl iš-
sivystančio atsparumo patogeninėms bakterijoms. 
Laikui bėgant vis daugiau bakterijų taps atsparios 
antimikrobinėms medžiagoms, todėl būtina ištirti 
alternatyvius kovos su patogenais metodus. Tai pa-
dėtų sukurti pakankamai patikimą ir veiksmingą 
infekcinių ligų terapiją. Šioje apžvalgoje aptariami 
kai kurie naujausi gydymo įprastiniais antibiotikais 
ir neantibiotikais strategijų pokyčiai. Įrodyta, kad 
tradiciniai antibakteriniai taikiniai apima žinomų 
antibiotikų klasių darinius, naujas chemines klases 
su naujais taikiniais, taip pat nežinomus ar neapi-
brėžtus agentus. Buvo nustatytos daug žadančios 
kovos su mikrobų patogenais strategijos, įskaitant 
naujus taikinius, būtent  –  toksinų sekrecijos siste-
mas, bioplėvelės formavimąsi ir sukibimo mecha-
nizmus, turinčius įtakos Quorum Sensing mikrobų 
populiacijoms. Be to, svarbu naujas antimikrobines 
medžiagas naudoti su kitais, ne antibiotiniais, veiki-
mo mechanizmais – fagais ir fagų kilmės peptidais, 
mikrobiotą moduliuojančias terapijas, stiprinančias 
imuninį atsaką.

Raktažodžiai: įprastiniai antibiotikų taikiniai, 
neantibiotikų taikiniai, gydymas neantibiotikais, in-
fekcijos, pasipriešinimas


