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In this paper, we discuss the bound-state problem for the spinless Salpeter equation with the Yukawa potential.
Due to the nonlocal term of the Hamiltonian encountered, we use the eigenfunction for the ground state of the hy-
drogen atom as a trial function and employ the variational method to solve the spinless Salpeter equation. We derive
the upper bounds on the eigenvalues to obtain the bound state inequality. The constraint on the interaction strength «
is given, (2.42m-1.32u)u/(2.37m*-mu) < a < 8/(3m). And the maximum of the screening parameter of the Yukawa

potential  is obtained, = 1.14 m.
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1. Introduction

It is undoubted that the well-known Yukawa po-
tential [EI] is one of the most important potentials
in physics and plays an important role in many
branches of physics. The Yukawa potential takes
the form

—ur

Vr)=—a—, (1)
r

where « is the strength of the interaction. In
particle physics, the Yukawa potential describes
the potential due to scalar particle exchange, and
p is the intermediate particle mass. In plasma
physics, the potential (1) is known as the Debye-
Hiickel potential [E] which describes the ion po-
tential shielded by the presence of neighbouring
charged particles for ideal and weakly nonideal
plasmas, and y = 1/r is the reciprocal of the De-
bye length r_. In solid state physics, it is known
as the Thomas—Fermi potential [H] which repre-
sents the effects of a charged particle in a sea of

conduction electrons, and y is the Thomas-Fermi
wave vector. In atomic and molecular physics, it
describes a screened Coulomb potential [#, E] due
to the cloud of electronic charge around the nu-
cleus, in which yu is the screening parameter and
its reciprocal 1/u describes the effective screening
range of the potential.

The Yukawa potential is a short range interac-
tion and it has a distinct difference from the Cou-
lomb potential which is a long-range interac-
tion. The Yukawa potential has a finite number
of bound states while the latter has an infinite
number. The Schrodinger equation with the Yu-
kawa potential gives the bound state inequality for
the existence of the lowest lying S-states [E]

o>084H, (2)

m
where m is the reduced mass. The inequality gives
the relation between the interaction strength
a, the screening parameter y and the reduced
mass m. In Ref. [ﬁ], the very precise value is
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obtained, u/(ma) < 1.1906122105(5). In Refs. [B
B] , the spinless Salpeter equation, the Dirac equa-
tion and the Klein-Gordon equation with the Yu-
kawa potential are discussed. In this paper, we
present the bound state inequality from the spin-
less Salpeter equation with the Yukawa potential.

This paper is organized as follows. In Section 2,
the spinless Salpeter equation with the Yukawa po-
tential is discussed. By employing the variational
method, the bound state inequality is presented.
The conclusions are in Section 3.

2. Variational bound on the Yukawa potential

In this section, the Rayleigh-Ritz method is brief-
ly reviewed. Then applying the variational method
to the spinless Salpeter equation with the Yukawa
potential, the critical value of the interaction
strength « is presented.

2.1. Rayleigh-Ritz method

It is known that the min-max principle [[14-16]

provides the theoretical foundation to derive
the rigorous upper bounds on the eigenvalues of
some self-adjoint operators which are bounded
from below. As a consequence of the min-max
principle, the Rayleigh-Ritz method provides
a straightforward and efficient means of com-
puting nonincreasing upper bounds on eigen-
values.

Let H be a semibounded self-adjoint opera-
tor [@]. LetE, k = 0,1, ..., denote the eigenvalues
of H (counting multiplicity) at the bottom of its
spectrum with E, < E < .... Let V be a n-dimen-
sional subspace, V < D(H), and let P be the or-
thogonal projection onto V. Let H, = PHP. Let E ,

E,...E  bethe e1genvalues of H VIV, ordered
by E, <E <..<E .Then
E<E,i=0,.,n-1 (3)

The Rayleigh quotient [, ] is defined as

WIHly) @

Wwly)

There is the Rayleigh principle []:

Fly)=

E,= min F(y), 5)

In consequence, there is the inequality given by
Rayleigh

E, < F(y) (y € D(H)), (6)

which is a particular case of the min-max princi-
ple,k=0.

2.2. Bound state inequality

The spinless Salpeter equation (SSE) []
is a relativistic extension of the nonrelativistic
Schrédinger equation and a well-defined stand-
ard approximation to the Bethe-Salpeter equa-
tion [P4, @] which is the appropriate tool to
describe the bound states within the relativistic
quantum field theory.

The spinless Salpeter equation is written in
the configuration space as

My(r) = Hy(r), H=w + V(r), (7)
where M is the eigenvalue and y(r) is the corre-
sponding eigenfunction. V(r) is the Yukawa po-
tential (Eq. (1)). w is the square-root operator of
the relativistic kinetic energy of a particle with
mass m and momentum p,

® =p> +m’ =A—A+m’, (8)
which is a nonlocal square-root differential opera-
tor.

We use the eigenfunction for the ground state
of the hydrogen atom as a trial function,

8/35 1

y(r)= f , ¥(p)= r 1B o

Wiy)=1 @y)=1

to evaluate the energy expectation value of
the Hamiltonian in Eq. (7). Here f is the vari-
ational parameter to minimize the expectation
value. Using Eqs. (4), (7) and (9), the expectation
value of H reads

F(y) = (ylH|y) = (ylo|y) +(w|V ()|y). (10)

In the above equation, {(w) [E] and (V (r)) are
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)=y

x| Bfm B (3m* —4m*B*+4B)

11
+3m“(m2—2ﬂ2)sec“m, (1)
4ap’
V = .
ey 2B +py’

Eq. (10) can be rewritten as

F(y)=mM, (12)

where ' = B/m, y' = u/m,

M= BT 4p7 4B
20 B7) ")

g ysee ! L | 40B”
+3(1-28"%)sec ﬁ’} OB )

Using the Rayleigh principle (5) and considering
the existence of the bound state, there is the con-
straints

0S£11in M,(B)<1. (14)

>0

The mass of the bound state cannot be less than
zero which gives a constraint on «. The bound state
should exist and the binding energy should be neg-
ative for the Yukawa potential, which gives the con-
straints on « and p.

In the ultrarelativistic limit, f’>>1, Eq. (13) re-
duces to

M, =B
3n 3n B’

4"

R (15)
(2B"+u)

In the above equation, the kinematic term takes
the large expansion term and the potential term
remains unchanged. The Hamiltonian should be
bounded from below, there is

agg. (16)
T

This result is independent of y and m. It is not as
tight as the optimum constraint « < 2/7 [@].
In the nonrelativistic limit, Eq. (13) reduces to

r2 13
M :1+ﬁ 4o

__ TP (17)
T2 By

0<min M, (B") gives <J2.If M in Eq. (17) has
>0 u

the lowest point other than the origin of ', i.e.

g@@%kh (18)
then we can obtain
a>H. (19)

m

Using Eqs. (13) and (14), we obtain the criti-
cal value of the interaction strength «. By fitting
the calculated data, we obtain the fitting formula
for

‘min®

fi(@') =p' -0.0124" - 0.189u", (20)

(2.42-1.32u"'
237-u'

f 2 (‘u ') = (2 1)

The critical value of . varies with the screen-
ing parameter y and the mass m, see Fig. [l I We can
see that the formula in Eq. (20) is consistent with
Eq. (19) as g’ is small. Combining Egs. (16), (20)
and (21), there is the constraint on the interaction
strength:

08l
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Fig. 1. The critical value of « varies with y' = y/m.
The dotted line represents the numerical results ob-
tained from Eq. (13), the dashed line is for the fitting
function f,(u"), the thin line is for the fitting function
£,(¢') and the thick line represents the critical value
(Eq. (2)) for the Schrodinger equation case.
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o <oso

min - max ?

O = fi(/m), f,(u/m), o, :i. (22)
RY/4

From Eq. (21), we obtain the condition for
the screening parameter:

n+%%}m 121 109 625 o
144 99

OS‘uSm(
12 66 4356

As o = 8/(37), the spinless Salpeter equation pre-
dicts as a limit for the S-wave bound state:

@q —1.14.
m max

2.3. Discussion

(24)

The existence of a bound state is a fundamental
and important subject for atomic, molecular and
particle physics. The constraints on the interaction
strength are summarized in . For example,
for the Dirac equation with the Coulomb poten-
tial, the existence of the ground state requires
0<Za<1 [@]. From the relation, it is straight-
forward to make the conclusion that an S-wave
bound state composed of one fermion and one
point nucleus with the atomic number Z > 137
does not exist. In the case of one scalar particle in
the Coulomb potential, there is Z < 69 [].

The conditions for the existence of a bound
state within the spinless Salpeter equation with
the Yukawa potential are Egs. (22) and (23) which
give the constraints on the interaction strength «,
the screening parameter y and the mass of the par-
ticle m. The numerical results show that a has
a maximum which is independent of y and m,
a  =8/(3m). As a > a__, the particle in the Yu-
kawa potential will lose its mass due to the bind-
ing energy and has negative energy which is in

connection with the collapse of the vacuum [@].
As a < «__ , the bound state cannot exist due to
weak binding. And « . depends on the ratio be-
tween the mass of exchanged boson and the mass
of constituent.

The Yukawa potential is a potential induced
by a massive intermediate scalar particle with
mass y. If y = 0, the exchange particle becomes
massless and the short-range interaction becomes
the long-range Coulomb potential. A larger mass
of the exchange scalar particle demands a larger
interaction strength to form a bound state. As
the interaction strength « is fixed, the exchange
particle mass cannot be larger than its critical
value, and other particle cannot be bound by this
Yukawa potential. According to Eq. (24), p__ is
related to the mass of constituent m. If the mass
of the intermediate scalar particle is greater
than 1.14m, the component with mass m cannot
be bound by the Yukawa potential according to
the spinless Salpeter equation.

Because of the relativistic kinetic term, the in-
equality for the spinless Salpeter equation is more
complicated than that for the Schrodinger equa-
tion which is linear. When y' < 0.8942, the criti-
cal value of « for the spinless Salpeter equation
becomes larger than that for the Schrodinger
equation. As y' > 0.8942, the critical value of «
for the spinless Salpeter equation becomes smaller
than that for the Schrédinger equation.

3. Conclusions

In this paper, the bound state inequality is de-
rived from the spinless Salpeter equation with
the Yukawa potential by employing the vari-
ational method. Different from the linear inequal-
ity for the nonrelativistic Schrodinger equation,
the constraint on the interaction strength « for
the semirelativistic spinless Salpeter equation is
nonlinear. The fitting formula for the inequality

Table 1. The constraints on « for the Schrédinger equation (SE), the Dirac equation (DE), the Klein-Gordon
equation (KGE) and the spinless Salpeter equation (SSE) with the Coulomb potential (CP) and the Yukawa

potential (YP), respectively.

SE

DE KGE

SSE

CP 0<a<V2

0<a<1]/10]

0<a<1/2[11] 0<a<1/2[27]

YP o >0.84 u/m [6]

Figures in Ref. [9]

a<1/2[12,13] Qi < & < 8/37
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is (2.42m-1.32u)u/(2.37m*-myu) < a < 8/(3m).
And the maximum of the screening parameter of
the Yukawa potential y is obtained, = 1.14m.
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