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Majorana spinors are constructed in terms of the multivectors of relativistic Cl1,3 algebra. Such spinors are found to be mul-
tiplied by primitive idempotents which drastically change spinor properties. Running electronic waves are used to solve the real 
Dirac–Majorana equation transformed to Cl1,3 algebra. From the analysis of the solution it is concluded that free Majorana parti-
cles do not exist, because relativistic Cl1,3 algebra requires the massive Majorana particle to move with light velocity.
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1. introduction

Solutions of the  Dirac equation with the  electron 
charge equated to zero, e = 0, are called the Majora-
na spinors [1]. In the matrix notation the Majorana 
spinors are real-valued column-vectors which come 
from the assumption that all Dirac- iγ̂ ’s are real. Thus, 
the respective Majorana fields represent the particles 
that are their own antiparticles. Since the  particles 
and antiparticles coincide, from this it follows that 
the  Majorana particle is a  neutral spin- 2

1  particle 
(fermion) carrying no charge. The concept of Majo-
rana spinor, especially in the condensed matter phys-
ics, is frequently generalized assuming that the spinor 
is real but not necessarily related to the Dirac equa-
tion. In terms of the Hilbert space the properties of 
Majorana spinors were discussed most thoroughly in 
articles [2, 3], where the earlier literature is cited.

Nonetheless, there is no final consensus about 
the  status of Dirac–Majorana equation (also called 
the Majorana equation) in physics. For example, re-
cently the authors [4] came to the conclusion that “the 
physical meaning of Majorana’s equation is very dubi-
ous. Therefore, it seems to us that this equation can-
not give the equation of motion of the neutral WIMPs 
(weakly interacting massive particles), the  hypoth-

esized constitutive elements of the  Dark Matter”. 
On the other hand, in the condensed matter physics 
the  Majorana equation and the  respective particles 
are addressed to explain the  physics of a topologi-
cal superconductor (superconductor film carrying 
a vortex in contact with a 3D topological insulator), 
where the Majorana fermion bound to a vortex makes 
a qubit which is expected to have an unusually long 
coherence time and therefore may find application 
in the quantum computer development. The present-
day theoretical as well as the experimental status on 
Majorana fermions may be found, for example, in re-
view articles [5] and [6].

The Dirac–Majorana (DM) equation

 , (1)

where m is the  mass, µγ̂i  are real 4×4 Majorana 
matrices [7] and ψM is a real spinor, as a rule, is ana-
lyzed in terms of the complex Hilbert space [2, 3]. In 
the present paper the DM equation is formulated and 
solved in terms of real geometric algebra (GA) [8–11], 
by mathematicians also called the  Clifford algebra, 
where the quantum mechanics is formulated in grad-
ed vector spaces that accommodate non-commuting 
multivectors. Two types of geometrical algebras, 
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Cl1,3 and Cl3,1, having, respectively, (+,–,–,–) and 
(+,+,+,–) signatures are used to represent the  Dirac 
equation [11]. The first, usually addressed by physi-
cists, may be represented either by 2×2 quaterni-
onic irreducible matrices or by complex 4×4 matri-
ces which are usually used in solving the problems. 
The  second, Cl3,1 algebra, is isomorphic to real 4×4 
matrices. This paper is limited to the analysis of DM 
equation by Cl1,3 algebra only. In the conclusions an 
attempt to solve the DM equation by Cl3,1 algebra will 
also be mentioned.

2. spinors in geometric algebra

Two approaches based on either left minimal ideals or 
even subalgebras Cl+

p, q ϵ Clp, q, expressed in some basis 
are addressed to describe the spinors in GA [12, 13]. In 
practice, the second approach, where one of the basis 
vectors is selected as a quantization axis, is preferred 
in physics and used more frequently. Of all Clifford 
groups that describe the  internal structure of GA, 
the most important from the physics point of view is 
the spin group Spin(p,q), also called the spinor group, 
which is directly connected with Clp,q algebra. Thus 
the GA itself is capable to construct the half-spin repre-
sentations of Spin(p,q) groups [12, 14]. Both algebras, 
Cl1,3 and Cl3,1, are described by the same spin group

Spin3,1 = Spin1,3 ≅ SL(2, C), (2)

which is isomorphic to a  special linear (SL) group 
represented by 2×2 complex matrices. The  number 
of elements (infinitesimal generators) in SL (2, C) is 

, where n = p + q [13]. From this it follows 
that all properties of the Spin1,3 group may be repre-
sented by six complex 2×2 matrices.

The spin (or spinor) group may also be constructed 
from GA basis vectors ei that obey the anti-commuta-
tion relation eiej + ejei =2δij, where δij is the standard 
Kronecker symbol. The number of basis vectors ei is 
equal to n = p + q. The spinor is constructed from 
bivectors, grade-2 GA elements B = ei ∧ej = ejei , 
where here and in the  following it is assumed that 
the basis is orthonormal so that the wedge product ∧ 
may be replaced by a geometric product. The number 
of bivectors in Clp,q may be expressed through the bi-
nomial , where n = p + q, 
which coincides with the order (number of elements) 
of the SL(2, C) group. The elements of the spin group 
may be represented by the  exponential of bivectors 
B, in the form e±B ∈ Spinp,q. Then a  general group 
element will be a geometric product of exponentials. 
Since e±B in the  expanded form consists of a  scalar 

and a bivector, the product of exponentials will gen-
erate an even graded multivector. Thus, the  general 
spinor in Cl1,3 has the following form:

ψ = a0 + a1e4e3 + a2e2e4 + a3e3e2

+ b0e4e1+ b1e3e1 + b2e1e2 + b3I. (3)

Here ai and bi are real coefficients and I is the pseu-
doscalar, I = e1e2e3e4.

The basis vectors ei will be replaced by non-hatted 
gammas γμ, where μ = 0,1,2,3 and 1=2

0γ . The remain-
ing gammas satisfy 1=2 −µγ . Following the book [11] 
(for details see Appendix 5), the bivectors will be de-
noted by the  sigmas: σ1  =  γ1 γ0 , σ2  =  γ2γ0 , σ3  =  γ3γ0 , 
Iσ1 = γ3γ2 , Iσ2 = γ1γ3 , Iσ3 = γ2γ1 . The bivectors σi are 
space-like, σ2

i = 1, and the bivectors Iσi are time-like, 
(Iσi)

2 = –1.
There exists a bilateral correspondence and re-

spective replacement rules among the GA spinors ϕ 
and the Hilbert space ket-spinors |ϕ〉 represented by 
columns. For the Pauli spinor the replacement rule 
between the Hilbert space and GA is [11]

= a0 +  a
1Iσ1

 +  a
2Iσ2 +  a

3Iσ3 ≡ a
0 +  a

kIσk , (4)

which shows how the scalar coefficients ai in 
the 4-component spinor of Cl3,0 are related with 
the complex coefficients of the Hilbert space spinor. 
In GA, the normalization condition for the spinor is 
ϕ ~ϕ = 1, where the tilde indicates the reversion invo-
lution the meaning of which is seen from the exam-
ple  e͠iej= ejei. The standard 4-component Dirac spinor 
|ψ〉 is obtained by stacking two Pauli spinors (4). In 
Cl1,3 algebra, as Eq. (3) shows, the GA spinor ψ is 
a sum of a scalar, six bivectors, and a pseudoscalar. 
Then it can be shown that for the relativistic Cl1,3 al-
gebra the replacement rule reads

= a0 +  a
kIσk + (b0 + bkIσk )σ3. (5)

Map (5) may be written more concisely in the form 
of two Pauli spinors χ and ω:

. (6)
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The action of Dirac gamma matrices or their com-
binations onto column-spinors has an equivalent 
expression in GA. Rules (5) and (6) induce the  fol-
lowing basic replacement rules for transition from 
the gamma matrix action onto the column-spinor to 
a respective GA multivector expression 

γ̂m|ψ〉 ⇔ γmψγ0,

i|ψ〉 ⇔ ψIσ3,

|ψ*〉 ⇔ –γ2ψγ2,

〈ψ|ϕ〉 ⇔ 〈γ0 
~ψγ0ϕ〉 – 〈γ0 

~ψγ0ϕIσ3〉Iσ3, (7)

where 1=i −  and an asterisk means the com-
plex conjugation. The bracket 〈…〉 that appears in 
the right-hand side means that only the scalar part 
is to be taken from the resulting multivector inside 
the bracket. The square of the spinor norm, as follows 
from the last line and spinor (5), is

|ψ|2 = 〈ψγ0 
~ψγ0〉 = a2

0 + a2
1 + a2

2 + a2
3 + b2

0 + b2
1 + b2

2 + b2
3.  (8)

The above rules and in particular the last expres-
sion in (7) allow calculating the replacement rule for 
the matrix element of the operator Ô,

〈ψ|Ô|ψ〉 ⇔ 〈γ0 
~ψγ0O

C(ψ)〉 – 〈γ0 
~ψγ0O

C(ψ)Iσ3〉Iσ3, (9)

where OC is the  operator Ô transformed to GA,  
Ô|ψ〉 ⇔ OC(ψ).

It is important to stress that in GA the  spinor ψ 
in principle is free of matrix representation, i.  e. it 
is coordinate-free. The  appearance of basis vectors 
or bivectors in the Dirac and Majorana equations in 
the GA form is related with the necessity to declare 
the  time axis and the spin quantization axis, which 
in our case are represented by the basis vector γ0 and 
the oriented plane Iσ3. The appearance of γ2 in (7) is 
not related with any physical axis or oriented plane. 
Since the operation of complex conjugation does not 
belong to GA involutions, the rule |ψ*〉 ⇔ –γ2ψγ2 only 
shows a formal equivalence between the signs at sca-
lar coefficients in spinors (3) and (5).

3. Majorana spinors in ga

In the  standard or Pauli–Dirac representation 
the gamma 4×4 matrices are

, k = 1,2,3, (10)

where l̂2 is the 2×2 unit matrix and σ̂k are Pauli matri-
ces. To have projective operators in the Hilbert space 
an additional fifth gamma matrix, 32105 ˆˆˆˆi=ˆ γγγγγ − , 
is introduced. To avoid misinterpretations in apply-
ing the replacement rules the transition to and back 
will be referenced with respect to the standard Pauli–
Dirac representation (10).

The Dirac gammas in the Majorana representation 
can be found with the unitary matrix [15] 

,      (11)

which satisfies 1̂=)ˆ(=)ˆ(ˆ 21 MMM UUU − . Then, after 
unitary transformation the gamma matrices (10) be-
come purely imaginary [7]:

 
, (12)

. (13)

We shall assume that the  Majorana spinor (pro 
tempore complex) has the form

              , (14)

where ai and bi are scalar coefficients in the 2-compo-
nent spinors |χ〉→χ = a0 +  a

kIσk and |w〉→w = b0 + bkIσk . 
Then, the spinor in the standard Dirac representation 
becomes

 (15)

The dagger at MÛ  suggests that the  spinor was 
transformed to the standard representation and then 
the replacement rules (6) and (7) were applied [16]. 
Below the  properties of ψ in (15) that represents 
the Majorana spinor in GA are discussed.
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1. In (15) there appear two projectors, 
 and , which divide 

the  spinor into two complimentary parts that can 
be swapped if ψ is multiplied by the bivector Iσ3, i. e. 

. If transformed 
to the standard Pauli–Dirac representation using re-
placement rules (7), these projectors become

, (16)

which after transformation to the Majorana represen-
tation assume a block-diagonal form that is typical of 
projectors:

. (17)

The above matrices are similar to the helicity pro-
jection matrices (1 ± γ̂5)/2 in the standard Dirac rep-
resentation.

2. In (15), the Majorana spinor becomes real when 
ω = 0, i. e. when the second term vanishes,

 
(18)

As the  last line shows, χ may be interpreted as 
the Cl3,0 algebra spinor and therefore can be reduced to 
a product of 3D Euclidean space rotors. Thus Eq. (18) 
shows that all real Majorana spinors are described by 
all possible sets of three dimensional rotors R. From 
this we conclude that the real Majorana spinor may be 
replaced by the product of two 3D rotors parameter-
ized by angles, θ and φ,

 
, (19)

and then, as (18) requires, multiplied by a respective 
projector. Spinor (19) satisfies 1=~χχ . From this we 
conclude that the spinor χ is nothing else but a 3D 
Euclidean space rotor the coefficients ai of which can 
be parameterized by two rotation angles in the Eu-
clidean space: ,  , 

, . Thus, all possible 
states of χ are isomorphic to the Pauli spinor-rotor 

of Cl3,0 algebra and, as known, represent points on 
the Bloch sphere where every point is related with 
a quantum state of the two-level system which can be 
reached by the spinor-rotor χ. In particular, the two 
basis states on the Bloch sphere, which are equivalent 
to up |↑〉 and down |↓〉 spin states, can be described 
by rules |↑〉 → 1 and |↓〉→–Iσ2. They correspond, re-
spectively, to angles (φ, θ) = (0, 0) and (φ, θ) = (0, π) 
in (19). The other states on the Bloch sphere can be 
written as linear combinations, |ψ = α|↑〉+β|↓〉, where 
the complex constants α and β determine all possible 
states. They are totally equivalent to the GA spinor-
rotor (19).

3. As mentioned, the Majorana spinor (18) is real 
and consists of the product of the Euclidean space ro-
tor χ and the  projector (idempotent). On the  other 
hand, the  standard Pauli–Dirac spinor consists of 
the product of the Euclidean space rotor and the rela-
tivistic boost  [11]. In GA they are represented by 
exponents that generate trigonometric functions 
in the  case of rotations in the physical space and 
the hyperbolic functions in the case of boost, or ac-
celeration of the  system. Anyway, in the  Majorana 
spinor (18) the  idempotent cannot be reduced to 
hyperbolic functions, i. e. boosts of the system. This 
can be seen from the  expression for the  standard 
boost e ϑσ2/2 = cosh(ϑ/2) + σ2 sinh(ϑ/2), which cannot 
be transformed to a  characteristic idempotent form 
(1±σ2)/2 by varying the boost angle ϑ.

4. If χ = 0, the spinor is imaginary, and ψ becomes

ψM
i = 2–1/2Iσ3 ω(1 – σ2), (20)

where ω represents the  Pauli spinor. The  factor 
(1  –  σ2)/2 is the  idempotent which projects onto 
the complimentary space. Apart from the phase fac-
tor Iσ3 = eπIσ3 /2, this spinor is similar to (18). In the fol-
lowing the real part of the spinor, i. e. Eq. (18), will 
be used.

4. Dirac–Majorana equation

The Majorana equation is

(i –γ̂ m∂m – m) | ψ〉 = 0, (21)

where |ψ〉 is the Majorana spinor and µγ̂  are purely 
imaginary (indicated by overbar) gamma matrices 
(12) and (13), therefore, µµ γγ ˆ=ˆi −  are real matri-
ces. The Majorana spinors are 4 -dimensional real 
column-vectors. So the real Majorana equation can 
be rewritten as

(γ̂ m∂m + m) | ψ〉 = 0. (22)
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If the complex conjugation is taken, we have

(γ̂ m∂m + m) | ψ*〉 = 0. (23)

From this it follows that the Majorana spinor is 
a real quantity: |ψ* = |ψ〉.
If a differential vector operator (nabla) is introduced,

∇= γ0∂t – γ1∂x – γ2∂y – γ3∂z, (24)

then the Majorana equation (22) in a coordinate-free 
GA notation will read

∇ψIσ3 + mψγ0 = 0. (25)

The solution in the  form of plane running elec-
tronic waves will be sought,

ψ = ψ0e
±Iσ3 p·x = 0, (26)

where different signs in the exponent correspond to 
forward and backward waves, and ψ0 is a  constant 
spinor (18). The inner, or dot, product of the 4-mo-
mentum p = p0γ0 + p1γ1 + p2γ2 + p3γ3 and the 4-co-
ordinate x  =  tγ0  +  xγ1  +  yγ2  +  zγ3 gives the  scalar 
phase:

p·x = p0x0 – p1x1 – p2x2 – p3x3. (27)

The action of the 4-dimensional nabla upon the run-
ning wave exponential gives

∇ψ = ∇(ψ0e
±Iσ3 p·x) = ± pψIσ3. (28)

Thus, under the running wave ansatz (26) the Ma-
jorana equation (25) becomes algebraic,

 pψ0 – mψ0γ0 = 0, (29)

or, after insertion of the  Majorana real spinor from 
Eq. (18), , it becomes

±pχ(1+ σ2) = –mχ(1+ σ2)γ0. (30)

The idempotents on the  left and right side of (30) 
cannot be cancelled out, since only the projections 
rather than the projected expressions before idem-
potents are equal. Also note that 0=~MMψψ , so 
that the spinor is non-normalizable. However, the 3D 
spinor χ that belongs to the R3,0 subspace is well de-
fined and satisfies the normalization, 1=~χχ . There-
fore, Eq. (29) can be rewritten (after right multiplica-
tion by χ~ ) as

±~χpχ(1+ σ2) = –mχ(1+ σ2)γ0. (31)

Now the space-time splitting will be performed by 
multiplying both sides of (31) by γ0 from left and right. 
Noting that χ and γ0 commute, and the right splitting 
of the 4-momentum gives p0γ0 = E0 + p, and the left 
splitting gives γ0 p = E0 – p, where p = p1σ1 + p2σ2 + p3σ3 
is the classical momentum and E0 ≡ p0 is the full en-
ergy of the system, one finds two equations: 

±(E0 + ~χpχ(1– σ2) = –m(1+ σ2), (32)

±(E0 – ~χpχ(1+ σ2) = –m(1– σ2). (33)

It should be noted that different, complimentary 
idempotents appear on the left- and right-hand sides 
of these equations. The  sum of (32) and (33) gives 
the  relation between the energy and 3D linear mo-
mentum,

±(E0 – ~χpχσ2) = –m, (34)

from which the  classical momentum p can be ex-
pressed as

p = (E0 ± m)(χσ2
~χ), (35)

where the upper/lower signs correspond to respective 
signs in the running wave expression (26). The differ-
ence between (32) and (33) gives the same result (34). 
The following conclusions can be drawn from the above 
equations.

1. Since 

χσ2
~χ = sinφσ1 + cosφσ2, (36)

it follows that the linear momentum p lies in the σ1–σ2 
plane and is characterized by the angle φ and the mag-
nitude (E0±m):

p = (E0 ± m)(sinφσ1 + cosφσ2). (37)

The polar angle θ in (36) is absent because the ro-
tation of σ2 by χ was done in the Iσ2 plane which is 
perpendicular to the σ2 axis of Cl3,0. If rotations of re-
maining basis vectors are performed, there appears 
the polar angle θ:

χσ1
~χ = cosθcosφσ1 – cosθsinφσ2 + sinθσ3,

χσ3
~χ = –sinθcosφσ1 – sinθsinφσ2 + cosθσ3.           (38)

2. At p = 0 we have the energy gap E0 = ± m. The neg-
ative energy, as we shall see below, should be rejected.
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3. If φ  =  0, from (36) we have p  =  (E0  ± m)σ2, 
the magnitude of which gives the graphene-like spec-
trum E0 = |p|  m. The minus sign at the mass term 
gives the zero total energy for a particle at the non-
zero momentum and, therefore, should be rejected as 
unphysical. Expression (35) shows that the character 
of the spectrum remains the same in other directions 
determined by the angle φ in (36). From all of this it 
follows that the spectrum is described by a shifted up-
per half of the graphene cone,

E0 = |p| + m spectrum of DM equation in Cl1,3, (39)

as shown in Fig. 1. The momentum lies in the plane 
σ1  –σ2. In the  dimensional units the  spectrum is 
E0 = c|p| + mc2. Since at the energies E0 > m it gives 
the velocity for a Majorana particle equal to light ve-
locity, |v| = c, the spectrum should be rejected as un-
physical.

A few words are appropriate here to say about 
the  solution of the  DM equation within the  frame-
work of Cl3,1 algebra  [17]. This algebra may be rep-
resented by real 4×4 matrices, so at the first sight it 
may appear that Cl3,1 algebra is an ideal coordinate-
free tool to analyze the point at issue. However, here 
one encounters the problem of compatibility between 
the  replacement rules for real quantum mechanics 
and Cl3,1 algebra with real spinors. It appears that such 
rules can be constructed only for its even subalgebra 
Cl+

3,1 ∈ Cl3,1 but not for a full Cl3,1 algebra. As a result, 
the real Dirac–Majorana equation cannot be written 
in terms of Cl3,1, although the real spinors do exist.

In summary, the Majorana real spinors were cal-
culated and then applied to the DM equation using 
the relativistic geometric algebra Cl1,3. It was found 
that the real spinors in Cl1,3 are equal to the Cl3,0 

spinors multiplied by an idempotent element. As 
a  result, the  unphysical solutions of the  DM equa-
tion are obtained for running waves, implying that 
the Majorana particle does not exist. An attempt to 
solve the DM equation with running waves within 
the  framework of Hilbert space formulation also 
gives an unphysical spectrum  [17]. All solutions 
considered here correspond to infinite boundary 
conditions. The solutions at finite boundary condi-
tions, without using the  running to infinity waves, 
were not investigated in this paper. However, from 
the  study of topological insulators we know that 
the bounded solutions of the DM equation may be-
come physical in such cases [5, 6].

appendix

In GA, the orthogonal basis vectors are ei, the bivec-
tors are eij = eiej =  ei˄ej, etc. As usual, the geometric 
product, for example eiej, has no special symbol. In 
relativistic Cl1,3 algebra, however, a different and more 
convenient notation is preferred, which reconciles 
multivector notations of classical Cl3,0 and relativis-
tic Cl1,3 algebras. We shall remind that Cl3,0 is an even 
subalgebra of Cl1,3. In the present paper the notation 
of [11] is used. In this notation the basis vectors ei are 
replaced by Dirac gammas symbols γμ. Below the no-
tation used is summarized.

Vectors: γ0 = e1, γ1 = e2, γ2 = e3, γ3 = e4;

γ2
0 = 1 and γ2

k = –1 when k = 1,2,3.

Bivectors: σk = γk γ0, σ
2
k = 1;

Iσk ≡ Iσk, (Iσk)
2 = –1;

Iσ1 = γ3γ2, Iσ2 = γ1γ3, Iσ3 = γ2γ1.

Trivectors: Iγm ≡ Iγm, m = 0,1,2,3;

Iγ0 = –γ1γ2 γ3, (Iγ0)
2 = 1;

Iγ1 = –γ0γ2 γ3, (Iγ1)
2 = –1;

Iγ2 =  γ0γ1 γ3, (Iγ2)
2 = –1;

Iγ3 = –γ0γ1 γ2, (Iγ3)
2 = –1.

Pseudoscalar:

I = e1e2e3e4 = γ0γ1 γ2 γ3 = (γ1γ0) (γ2 γ0) (γ3 γ0) = σ1σ2σ3;

I2 = –1,  ~II = –1.

Fig. 1. Single-cone described by dispersion E0 = |p| + m. 
The energy gap between the cone tip and wave vector 
plane is equal to mass m.
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After the  spacetime splitting (multiplication by 
γ0), the  considered notation allows treating the  bi-
vector symbols {σ1σ2σ3} of Cl1,3 as vectors in Cl3,0 and 
the symbols {Iσ1Iσ2Iσ3} as bivectors in Cl3,0. Thus, after 
the splitting the basis elements belong to Cl3,0 and be-
come observer dependent. This is why they are writ-
ten in bold, {σ1σ2σ3}  and {Iσ1Iσ2Iσ3}, i.  e. as vectors 
and bivectors of Cl3,0. The scalar and the pseudoscalar 
are shared by both algebras.
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santrauka
Pritaikius geometrinės algebros multivektorius bu-

vo sudaryti ir išnagrinėti Majoranos spinoriai, turin-
tys realų, o ne labiau įprastą kompleksinį pavidalą. 
Pa rodyta, kad tokie spinoriai savyje turi primityvų 
idempotentą, kuris iš esmės keičia spinoriaus savybes. 
Gauti spinoriai pritaikyti reliatyvistinės Dirako-Majo-
ranos lygties spektrui – dalelės energijos priklausomy-

bei nuo jos impulso – apskaičiuoti taikant geometrinę 
Cl1,3 algebrą. Išspręstas bėgančios elektroninės bangos 
uždavinys. Iš sprendinio analizės prieita prie išvados, 
kad Majoranos tipo laisvosios dalelės neegzistuoja, 
nes gauto spektro savybės nesiderina su šiuolaikinės 
fizikos įvaizdžiu, kadangi masę turinčios dalelės greitis 
negali viršyti arba būti lygus šviesos greičiui.


	GrindEQpgref57fdd4e21
	GrindEQpgref57fdd4e22
	GrindEQpgref57fdd4e23
	GrindEQpgref57fdd4e24
	GrindEQpgref57fdd4e25

