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The edge state is considered in the spectrum region where its branch splits from the bottom of a continuous conduction 
band. It is shown that in this region the electron wave function demonstrates two different scale behaviours: slow and fast, that 
enabled us to construct some simplified procedure for the analysis of the edge state. The slow wave function part obeys a simple 
Schrödinger equation the parameters of which are insensitive to the peculiarities of the electron dynamics, while the fast part that 
describes the details of electron behaviour in the primitive cell reveals itself only at the edge. The equation for this fast part was 
transformed into the boundary condition for the slow part equation. The proposed method is illustrated considering the simplest 
continuous model for a topological insulator and a tight binding model for graphene.
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1. Introduction

The topological insulators [1] have been a focus of in-
tense recent interest. The attention is mainly related 
to the  protected edge or surface states appearing in 
the forbidden energy gap. These states lead to a con-
ducting state of the  insulator with properties unlike 
any other known in electronic structures. In addition 
to the fundamental interest in them, these states are 
predicted to have special properties that could be use-
ful for applications ranging from spintronics to quan-
tum computation. The topological insulator is closely 
related to the quantum Hall state that reveals itself in 
single layer 2D (two-dimensional) systems (like in 
graphene [2]) where the role of the external magnetic 
field is played by the internal one caused by the spin–
orbit interaction of electrons [3].

The most interesting and promising achievement 
is based on the  topological symmetry, the  ideas of 
which about the  Berry phase  [4], invariant Chern 
numbers [5, 6] and topological order [7, 8] enabled 
one to make the  classification of new topological 
phases in solid state physics and predict the  ap-
pearance of topologically protected helical edge 
states. The edge state problem is always more com-
plicated than the bulk state one due to breaking of 

the  translation symmetry. That is why very often 
the  numerical calculations have to be used. Mean-
while the solutions of simplified model problems by 
analytical means always provide useful information 
for understanding of more complicated systems [9, 
10]. See also [11] where the properties of interacting 
1D topological insulators are interpreted in terms of 
Green’s functions.

The aim of this paper is to demonstrate that a use-
ful analytical consideration of the  spectrum branch 
of the  edge state is possible close to the  point where 
it splits from the  continuous band making use of 
a small parameter, namely, the energy deviation from 
the splitting point as compared with the forbidden en-
ergy gap. We show that in this region it is possible to 
construct the electron wave function of the edge state 
of two different scale parts that reminds of the adiaba-
tic approach in the molecular vibration theory where 
two-scale evolution in time is used. We succeeded to 
reformulate the fast wave function part equation into 
the boundary condition for the slow part one that actu-
ally determines the conditions of the edge state appear-
ance. We demonstrate this idea using two toy models: a 
continuous version [12] of the Bernevig [13] model of 
a 2D topological insulator and the discrete TBM (tight 
binding model) Haldane model [3] of graphene that 
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includes spin–orbit interaction and electron hopping 
to the next nearest neighbours.

The paper is organized as follows. Section 2 is de-
voted to a  continuous topological insulator model. 
So, in Subsection 2.1 the half plane problem is settled 
and in Appendix A it is reformulated as an equation 
for a single wave function component. In Subsection 
2.2 the two-scale behaviour of the wave function is re-
vealed and the proper matching procedure is proposed. 
In Subsection 2.3 the behaviour of the edge state close 
to the point where it splits from the conduction band 
is discussed and the results are presented. In Section 3 
and Appendix B the same procedure for the descrip-
tion of graphene in the TBM approach is presented. In 
the last Section 4 our conclusions are given.

2. Topological insulator

We demonstrate the  idea of the  proposed method 
considering the  simplest continuous model of a  2D 
topological insulator that according to [12] is charac-
terized by the Hamiltonian (4×4 matrix)

, (1)

composed of two 2 × 2 blocks:

. (2)

Because of the  absence of off-diagonal blocks in 
Hamiltonian (1), one can analyze states for each block 
separately. We consider the upper block.

Denoting the wave function as

, (3)

scaling coordinates {x,  y}  →  (B/A)  {x,  y}, replacing 
the constant M →  (A2/B)M and measuring the elec-
tron energy E in A2/B units, we have the following ei-
genvalue problem composed of two differential equa-
tions for the wave function components:

(M + ∇2) u – i(∂/x – i∂/∂y) v = Eu, (4a)

– i(∂/∂x + i∂/∂y) u – (M + ∇2) v = Ev, (4b)

controlled by a single dimensionless constant M.
Assuming the exponential type wave function

 (5)

and inserting it into Eqs. (4), we obtain the dispersion 
relation

E2 = ε2 (p) = p4 – (2M – 1)p2 + M2 (6)

in the case of electron moving in the  infinite plane,  
where

p2= k2 + q2. (7)

The corresponding wave function components are

. (8)

The spectrum has the  cylindric symmetry. Its 
two branches are shown in Fig. 1 (panel (a)) by solid 
curves as functions of the absolute value of the elec-
tron momentum p (7). The projection of this spectrum 
onto the k = 0 plane is shown in the panel (b), where 
the continuous conduction and valence bands are indi-
cated by shadowed areas. In the case of M > 1/2 the up-
per (lower) branch has the minimum (maximum) on 
the ring with the radius 1/2=0 −Mp  denoted by 
points K(L) that are the points of our interest.

Fig. 1. Spectrum (coloured online) according to Eq. (6a) 
and its projection onto the k = 0 plane (b).

2.1. Half-plane problem

Now we consider the eigenvalue problem on the half-
plane 0 ≤ x < ∞, –∞ < y < ∞, where the electron motion 
is described by the  same Eqs.  (4) with the boundary 
conditions u(0, y) = v(0, y) = 0 added. This system is 
invariant in respect to the translation along the y axis. 
That is why the electron momentum component q is 
a good quantum number, and the wave function can 
be presented as

. (9)

Inserting it into (4) we transform those equations into 
the  following set of two ordinary differential equa-
tions:
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, (10a)

, (10b)

with the boundary conditions

u(0) = 0, (11a)

v(0) = 0. (11b)

We shall present all results and plots as functions 
of that quantum number q: the electron momentum 
along the  edge. The  continuous bands are actually 
described by the  same dispersion relation (6) as in 
the case of infinite plane, only having twice smaller 
density of states, and, consequently, they coincide 
with the shadowed regions shown in the panel (b) of 
Fig. 1. Minimizing that dispersion relation in respect 
to the perpendicular component of the electron mo-
mentum k we obtain the following minimum (maxi-
mum) of these upper (lower) energy bands:

 (12)

According to [12] two edge state branches appear in 
the  forbidden energy gap. We restrict ourselves to 
the one shown by a dashed (red) curve which splits 
from the upper continuous energy band close to the 
previously mentioned point K. The  other edge state 
(indicated by a dotted curve) follows from the lower 
block of Hamiltonian (1), or by a simple replacement 
q → – q in the final result.

2.2. Two scales of the wave function

Constructing the approximate description of the edge 
state close to the point K it is more convenient to use 
a single equation instead of a set of two Eqs. (10). This 
equation for the component u (see the derivation in 
Appendix A) reads

, (13)

where

R = q2 – M + 1/2, (14)

w2 = ε2 (q) – E2, (15)

and the  following boundary conditions have to be 
added:

u(0) = 0, (16a)

uʹʹʹ(0) – quʹʹ(0) – (E + q2 – M + 1) uʹ(0) = 0.    (16b)

As already mentioned, our main interest is the small 
region around the point K where the edge state splits 
from the minimum of the upper continuous band. This 
minimum is given by the  function ε(q) what makes 
the  coefficient w small (see Eq.  (15)). The  smallness 
of the last term in Eq. (13) leads to two characteristic 
scales of the wave function u(x) behaviour, which ena-
bles us to construct the component u(x) by some ap-
proximate procedure.

We start the  consideration of that approximate 
procedure neglecting the small last term in Eq. (13) 
and rewriting it as

. (17)

The general solution with an arbitrary chosen nor-
malization factor reads

uf(x) = –e–κx + Aeκx + B + Cx, (18)

where

R2=κ . (19)

The second term in Eq. (18) has to be omitted as we 
are looking for the  edge state the wave function of 
which descends receding from the edge. Thus A = 0. 
In order to satisfy the boundary condition (16a) we 
assume that B = 1. The last constant C follows from 
the second boundary condition (16b) and it reads

. (20)

The constructed fast part of the wave function

uf(x) = –e–κx + 1 + Cx (21)

is correct close to the  origin (x  =  0), where its co-
ordinate dependence is strong, and, consequently, 
the neglected term in (13) is small as compared with 
two other terms with derivatives. But in the asymp-
totic region (x → ∞) the  function is not correct due 
to a slowly growing last term in formula (21). In this 
region some other approximation has to be used for 
the calculation of the slow wave function part. Here 
we neglect the first term with the highest derivative in 
Eq. (13) rewriting it as 

. (22)
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The solution suitable for us (namely, descending wave 
function when receding from the edge) reads

us(x) = De–γx, (23)

where

R
w
2

=γ . (24)

Both wave function parts (fast and slow) have to be 
matched together. As the  slow part obeys the  dif-
ferential equation of the second order it is sufficient 
to match the  functions and their first derivatives. 
The idea of this matching is shown in Fig. 2. The upper 
and lower (red and blue online) curves correspond to 
the slow us and fast uf wave function parts calculated 
above. The solid parts of these curves correspond to 
the regions where the functions are sufficiently accu-
rate. We assume that these parts have to be matched 
at some intermediate point x0.

ly, we can change the matching point to x0 = 0. So, 
matching the  functions and their derivatives we 
get

, (27)

or

. (28)

This is the  final algebraic equation that has to be 
solved together with Eq.  (15) for the  edge state en-
ergy definition. Assuming w = 0 one can easily define 
the  coordinates of point Q (see panel (b) in Fig.  1) 
where the  edge state energy branch enters the  con-
tinuous band:

MqE =~=0 . (29)

2.3. Expansion close to Q point

We have to remember that the two scales in the wave 
function behaviour, on which the consideration pre-
sented in Subsection 2.2 was based, appeared due 
to the  closeness of the  edge state energy branch to 
the  point Q. That is why there is no need to solve 
Eq. (28) exactly, and we introduce deviations of en-
ergy and momentum from the above point assuming 
that they are small:

E = E0 + ε,  q = ~q + g, ε, g << 1. (30)

In order to obtain the  edge state energy ε within 
the accuracy of g2 terms we have to square Eq.  (28) 
and replace its left side by Eq.  (15) restricted to 
the following expansion:

. (31)

Meanwhile, due to the  proper choice of zero term 
(29) the expression in brackets in the right hand side 
of Eq.  (28) has no zero order terms. Consequently, 
the choice of the first order terms in the brackets and 
the zero order approximation of the prefactor, name-
ly, the replacement of (28) by the equation

 (32)

is quite sufficient for our purpose. Now comparing 
this equation with Eq.  (31) we obtain the  following 
equation:

Fig. 2. Matching of the fast and slow wave function parts 
(coloured online).

Due to the  smallness of parameter (15), and, as 
a consequence, the smallness of parameter γ as well 
(see formula (24)) it is possible to choose the match-
ing point satisfying the following conditions:

κx0 >> 1, γx0 << 1. (25)

Because of the first condition the exponent of the fast 
function (21) may be neglected taking into account 
only its asymptotic part 

ua(x) = 1 + Cx, (26)

shown in Fig.  2 by a  straight solid (green) line. It 
represents the  fast part of the wave function quite 
close to the point x0 where we are going to perform 
the matching. The second condition in (25) enables 
us to simplify the slow function (23) as well. Name-



A. Matulis / Lith. J. Phys. 57, 1–11 (2017)5

 

(33)

The sign of the  radical should be positive due to 
the positiveness of the decrement γ in the case of edge 
state. This equation can be satisfied by the function

ε = g. (34)

Indeed, inserting this function into Eq. (33) we obtain 
the condition

 (35)

that is satisfied identically in the case of negative g val-
ues. This result is shown in the panel (b) of Fig. 1 by 
a dashed (red online) line and coincides with the one 
obtained in  [12] by means of a more complicated ex-
act consideration.

It is remarkable that in this consideration the con-
dition M > 1/2 was not actually used. Consequently, 
the existence of edge states is not related to the pres-
ence of K (L) points in the  spectrum. Thus, the  Q 
point (33) and the  edge state branch (34) preserve 
themselves till M = 0 when the energy gap closes.

It is worth drawing attention to the  possibility of 
peculiar interpretation of boundary condition (27). In-
deed, close to the point Q on the edge state branch (ε = g) 
the  boundary condition turns into gMuu 2=/ ss′  
that can be taken into account by means of formal ex-
tending symmetrically the solution to negative x values 
and adding the potential )(4 xMg δ  to Eq. (22) for 
the slow wave function part. In the 1D case and g < 0 
such negative Dirac type local potential always leads 
to a  single bound state corresponding to the  above 
considered edge state. This simple consideration gives 
some physical meaning to the  procedure indicating 
that close to the splitting point the exponent type wave 
function of the edge state satisfies a simple Schrödinger 
equation for a free electron, while the sophisticated dy-
namics of the electron provides the boundary condi-
tion (equivalent to some local potential).

3. Graphene

Now we are going to show that the method proposed 
in the previous section has a more wide application 
considering the discrete model of graphene, namely, 
TBM (tight binding model) when the electron tunnel-
ling to the next neighbouring atoms and the spin–or-
bit interaction are taken into account.

Fig. 3. Graphene lattice (coloured online).

We consider the motion of an electron in the hex-
agonal lattice shown in Fig.  3. According to  [3] 
the  electron motion is described by the  following 
TBM equations:

Eun,m = (vn,m + vn–1,m + vn,m–1)

+ it(un,m+1 – un–1,m+1 + un–1,m

– un,m–1 + un+1,m–1 – un+1,m), (36a)

Evn,m = (un,m + un+1,m + un,m+1)

+ it(vn,m+1 – vn–1,m+1 + vn–1,m

– vn,m–1 + vn+1,m–1 – vn+1,m). (36b)

In order to simplify the notations we use the di-
mensionless variables when the  energy is measured 
in the  tunnelling to the  nearest neighbour ampli-
tude units. The coordinates are measured in units of 
distance to the next neighbouring sites indicated by 
thin dashed (violet and light blue) lines. The  sym-
bol t means the  ratio of two tunnelling amplitudes: 
to the  next neighbours and to the  nearest ones. It 
was shown experimentally in  [14] and theoretical-
ly in  [15, 16] that this ratio in graphene is of order 
10–6. It is negligible and, thus, the effects related with 
the quantum spin Hall insulator can reveal themselves 
in graphene at very low temperatures only. Neverthe-
less, following [3] we shall use that Hamiltonian with 
the exaggerated constant t (say, t = 0.1) as a toy model 
for the illustration of the proposed technique.

In this model the electron motion is actually de-
scribed by four amplitudes. The last two components 
differ from the  two ones under the  consideration 
by different spin. They satisfy the  equations similar 
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to Eqs.  (36) but with an opposite sign of imaginary 
terms. As there is no interaction between these ampli-
tude pairs they can be considered separately, and we 
shall choose the first pair of them.

We consider the zigzag edge. That is why we assume 
that the plane shown in Fig. 3 is cut along the thick 
dashed (red) line corresponding to the index n = 1. In 
order to use the same Eqs. (36) for the amplitudes u0,m 
and ν0,m at the edge we assume the following bound-
ary conditions:

u–1,m = ν–1,m = 0. (37)

Following the procedure presented in the previous 
section and taking into account the translation sym-
metry along the edge we transform the problem into 
1D one assuming the following wave function:

. (38)

It enables us to write down the following set of two 
1D equations,

(E + τλ)un – τ(un–1 + un+1) = λvn + vn–1, (39a)

(E – τλ)vn + τ(vn–1 + vn+1) = λvn + un+1. (39b)

Here

λ ≡ λ(q) = 2 cos(q/2),       τ ≡ τ(q) = 2t sin(q/2).  (40)
  

The applied substitution transforms the  boundary 
condition (37) to

u–1 = 0, (41a)

ν–1 = 0. (41b)

We see that the motion of the electron in this mod-
el is controlled by two parameters λ and τ that de-
pend on the momentum component along the edge q 
and the  spin–orbit interaction constant t (as it was 
in the continuous model of the topological insulator 
considered in the previous section).

Now inserting the exponential type amplitudes

un,νn ~ eikn (42)

into Eqs. (39) we obtain the spectrum for the electron 
moving in the infinite plane

E2 = 16τ2 sin4(k/2) – 4Rsin2(k/2) + ε2(q),             (43)

where

R = – λ + 2τ2 (λ – 2), (44a)

ε2(q) = (1 + λ)2 + τ2 (2 – λ)2. (44b)

Its upper band is indicated in Fig.  4 by solid (blue) 
curves as functions of the electron momentum com-
ponent parallel to the  edge q for various k values. 
The lower band can be obtained right from it just in-
verting the energy axis.

Fig. 4. Spectrum (coloured online) according to Eq. (43). 

It follows from Eq.  (43) that the  minimum of 
the upper band at given q is achieved when k = 0. This 
lower edge of the  continuous spectrum is given by 
function ε(q). It has the  minimum at points K and 
K’, where

q0 = 4π/3,    q0ʹ = 2π/3,    λ0 = –1,    E0 =  .    (45)

It is remarkable that the  position of these minima 
does not depend on the parameter t.

3.1. Half-plane problem

In the case of half-plane the continuous spectrum re-
mains the same, but the additional edge state branch-
es appear splitting from the continuous band close to 
the specific K and K’ points. Schematically these edge 
state branches are shown by the  dashed and dotted 
(red) curves in Fig. 4. Our main interest is the dashed 
curve, namely, the edge state in the vicinity of the right 
splitting point K, indicated by a small (green) circle.

It follows from Eqs. (45) and (39b) that νn = 0 at 
the point K. That is why one can expect that in a small 
region close to that point the  amplitude νn remains 
small. Thus, it is worth to transform Eqs.  (39) into 
a  single equation for the  large amplitude un, like it 
was done in Section 2. The details of this transforma-
tion are given in Appendix B, and the equation with 
boundary conditions reads
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τ2(un+2 – 4un+1 + 6un – 4un–1 + un–2)

–R(un+1 – 2un + un–1) + w2un = 0, (46a)

u–1 = 0, (46b)

τ2(u1 – 3u0 + 3u–1 – u–2)

–F(u0 – 2u–1 + u–2) + G(u0 – u–1) = 0, (46c)

where

w2 = ε2(q) – E2, (47a)

F = τ2(1 + λ), (47b)

G = λ + (2 – λ)τ2 – τE. (47c)

Note all terms in the  parentheses of Eqs.  (46) are 
the analogues of derivatives.

3.2. Two scales of the wave function

Eq.  (46a) for the  description of the  edge state in 
graphene includes the  same small parameter w  as 
in the previous section. That is why we shall follow 
the same procedure distinguishing fast and slow re-
gions of the wave function behaviour. First we omit 
the small last term in Eq. (46a) and solve the follow-
ing truncated equation for the fast wave function part:

τ2(un+2 – 4un+1 + 6un – 4un–1 + un–2)

– R(un+1–2un + un–1) = 0. (48)

The solution of this difference equation can be con-
structed using the analogy with the differential equa-
tion, because the terms in parenthesis of this equation 
are the analogues of the forth and second derivatives 
in Eq. (17). It can be easily checked that the general 
solution can be chosen as

un
(f) = 1 – e–κ(n+1) + β(n + 1), (49)

with the  decrement κ satisfying the  following trun-
cated dispersion relation:

4τ2 sinh2(κ/2) – R = 0. (50)

Constructing that solution we took into account 
the boundary condition (46b) and excluded the grow-
ing exponent.

Satisfying the  second boundary condition (46c) 
we obtain one more equation,

2sinh(κ/2){e–κ/2[4τ2 sinh2(κ/2)+G] – 2F sinh(κ/2)}

+ βG = 0, (51)

which together with Eq.  (50) enables us to obtain 
the expression for the last constant in the fast part of 
the wave function (49), namely,

 
, (52)

where

. (53)

Looking for the slow wave function part we neglect 
the first parentheses in Eq. (46a) that corresponds to 
the derivative of the highest order, and rewrite it as 
follows:

R(un+1 – 2un + un–1) – w2un = 0. (54)

The proper solution reads

un
(s) = u0

(s)e–γn, (55)

where the  decrement γ satisfies the  following equa-
tion:

. (56)

Due to the smallness of the decrement γ the replace-
ment of sinus hyperbolic by its argument is quite rea-
sonable.

The matching procedure is actually the  same as 
that one in the case of differential equation (13). So, 
due to the inequality κ >> γ we choose such matching 
point n0 that satisfies the following inequalities:

κn0 >> 1, γn0 << 1. (57)

Due to the first of them one can neglect the exponent 
in formula (49) and replace the  fast wave function 
part (49) by its asymptote

un
(a) = 1 + β(n + 1) (58)

that is adequate to the  exact solution close to 
the matching point. Due to the  second inequality it 
is possible to shift the  matching point to the  origin 
choosing n0 = 0.

The difference equation (54) for the  slow wave 
function part is the  analogue of the  differential 
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equation with the  second order derivative. That is 
why we need two boundary conditions for matching 
the slow wave function part (55) to the asymptotic for-
mula (58) of the fast one. For instance, these two func-
tion parts can be equated at two neighbouring points, 
say, at n0 = 0 and nʹ = –1, which gives the following set 
of two equations:

u0
(a) ≡ 1 + β = u0

(s), (59a)

u–1
(a) ≡ 1 = u–1

(s) = u0
(s)eγ ≈ (1 + β) (1 + γ), (59b)

and

β = –γ (60)

within the  accuracy of linear term. Now taking 
Eqs.  (56) and (52) into account we obtain the  final 
equation

 (61)

for the  edge state energy calculation, similar to 
Eq.  (28) that we used in the  case of the  continuous 
model for the topological insulator. This equation has 
to be considered together with definition (47a).

The point Q where the edge state branch splits from 
the conduction band follows from the above equation 
when w = 0 and E = ε(~q). For instance, in the case of 
t = 0.1 the numerical solution of the above algebraic 
equation gives ~q/2π ≈ 0.698, and E0 ≡ ε(~q) ≈ 0.541. 
This point does not coincide with the point K that is 
located at q = q0 = 4π/3 as shown in Fig. 5.

3.3. Expansion close to Q point

The next step is evident. We expand the  energy of 
electron and its momentum along the edge into a se-
ries of small deviations from the Q point according 
to Eqs.  (30). Following the  consideration presented 
in Subsection 2.3 it is easy to reveal that in order to 
obtain the  edge state energy within the  accuracy of 
quadratic g2 terms it is sufficient to replace Eqs. (44b) 
and (53) by the following truncated expansions:

ε(q) = E0 + ag + bg2, (62a)

W = cg + dε. (62b)

Here a,  b,  c and d are just the  trivial coefficients in 
the Taylor series of the above parameters. Using Eqs. 
(47a) and (62a) we obtain

, (63)

and inserting it into Eq. (61) together with the expan-
sion (62b) we arrive at the final simplified equation

, (64)

where the coefficient

 (65)

is calculated at the splitting point Q where q = ~q.
Squaring Eq. (64) and iterating the small quadratic 

term ε2 we obtain the solution

ε = ag + [b – B2(c + ad)2]g2 (66)

that is valid for negative g values and ensures the posi-
tiveness of the radical in Eq. (64).

This solution is illustrated by Fig. 5 where the edge 
state branch (66) is shown by the (red) solid curve in 
the case of t = 0.1 when

a ≈ 1.260,    b ≈ 15.84,    c ≈ 1.101,

d ≈ –0.0257,    B ≈ –5.054. (67)

For comparison the (blue) dashed curve shows the ex-
act solution of the edge problem obtained by the nu-
merical diagonalization of the  Hamiltonian corre-
sponding to Eqs.  (39). Good coincidence of these 
two curves confirms the  adequacy of the  proposed 
method that can be useful in a quite large region of 
the energy gap. When the parameter t goes to zero, 

Fig. 5. Edge state branch: solid (red online) curve shows 
our result according to Eq. (66); dashed (blue online) 
curve is the solution of the edge problem obtained by 
the numerical diagonalization of the Hamiltonian cor-
responding to Eqs. (39); thick (black) curve is the bot-
tom of the continuous band. 
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the  energy gap closes and the  edge state branches 
transform themselves into the horizontal lines inher-
ent in the zig-zag edge state in graphene with the tun-
nelling to the nearest neighbours exclusively.

The procedure applied to the  TBM problem 
has some simple physical meaning as well. In-
deed, Eq. (54) resembles the eigenvalue problem for 
the free electron moving in the 1D lattice (in chain) 
tunnelling to the neighbouring sites with some tun-
nelling amplitude R, where according to Eq. (47a) w2 
represents the eigenvalue, namely, the electron energy 
counted from the bottom of the conduction band. In 
the case of n = 0 this equation reads 

– w2u0
(s) = – R[(u1

(s) – u0
(s)) – (u0

(s) – u–1
(s))].              (68)

Using solution (55) and condition (60) it can be easily 
transformed into the form

–R(u1–u0) + Rβu0 = – w2u0
(s) (69)

that can be interpreted as the equation for the ampli-
tude u0 at the edge of the half-infinite chain with the ad-
ditional local potential Rβ. It follows from Eqs.  (52), 
(62b) and (66) that close to the splitting point Q the pa-
rameter β is proportional to the electron momentum 
deviation g and has the  same sign. Consequently, in 
the case of negative g we have the negative local poten-
tial of the edge site that finally causes the appearance of 
the edge state.

4. Conclusions

We presented the  method for considering the  edge 
state spectrum branch in the  region where it splits 
from the band of extended states. The method is based 
on making use of a small parameter: the deviation of 
electron energy from the splitting point as compared 
with the energy gap. Due to this small parameter two 
characteristic regions of different (fast and slow) elec-
tron wave function behaviour appear where the sim-
plified equations can be considered by analytic means. 
The  method is demonstrated considering two toy 
models: the continuous version of the Bernevig model 
of a topological insulator and the discrete tight binding 
Haldane model of graphene.

In the  case of both these models we managed 
to show that it is possible to convert the  fast part 
equation into the  boundary condition for the  slow 
wave function part equation that finally determines 
the  appearance of the  edge state as an interplay of 
microscopic peculiarities of electron motion in 
the  primitive cell with the  mean electron motion 
along the edge. We also showed that the role of these 

boundary conditions can be interpreted as the  ap-
pearance of the local potential at the edge asymmet-
ric in respect to the electron momentum deviation 
from its momentum corresponding to the splitting 
point. Those splitting points do not coincide with 
the minima of continuous bands.
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Appendix A

Single equation for continuous model

We replace the two equation set (10) for components 
u(x) and v(x) by a single equation for the wave func-
tion component u(x). For this purpose we multiply 
Eq. (10aa) by operator (E + M – q2 + d2/dx2) and mak-
ing use of Eq. (10b) rewrite it in the following way:

 
(A1)

So, we obtained the differential equation of the fourth 
order for a single component u(x) that can be easily 
rewritten in the final form as Eq. (13).

The boundary conditions have to be reconsid-
ered as well. Condition (11a) remains the same. But 
the second one, given by Eq. (11b), has to be replaced 
by the proper condition for the u(x) component. For 
this purpose we multiply Eq. (10a) by the operator 
i(q – d/dx) and rewrite it as follows:

. (A2)

The right hand side of the obtained equation can be 
found by resolving Eq. (10b):

. (A3)
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Comparing the obtained equation with Eq. (A2) we 
see that the component u(x) has to satisfy the follow-
ing equation as well:

 (A4)

Now inserting x = 0 into the obtained equation and 
taking formula (11b) into account we obtain the sec-
ond final boundary condition (16b) for the u(x) com-
ponent.

Appendix B

Single equation for TBM

In order to convert the  set of two differential equa-
tions (39) into a single equation for the component un 
we calculate the sum of three equations: Eq. (39a) for 
un multiplied by (E – τλ), and the same equations for 
un±1 multiplied by τ. Then transforming the obtained 
result with the aid of Eq. (39b) we arrive at the follow-
ing equation that we are looking for:

(E2 – λ2τ2 – 2τ2 – λ2 – 1)un

– λ(1 – 2τ2) (un–1 + un+1)

– τ2 (un–2 + un+2) = 0. (B1)

This procedure is correct for any n  ≥  2. Perform-
ing the same procedure in the case of n = 1 we have 
the term τ2u–1 missing. However, this fact does not 
break the  validity of the  obtained equation (B1) if 
the boundary condition (41a) is taken into account.

We also need to replace the  boundary condi-
tion (41b) by some condition for the component un. 
For this purpose we repeat the above procedure in 
the  case of n  =  0. So, let us multiply Eq.  (39a) for 
n  =  0 by (E  –  τλ) and add to it the  same equation 
for n = 1 multiplied by τ. In this case making use of 
Eq. (39b) for n = 0 we have the following result:

(E2 – λ2τ2 – τ2 – λ2)u0

–λ(1 – 2τ2)u1 – τ2u2 = τν0. (B2)

In order to use this equation as the  second 
boundary condition for the  amplitude un we have 
to eliminate the  term containing the  v0 amplitude 
in the right hand side of that equation. This can be 
achieved writing down Eq. (39a) for n = 0 and taking 

into account the  boundary condition (41b) what 
gives us the following equation:

[λ(E2 – λ2τ2 – τ2 – λ2) – λτ2 – τE]u0

–[λ2(1 – 2τ2) – τ2]u1 – λτ2u2 = 0. (B3)

This equation can be simplified combining it with 
Eq. (B1) for n = 0 that has to be satisfied as well. Su-
perposition of these two equations enables us to pre-
sent the secondary boundary condition in the follow-
ing form:

(λ – τE) u0 + τ2u1 + λτ2u–2 = 0. (B4)

Thus, Eq. (B1), the boundary condition (41a) and 
Eq. (B4) make the complete set of equations for a sin-
gle amplitude un that we were looking for and are going 
to use for the description of the edge state in the vicin-
ity of the point where it splits off from the continuous 
spectrum. In order to be closer to the equations used 
in Section 2 when considering the continuous model 
of the topological insulator we regroup the terms of 
the above equations and rewrite them in the form that 
is given by the final Eqs. (46).
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DVISKALĖ KRAŠTINĖS BŪSENOS TEORIJA

A. Matulis

Fizinių ir technologijų mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Išnagrinėta kraštinė būsena spektro srityje, kur jos 

energijos šaka atskyla nuo tolydinės laidumo juostos. 
Parodyta, kad šioje srityje elektrono banginė funkcija 
demonstruoja charakteringą dviejų skirtingų maste-
lių elgesį: greitą ir lėtą kitimą koordinatei tolstant nuo 
krašto. Tai įgalino sukonstruoti tam tikrą paprastą 
kraštinės būsenos analizės procedūrą panaudojant 
mažą parametrą – energijos nuokrypio nuo jos įsilie-
jimo į tolydinę juostą taško ir draustinės juostos ener-
gijos santykį. Lėto banginės funkcijos kitimo srityje ji 
tenkina paprastą Šrėdingerio lygtį, kurios parametrai 

nejautrūs detaliai elektrono dinamikai primityviajame 
narvelyje. Ta detali dinamika pasireiškia tik greitojo 
funkcijos kitimo srityje, kuri sukoncentruota prie pa-
ties krašto. Lygtį šioje greitojo kitimo srityje pasisekė 
transformuoti į kraštinę sąlygą lėtojo funkcijos kitimo 
lygčiai, taip suformuluojant dviskalę kraštinės būsenos 
teoriją. Metodas iliustruotas jį pritaikant papraščiau-
siam tolydiniam topologinio izoliatoriaus modeliui ir 
stipraus ryšio grafeno modeliui, kuriame įskaityti su-
kinio-orbitos sąveika ir elektrono tuneliavimas į toles-
nius kaimyninius mazgus.
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